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Preface to the Dover Edition

We are pleased and honored to see the re-issue of the second edition of our Introduc­
tion to Biostatistics by Dover Publications. On reviewing the copy, we find there
is little in it that needs changing for an introductory textbook of biostatistics for an
advanced undergraduate or beginning graduate student. The book furnishes an intro­
duction to most of the statistical topics such students are likely to encounter in their
courses and readings in the biological and biomedical sciences.

The reader may wonder what we would change if we were to write this book anew.
Because of the vast changes that have taken place in modalities of computation in the
last twenty years, we would deemphasize computational formulas that were designed
for pre-computer desk calculators (an age before spreadsheets and comprehensive
statistical computer programs) and refocus the reader's attention to structural for­
mulas that not only explain the nature of a given statistic, but are also less prone to
rounding error in calculations performed by computers. In this spirit, we would omit
the equation (3.8) on page 39 and draw the readers' attention to equation (3.7) instead.
Similarly, we would use structural formulas in Boxes 3.1 and 3.2 on pages 4\ and 42,
respectively; on page 161 and in Box 8.1 on pages 163/164, as well as in Box 12.1
on pages 278/279.

Secondly, we would put more emphasis on permutation tests and resampling methods.
Permutation tests and bootstrap estimates are now quite practical. We have found this
approach to be not only easier for students to understand but in many cases preferable
to the traditional parametric methods that are emphasized in this book.

Robert R. Sokal
F. James Rohlf

November 2008



Preface

The favorable reception that the first edition of this book received from teachers
and students encouraged us to prepare a second edition. In this revised edition,
we provide a thorough foundation in biological statistics for the undergraduate
student who has a minimal knowledge of mathematics. We intend Introduction
to Biostatistics to be used in comprehensive biostatistics courses, but it can also
be adapted for short courses in medical and professional schools; thus, we
include examples from the health-related sciences.

We have extracted most of this text from the more-inclusive second edition
of our own Biometry. We believe that the proven pedagogic features of that
book, such as its informal style, will be valuable here.

We have modified some of the features from Biometry; for example, in
Introduction to Biostatistics we provide detailed outlines for statistical compu­
tations but we place less emphasis on the computations themselves. Why?
Students in many undergraduate courses are not motivated to and have few
opportunities to perform lengthy computations with biological research ma­
terial; also, such computations can easily be made on electronic calculators
and microcomputers. Thus, we rely on the course instructor to advise students
on the best computational procedures to follow.

We present material in a sequence that progresses from descriptive statistics
to fundamental distributions and the testing of elementary statistical hypotheses;
we then proceed immediately to the analysis of variance and the familiar t test
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(which is treated as a special case of the analysis of variance and relegated to
several sections of the book). We do this deliberately for two reasons: (I) since
today's biologists all need a thorough foundation in the analysis of variance,
students should become acquainted with the subject early in the course; and (2)
if analysis of variance is understood early, the need to use the t distribution is
reduced. (One would still want to use it for the setting of confidence limits and
in a few other special situations.) All t tests can be carried out directly as anal­
yses of variance. and the amount of computation of these analyses of variance
is generally equivalent to that of t tests.

This larger second edition includes the Kolgorov-Smirnov two-sample test,
nonparametric regression, stem-and-Ieaf diagrams, hanging histograms, and the
Bonferroni method of multiple comparisons. We have rewritten the chapter on
the analysis of frequencies in terms of the G statistic rather than X2

, because the
former has been shown to have more desirable statistical properties. Also, be­
cause of the availability of logarithm functions on calculators, the computation
of the G statistic is now easier than that of the earlier chi-square test. Thus, we
reorient the chapter to emphasize log-likelihood-ratio tests. We have also added
new homework exercises.

We call speciaL double-numbered tables "boxes." They can be used as con­
venient guides for computation because they show the computational methods
for solving various types of biostatistica! problems. They usually contain all
the steps necessary to solve a problem--from the initial setup to the final result.
Thus, students familiar with material in the book can use them as quick sum­
mary reminders of a technique.

We found in teaching this course that we wanted students to be able to
refer to the material now in these boxes. We discovered that we could not cover
even half as much of our subject if we had to put this material on the black­
board during the lecture, and so we made up and distributed box'?" dnd asked
students to refer to them during the lecture. Instructors who usc this book may
wish to usc the boxes in a similar manner.

We emphasize the practical applications of statistics to biology in this book;
thus. we deliberately keep discussions of statistical theory to a minimum. De­
rivations are given for some formulas, but these are consigned to Appendix A I,
where they should be studied and reworked by the student. Statistical tables
to which the reader can refer when working through the methods discussed in
this book are found in Appendix A2.

We are grateful to K. R. Gabriel, R. C. Lewontin. and M. Kabay for their
extensive comments on the second edition of Biometry and to M. D. Morgan,
E. Russek-Cohen, and M. Singh for comments on an early draft of this book.
We also appreciate the work of our secretaries, Resa Chapey and Cheryl Daly,
with preparing the manuscripts, and of Donna DiGiovanni, Patricia Rohlf, and
Barbara Thomson with proofreading.

Robert R. Sokal

F. Jamcs Rohlf
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CHAPTER 1

Introduction

This chapter sets the stage for your study of biostatistics. In Section 1.1, we
define the field itself. We then cast a neccssarily brief glance at its historical
devclopment in Section 1.2. Then in Section 1.3 we conclude the chapter with
a discussion of the attitudes that the person trained in statistics brings to
biological rcsearch.

1.1 Some definitions

Wc shall define hiostatistics as the application of statisti("(ll methods to the so­
lution ofbiologi("(ll prohlems. The biological problems of this definition are those
arising in the basic biological sciences as well as in such applied areas as the
health-related sciences and the agricultural sciences. Biostatistics is also called
biological statistics or biometry.

The definition of biostatistics leaves us somewhat up in the air-"statistics"
has not been defined. Statistics is a science well known by name even to the
layman. The number of definitions you can find for it is limited only by the
number of books you wish to consult. We might define statistics in its modern
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sense as the scientific study of numerical data based on natural phenomena. All
parts of this definition are important and deserve emphasis:

Scientific study: Statistics must meet the commonly accepted criteria of
validity of scientific evidence. We must always be objective in presentation and
evaluation of data and adhere to the general ethical code of scientific method­
ology, or we may find that the old saying that "figures never lie, only statisticians
do" applies to us.

Data: Statistics generally deals with populations or groups of individuals'
hence it deals with quantities of information, not with a single datum. Thus, th~
measurement of a single animal or the response from a single biochemical test
will generally not be of interest.

N~merical: Unless data of a study can be quantified in one way or another,
they WIll not be amenable to statistical analysis. Numerical data can be mea­
surements (the length or width of a structure or the amount of a chemical in
a body fluid, for example) or counts (such as the number of bristles or teeth).

Natural phenomena: We use this term in a wide sense to mean not only all
those events in animate and inanimate nature that take place outside the control
of human beings, but also those evoked by scientists and partly under their
control, as in experiments. Different biologists will concern themselves with
different levels of natural phenomena; other kinds of scientists, with yet different
ones. But all would agree that the chirping of crickets, the number of peas in
a pod, and the age of a woman at menopause are natural phenomena. The
heartbeat of rats in response to adrenalin, the mutation rate in maize after
irradiation, or the incidence or morbidity in patients treated with ~ vaccine
may still be considered natural, even though scientists have interfered with the
phenomenon through their intervention. The average biologist would not con­
sider the number of stereo sets bought by persons in different states in a given
year to be a natural phenomenon. Sociologists or human ecologists, however,
might so consider it and deem it worthy of study. The qualification "natural
phenomena" is included in the definition of statistics mostly to make certain
th.at the phenomena studied are not arbitrary ones that are entirely under the
Will and ~ontrol of the researcher, such as the number of animals employed in
an expenment.

The word "statistics" is also used in another, though related, way. It can
be the plural of the noun statistic, which refers to anyone of many computed
or estimated statistical quantities, such as the mean, the standard deviation, or
the correlation coetllcient. Each one of these is a statistic.

1.2 The development of biostatistics

Modern statistics appears to have developed from two sources as far back as
the seventeenth century. The first source was political science; a form of statistics
developed as a quantitive description of the various aspects of the affairs of
a govcrnment or state (hence the term "statistics"). This subject also became
known as political arithmetic. Taxes and insurance caused people to become

interested in problems of censuses, longevity, and mortality. Such considerations
assumed increasing importance, especially in England as the country prospered
during the development of its empire. John Graunt (1620-1674) and William
Petty (1623-1687) were early students of vital statistics, and others followed in
their footsteps.

At about the same time, the second source of modern statistics developed:
the mathematical theory of probability engendered by the interest in games
of chance among the leisure classes of the time. Important contributions to
this theory were made by Blaise Pascal (1623-1662) and Pierre de Fermat
(1601-1665), both Frenchmen. Jacques Bernoulli (1654-1705), a Swiss, laid the
foundation of modern probability theory in Ars Conjectandi. Abraham de
Moivre (1667-1754), a Frenchman living in England, was the first to combine
the statistics of his day with probability theory in working out annuity values
and to approximate the important normal distribution through the expansion
of the binomial.

A later stimulus for the development of statistics came from the science of
astronomy, in which many individual observations had to be digested into a
coherent theory. Many of the famous astronomers and mathematicians of the
eighteenth century, such as Pierre Simon Laplace (1749-1827) in France and
Karl Friedrich Gauss (1777 -1855) in Germany, were among the leaders in this
field. The latter's lasting contribution to statistics is the development of the
method of least squares.

Perhaps the earliest important figure in biostatistic thought was Adolphe
Quetelet (1796-1874), a Belgian astronomer and mathematician, who in his
work combined the theory and practical methods of statistics and applied them
to problems of biology, medicine, and sociology. Francis Galton (1822-1911),
a cousin of Charles Darwin, has been called the father of biostatistics and
eugenics. The inadequacy of Darwin's genetic theories stimulated Galton to try
to solve the problems of heredity. Galton's major contribution to biology was
his application of statistical methodology to the analysis of biological variation,
particularly through the analysis of variability and through his study of regres­
sion and correlation in biological measurements. His hope of unraveling the
laws of genetics through these procedures was in vain. He started with the most
ditllcult material and with the wrong assumptions. However, his methodology
has become the foundation for the application of statistics to biology.

Karl Pearson (1857 -1936), at University College, London, became inter­
ested in the application of statistical methods to biology, particularly in the
demonstration of natural selection. Pearson's interest came about through the
influence of W. F. R. Weldon (1860- 1906), a zoologist at the same institution.
Weldon, incidentally, is credited with coining the term "biometry" for the type
of studies he and Pearson pursued. Pearson continued in the tradition of Galton
and laid the foundation for much of descriptive and correlational statistics.

The dominant figure in statistics and hiometry in the twentieth century has
been Ronald A. Fisher (1890 1962). His many contributions to statistical theory
will become obvious even to the cursory reader of this hook.
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Statistics today is a broad and extremely active field whose applications
touch almost every science and even the humanities. New applications for sta­
tistics are constantly being found, and no one can predict from what branch
of statistics new applications to biology will be made.

1.3 The statistical frame of mind

A brief perusal of almost any biological journal reveals how pervasive the use
of statistics has become in the biological sciences. Why has there been such a
marked increase in the use of statistics in biology? Apparently, because biol­
ogists have found that the interplay of biological causal and response variables
does not fit the classic mold of nineteenth-century physical science. In that
century, biologists such as Robert Mayer, Hermann von Helmholtz, and others
tried to demonstrate that biological processes were nothing but physicochemi­
cal phenomena. In so doing, they helped create the impression that the experi­
mental methods and natural philosophy that had led to such dramatic progress
in the physical sciences should be imitated fully in biology.

Many biologists, even to this day, have retained the tradition of strictly
mechanistic and deterministic concepts of thinking (while physicists, interest­
ingly enough, as their science has become more refined, have begun to resort
to statistical approaches). In biology, most phenomena are affected by many
causal factors, uncontrollable in their variation and often unidentifiable. Sta­
tistics is needed to measure such variable phenomena, to determine the error
of measurement, and to ascertain the reality of minute but important differences.

A misunderstanding of these principles and relationships has given rise to
the attitude of some biologists that if differences induced by an experiment, or
observed by nature, are not clear on plain inspection (and therefore are in need
of statistical analysis), they are not worth investigating. There are few legitimate
fields of inquiry, however, in which, from the nature of the phenomena studied,
statistical investigation is unnecessary.

Statistical thinking is not really different from ordinary disciplined scientific
thinking, in which we try to quantify our observations. In statistics we express
our degree of belief or disbelief as a probability rather than as a vague, general
statement. For example, a statement that individuals of species A are larger
than those of species B or that women suffer more often from disease X than
do men is of a kind commonly made by biological and medical scientists. Such
statements can and should be more precisely expressed in quantitative form.

In many ways the human mind is a remarkable statistical machine, absorb­
ing many facts from the outside world, digesting these, and regurgitating them
in simple summary form. From our experience we know certain events to occur
frequently, others rarely. "Man smoking cigarette" is a frequently observed
event, "Man slipping on banana peel," rare. We know from experience that
Japanese are on the average shorter than Englishmen and that Egyptians are
on the average darker than Swedes. We associate thunder with lightning almost
always, flies with garbage cans in the summer frequently, but snow with the

southern Californian desert extremely rarely. All such knowledge comes to us
as a result of experience, both our own and that of others, which we learn
about by direct communication or through reading. All these facts have been
processed by that remarkable computer, the human brain, which furnishes an
abstract. This abstract is constantly under revision, and though occasionally
faulty and biased, it is on the whole astonishingly sound; it is our knowledge

of the moment.
Although statistics arose to satisfy the needs of scientific research, the devel-

opment of its methodology in turn affected the sciences in which statistics is
applied. Thus, through positive feedback, statistics, created to serve the needs
of natural science, has itself affected the content and methods of the biological
sciences. To cite an example: Analysis of variance has had a tremendous effect
in influencing the types of experiments researchers carry out. The whole field of
quantitative genetics, one of whose problems is the separation of environmental
from genetic effects, depends upon the analysis of variance for its realization,
and many of the concepts of quantitative genetics have been directly built
around the designs inherent in the analysis of variance.
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CHAPTER 2

Data in Biostatistics

In Section 2, I we explain the statistical meaning of the terms "sample" and
"population," which we shall be using throughout this book. Then, in Section
2.2, we come to the types of observations that we obtain from biological research
material; we shall see how these correspond to the different kinds of variables
upon which we perform the various computations in the rest of this book. In
Section 2.3 we discuss the degree of accuracy necessary for recording data and
the procedure for rounding olT hgures. We shall then be ready to consider in
Section 2.4 certain kinds of derived data frequently used in biological science--­
among them ratios and indices-and the peculiar problems of accuracy and
distribution they present us. Knowing how to arrange data in frequency distri­
butions is important because such arrangements give an overall impression of
the general pattern of the variation present in a sample and also facilitate further
computational procedures. Frequency distributions, as well as the presentation
of numerical data, are discussed in Section 2.5. In Section 2.6 we briefly describe
the computational handling of data.

2.1 Samples and populations

We shall now define a number of important terms necessary for an under­
standing of biological data. The data in biostatistics are generally based on
individual observations. They are observations or measurements taken on the
smallest sampling unit. These smallest sampling units frequently, but not neces­
sarily, are also individuals in the ordinary biological sense. If we measure weight
in 100 rats, then the weight of each rat is an individual observation; the hundred
rat weights together represent the sample of observations, defined as a collection
of individual observations selected by a specified procedure. In this instance, one
individual observation (an item) is based on one individual in a biological
sense-that is, one rat. However, if we had studied weight in a single rat over
a period of time, the sample of individual observations would be the weights
recorded on one rat at successive times. If we wish to measure temperature
in a study of ant colonies, where each colony is a basic sampling unit, each
temperature reading for one colony is an individual observation, and the sample
of observations is the temperatures for all the colonies considered. If we consider
an estimate of the DNA content of a single mammalian sperm cell to be an
individual observation, the sample of observations may be the estimates of DNA
content of all the sperm cells studied in one individual mammal.

We have carefully avoided so far specifying what particular variable was
being studied, because the terms "individual observation" and "sample of ob­
servations" as used above define only the structure but not the nature of the
data in a study. The actual property measured by the individual observations
is the character, or variahle. The more common term employed in general sta­
tistics is "variable." However, in biology the word "eharacter" is frequently used
synonymously. More than one variable can be measured on each smallest
sampling unit. Thus, in a group of 25 mice we might measure the blood pH
and the erythrocyte count. Each mouse (a biological individual) is the smallest
sampling unit, blood pH and red cell count would be the two variables studied.
the pH readings and cell counts are individual observations, and two samples
of 25 observations (on pH and on erythrocyte count) would result. Or we might
speak of a hil'ariate sample of 25 observations. each referring to a pH reading
paired with an erythrocyte count.

Next we define population. The biological definition of this lerm is well
known. It refers to all the individuals of a given species (perhaps of a given
life-history stage or sex) found in a circumscribed area at a given time. In
statistics, population always means the totality 0/ indil'idual ohsenJatiolls ahout
which in/ere/In's are 10 he frlLlde, exist illy anywhere in the world or at lcast u'ithill
a definitely specified sampling area limited in space alld time. If you take five
men and study the number of Ieucocytes in their peripheral blood and you
arc prepared to draw conclusions about all men from this sample of five. then
the population from which the sample has been drawn represents the leucocyte
counts of all extant males of the species Homo sapiens. If. on the other hand.
you restrict yllursclf to a more narrowly specified sample. such as five male
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Chinese, aged 20, and you are restricting your conclusions to this particular
group, then the population from which you are sampling will be leucocyte
numbers of all Chinese males of age 20.

A common misuse of statistical methods is to fail to define the statistical
population about which inferences can be made. A report on the analysis of
a sample from a restricted population should not imply that the results hold
in general. The population in this statistical sense is sometimes referred to as
the universe.

A population may represent variables of a concrete collection of objects or
creatures, such as the tail lengths of all the white mice in the world, the leucocyte
counts of all the Chinese men in the world of age 20, or the DNA content of
all the hamster sperm cells in existence: or it may represent the outcomes of
experiments, such as all the heartbeat frequencies produced in guinea pigs by
injections of adrenalin. In cases of the first kind the population is generally
finite. Although in practice it would be impossible to collect. count, and examine
all hamster sperm cells, all Chinese men of age 20, or all white mice in the world,
these populations are in fact finite. Certain smaller populations, such as all the
whooping cranes in North America or all the recorded cases of a rare but easily
diagnosed disease X. may well lie within reach of a total census. By contrast,
an experiment can be repeated an infinite number of times (at least in theory).
A given experiment. such as the administration of adrenalin to guinea pigs.
could be repeated as long as the experimenter could obtain material and his
or her health and patience held out. The sample of experiments actually per­
formed is a sample from an intlnite number that could be performed.

Some of the statistical methods to be developed later make a distinction
between sampling from finite and from infinite populations. However, though
populations arc theoretically finite in most applications in biology, they are
generally so much larger than samples drawn from them that they can be con­
sidered de facto infinite-sized populations.

2.2 Variables in biostatistics

Each biologi<.:al discipline has its own set of variables. which may indude con­
ventional morpholl.lgKal measurements; concentrations of <.:hemicals in body
Iluids; rates of certain biologi<.:al proccsses; frcquencies of certain events. as in
gcndics, epidemiology, and radiation biology; physical readings of optical or
electronic machinery used in biological research: and many more.

We have already referred to biological variables in a general way. but we
have not yet defined them. We shall define a I'ariahle as a property with respect
to which illdil'idual.~ ill a .\Im/ple differ ill sOllie aSn'rtllillahle war. If the property
docs not ditTer wilhin a sample at hand or at least among lhe samples being
studied, it <.:annot be of statistical inlerL·st. Length, height, weight, number of
teeth. vitamin C content, and genolypcs an: examples of variables in ordinary,
genetically and phenotypically diverse groups of lHganisms. Warm-bloodedness
in a group of m,lI11m,tls is not, since mammals are all alike in this regard,

although body temperature of individual mammals would, of course, be a
variable.

We can divide variables as follows:

Variables

Measurement variables
Continuous variables
Discontinuous variables

Ranked variables
Attributes

Measurement variables are those mt'(/surements (/nd COUllt.~ that are expressed
numerically. Measurement variables are of two kinds. The first kind consists of
continuous variables, which at least theoretically can assume an infinite number
of values between any two fixed points. For example, between the two length
measurements 1.5 and 1.6 em there are an infinite number of lengths that could
be measured if one were so inclined and had a precise enough method of
calibration. Any given reading of a continuous variable, such as a length of
1.57 mm, is therefore an approximation to the exact reading, which in practice
is unknowable. Many of the variables studied in biology are continuous vari­
ables. Examples are lengths, areas, volumes. weights, angles, temperatures.
periods of time. percentages. concentrations, and rates.

Contrasted with continuous variables are the discontilluous IJllriahlt's. also
known as meristic or discrete vilrilih/t's. These are variables that have only cer­
tain fixed numerical values. with no intermediate values possible in between.
Thus the number of segments in a certain insect appendage may be 4 or 5 or
6 but never 51 or 4.3. Examples of discontinuous variahks arc numbers of a
given structure (such as segments, bristles. teeth, or glands), numbers of ollspring,
numbers of colonies of microorganisms or animals. or numbers of plants in a
given quadrat.

Some variables cannot he measured but at least can be ordered or ranked
by their magnitude. Thus. in an experiment one might record the rank ordn
of emergence of ten pupae without specifying the exact time at which each pupa
emerged. In such cases we code the data as a rallked mriahle, the order of
emergence. Spe<.:ial methods for dealing with su<.:h variables have been devel­
oped. and several arc furnished in this book. By expressing a variable as a series
of ranks, such as 1,2.3,4.5. we do not imply that the ditTeren<.:e in magnitude
between, say, ranks I and 2 is identical to or even proportional tn the dif­
feren<.:e between ranks 2 and 3.

Variables that <.:annot be measured but must be expressed qualitatively arc
called altrihutes, or lIominal I'liriahies. These are all properties. sudl as bla<.:k
or white. pregnant or not pregnant, dead or alive, male or female. When such
attributes are combined wilh frequen<.:ies, they can bc lrcated statistically. Of
XO mi<.:e, we may, for instance. state that four were hlad. two agouti. and the
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rest gray. When attributes are combined with frequencies into tables suitable
for statistical analysis, they are referred to as enumeration data. Thus the enu­
meration data on color in mice would be arranged as follows:

In some cases attributes can be changed into measurement variables if this is
desired. Thus colors can be changed into wavelengths or color-chart values.
Certain other attributes that can be ranked or ordered can be coded to be­
come ranked variables. For example, three attributes referring to a structure
as "poorly developed," "well developed," and "hypertrophied" could be coded
I, 2, and 3.

A term that has not yet been explained is variate. In this book we shall use
it as a single reading, score, or observation of a given variable. Thus, if we have
measurements of the length of the tails of five mice, tail length will be a con­
tinuous variable, and each of the five readings of length will be a variate. In
this text we identify variables by capital letters, the most common symbol being
Y. Thus Y may stand for tail length of mice. A variate will refer to a given
length measurement; 1'; is the measurement of tail length of the ith mouse, and
Y4 is the measurement of tail length of the fourth mouse in our sample.

Color

Black
Agouti
Gray

Total number of mice

Frequency

4
2

74

80

Most continuous variables, however, are approximate. We mean by this
that the exact value of the single measurement, the variate, is unknown and
probably unknowable. The last digit of the measurement stated should imply
precision; that is, it should indicate the limits on the measurement scale between
which we believe the true measurement to lie. Thus, a length measurement of
12.3 mm implies that the true length of the structure lies somewhere between
12.25 and 12.35 mm. Exactly where between these implied limits the real length
is we do not know. But where would a true measurement of 12.25 fall? Would
it not equally likely fall in either of the two classes 12.2 and 12.3-clearly an
unsatisfactory state of affairs? Such an argument is correct, but when we record
a number as either 12.2 or 12.3, we imply that the decision whether to put it
into the higher or lower class has already been taken. This decision was not
taken arbitrarily, but presumably was based on the best available measurement.
If the scale of measurement is so precise that a value of 12.25 would clearly
have been recognized, then the measurement should have been recorded
originally to four significant figures. Implied limits, therefore, always carry one
more figure beyond the last significant one measured by the observer.

Hence, it follows that if we record the measurement as 12.32, we are implying
that the true value lies between 12.315 and 12.325. Unless this is what we mean,
there would be no point in adding the last decimal figure to our original mea­
surements. If we do add another figure, we must imply an increase in precision.
We see, therefore, that accuracy and precision in numbers are not absolute con­
cepts, but are relative. Assuming there is no bias, a number becomes increasingly
more accurate as we are able to write more significant figures for it (increase its
precision). To illustrate this concept of the relativity of accuracy, consider the
following three numbers:

~~--~~-~-----

Impli"d /imits

We may imagine these numbers to be recorded measurements of the same struc­
ture. Let us assume that we had extramundane knowledge that the true length
of the given structure was 192.758 units. If that were so, the three measurements
would increase in accuracy from the top down, as the interval between their
implied limits decreased. You will note that the implied limits of the topmost
measurement are wider than those of the one below it, which in turn are wider
than those of the third measurement.

Meristic variates, though ordinarily exact, may be recorded approximately
when large numbers are involved. Thus when counts are reported to the nearest
thousand, a count of 36,000 insects in a cubic meter of soil, for example, implies
that the true number varies somewhere from 35,500 to 36,500 insects.

To how many significant figures should we record measurements? If we array
fh~ \.''In'lnL-,,, h" F\rI.-1i""r nof 1"\"\'--1nn;111111"" frc\tYl thp Ctn~)I1,-"\::'1 inI1i\li,111~-l1 in thp. l~.. r(Jf"4..:t

2.3 Accuracy and precision of data

"Accuracy" and "precision" are used synonymously in everyday speech, but in
statistics we define them more rigorously. Accuracy is the closeness ola measured
or computed vallie to its true lJalue. Precisio/l is the closeness olrepeated measure­
ments. A biased but sensitive scale might yield inaccurate but precise weight. By
chance, an insensitive scale might result in an accurate reading, which would,
however, be imprecise, since a repeated weighing would be unlikely to yield an
equally accurate weight. Unless there is bias in a measuring instrument, precision
will lead to accuracy. We need therefore mainly be concerned with the former.

Precise variates are usually, but not necessarily, whole numbers. Thus, when
we count four eggs in a nest, there is no doubt about the exact number of eggs
in the nest if we have counted eorrectly; it is 4, not 3 or 5, and clearly it could
not be 4 plus or minus a fractional part. Meristic, or discontinuous, variables are
generally measured as exact numbers. Seemingly, continuous variables derived
from meristic ones can under certain conditions also be exact numbers. For
instance, ratios between exact numbers arc themselves also exact. If in a colony
of animals there are IX females and 12 males, the ratio of females to males (a

193
192.8
192.76

192.5 193.5
192.75 192.85

192.755 192.765
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26.51\ 2 27
133.7137 5 133.71

O.OJ725 3 Il.0372
O.OJ715 3 0.0372

In16 2 11\.000
17.3476 3 17.3

one, an easy rule to remember is that the number of unit steps from the smallest
to the largest measurement in an array should usually be between 30 and 300.
Thus, if we are measuring a series of shells to the nearest millimeter and the
largest is 8 mm and the smallest is 4 mm wide, there are only four unit steps
between the largest and the smallest measurement. Hence, we should measure
our shells to one more significant decimal place. Then the two extreme measure­
ments might be 8.2 mm and 4.1 mm, with 41 unit steps between them (counting
the last significant digit as the unit); this would be an adequate number of unit
steps. The reason for such a rule is that an error of 1 in the last significant digit
of a reading of 4 mm would constitute an inadmissible error of 25%, but an error
of I in the last digit of 4.1 is less than 2.5%. Similarly, if we measured the height
of the tallest of a series of plants as 173.2 cm and that of the shortest of these
plants as 26.6 em, the difference between these limits would comprise 1466 unit
steps (of 0.1 cm), which are far too many. It would therefore be advisable to
record the heights to the nearest centimeter. as follows: 173 cm for the tallest
and 27 cm for the shortest. This would yield 146 unit steps. Using the rule we
ha ve stated for the number of unit steps, we shall record two or three digits for
most measurements.

The last digit should always be significant; that is, it should imply a range
for the true measurement of from half a "unit step" below to half a "unit step"
above the recorded score, as illustrated earlier. This applies to all digits, zero
included. Zeros should therefore not be written at the end of approximate num­
bers to the right of the decimal point unless they are meant to be significant
digits. Thus 7.80 must imply the limits 7.795 to 7.805. If 7.75 to 7.85 is implied,
the measurement should be recorded as 7.8.

When the number of significant digits is to be reduced, we carry out the
process of rOll/utin?} ofr numbers. The rules for rounding off are very simple. A
digit to be rounded ofT is not changed if it is followed by a digit less than 5. If
the digit to be rounded off is followed by a digit greater than 5 or by 5 followed
by other nonzero digits, it is increased by 1. When the digit to be rounded ofT
is followed by a 5 standing alone or a 5 followed by zeros, it is unchanged if it
is even but increased by I if it is odd. The reason for this last rule is that when
sueh numbers are summed in a long series, we should have as many digits
raised as are being lowered, on the average; these changes should therefore
balance oul. Practice the above rules by rounding ofT the following numbers to
the indicated number of significant digits:

Num"er Siyrli/icarlt di"its desired

Most pocket calculators or larger computers round off their displays using
a different rule: they increase the preceding digit when the following digit is a
5 standing alone or with trailing zeros. However, since most of the machines
usable for statistics also retain eight or ten significant figures internally, the
accumulation of rounding errors is minimized. Incidentally, if two calculators
give answers with slight differences in the final (least significant) digits, suspect
a different number of significant digits in memory as a cause of the disagreement.

2.4 Derived variables

The majority of variables in biometric work are observations recorded as direct
measurements or counts of biological material or as readings that are the output
of various types of instruments. However, there is an important class of variables
in biological research that we may call the derived or computed variables. These
are generally based on two or more independently measured variables whose
relations are expressed in a certain way. We are referring to ratios, percentages,
concentrations, indices, rates, and the like.

A ratio expresses as a single value the relation that two variables have, one
to the other. In its simplest form, a ratio is expressed as in 64:24, which may
represent the number of wild-type versus mutant individuals, the number of
males versus females, a count of parasitized individuals versus those not para­
sitized, and so on. These examples imply ratios based on counts. A ratio bascd
on a continuous variable might be similarly expressed as 1.2: 1.8, which may
represent the ratio of width to length in a sclerite of an insect or the ratio
between the concentrations of two minerals contained in water or soil. Ratios
may also be expressed as fractions; thus, the two ratios above could be expressed
as ~: and U . However, for computational purposes it is more useful to express
the ratio as a quotient. The two ratios cited would therefore be 2.666 ... and
0.666 ... , respectively. These are pure numbers, not expressed in measurement
units of any kind. It is this form for ratios that we shall consider further.
Percellta~je.~ are also a type of ratio. Ratios, percentages, and concentrations
are basic quantities in much biological research, widely used and generally
familiar.

An index is the ratio of the value of one variahie to the value of a so-called
standard OIlC. A well-known example of an index in this sense is the cephalic
index in physical anthropology. Conceived in the wide sense, an index could
be the average of two measurements-either simply, such as t(length of A +
length of B), or in weighted fashion, such as :\ [(2 x length of A) + length of Bj.

Rates are important in many experimental fields of biology. The amount
of a substance liberated per unit weight or volume of biological material, weight
gain per unit time, reproductive rates per unit population size and time (birth
rates), and death rates would fall in this category.

The use of ratios and percentages is deeply ingrained in scientific thought.
Often ratios may be the only meaningful way to interpret and understand cer­
tain types of biological problems. If the biological process bcing investigated
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FIGURE 2.1
Sampling from a populatl<lI1 of hirth weights of infants (a continuous variahle). A. A sample of 2';
B. A sample of 100. C. A sample of 500. D. A sample of 2000.
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operates on the ratio of the variables studied, one must examine this ratio to
understand the process. Thus, Sinnott and Hammond (1935) found that inheri­
tance of the shapes of squashes of the species Cucurbita pepo could be inter­
preted through a form index based on a length-width ratio, but not through
the independent dimensions of shape. By similar methods of investigation, we
should be able to find selection affecting body proportions to exist in the evolu­
tion of almost any organism.

There are several disadvantages to using ratios. First, they are relatively
inaccurate. Let us return to the ratio : :~ mentioned above and recall from the
previous section that a measurement of 1.2 implies a true range of measurement
of the variable from 1.15 to 1.25; similarly, a measurement of 1.8 implies a range
from 1.75 to 1.85. We realize, therefore, that the true ratio may vary anywhere
from U~ to L~~ , or from 0.622 to 0.714. We note a possible maximal error of
4.2% if 1.2 is an original measurement: (1.25 - 1.2)/1.2; the corresponding maxi­
mal error for the ratio is 7.0%: (0.714 - 0.667)/0.667. Furthermore, the best
estimate of a ratio is not usually the midpoint between its possible ranges. Thus,
in our example the midpoint between the implied limits is 0.668 and the ratio
based on U is 0.666 ... ; while this is only a slight difference, the discrepancy
may be greater in other instances.

A second disadvantage to ratios and percentages is that they may not be
approximately normally distributed (see Chapter 5) as required by many statis­
tical tests. This difficulty can frequently be overcome by transformation of the
variable (as discussed in Chapter 10). A third disadvantage of ratios is that
in using them one loses information about the relationships between the two
variables except for the information about the ratio itself.

2.5 Frequency distributions

If we were to sample a population of birth weights of infants, we could represent
each sampled measurement by a point along an axis denoting magnitude of
birth weight. This is illustrated in Figure 2.1 A, for a sample of 25 birth weights.
If we sample repeatedly from the population and obtain 100 birth weights, we
shall probably have to place some of these points on top of other points in
order to reeord them all correctly (Figure 2.1 H). As we continue sampling ad­
ditional hundreds and thousands of birth weights (Figure 2.IC and 0), the
assemblage of points will continue to increase in size but will assume a fairly
definite shape. The outline of the mound of points approximates the distribution
of the variable. Remember that a continuous variable such as birth weight can
assume an infinity of values between any two points on the abscissa. The refine­
ment of our measurements will determine how fine the number of recorded
divisions bctween any two points along the axis will be.

The distribution of a variable is of considerable biological interest. If we
find that the dislributioll is asymmetrical and drawn out in one direction, it tells
us that there is, perhaps, selectioll that causes organisms to fall preferentially
in one of the tails of the distribution, or possibly that the scale of measuremenl



The above is an example of a quantitative frequency distribution, since Y is
clearly a measurement variable. However, arrays and frequency distributions
need not be limited to such variables. We can make frequency distributions of
attributes, called qualitative frequency distributions. In these, the various classes
are listed in some logical or arbitrary order. For example, in genetics we might
have a qualitative frequency distribution as follows:
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FIGURE 2.2
Bar diagram. Frequency of the sedge Carex
ftacca in 500 quadrats. Data from Table 2.2;
orginally from Archibald (1950).
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Variable
y

9
8
7
6
5
4

Frequellcy

f

I
I
4
3
I
1
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TAIlU: 2.1
Two qualitative frequency distributions. Numhcr of cases of
skin cancer (melanoma) distrihuted over hody regions of
4599 men and 47Xt> women.

This tells us that there are two classes of individuals, those identifed by the A ­
phenotype, of which 86 were found, and those comprising the homozygote re­
cessive aa, of which 32 were seen in the sample.

An example of a more extensive qualitative frequency distribution is given
in Table 2.1, which shows the distribution of melanoma (a type of skin cancer)
over body regions in men and women. This table tells us that the trunk and
limbs are the most frequent sites for melanomas and that the buccal cavity, the
rest of the gastrointestinal tract, and the genital tract arc rarely atllicted by this

()/Jsel'l'ed)i-e4u('IuT

Men Women

I

chosen is such as to bring about a distortion of the distribution. If, in a sample
of immature insects, we discover that the measurements are bimodally distrib­
uted (with two peaks), this would indicate that the population is dimorphic.
This means that different species or races may have become intermingled in
our sample. Or the dimorphism could have arisen from the presence of both
sexes or of different instars.

There are several characteristic shapes of frequency distributions. The most
common is the symmetrical bell shape (approximated by the bottom graph in
Figure 2.1), which is the shape of the normal frequency distribution discussed
in Chapter 5. There are also skewed distributions (drawn out more at one tail
than the other), I.-shaped distributions as in Figure 2.2, U-shaped distributions,
and others, all of which impart significant information ahout the relationships
they represent. We shall have more to say about the implications of various
types of distrihutions in later chapters and sections.

After researchers have obtained data in a given study, they must arrange
the data in a form suitable for computation and interpretation. We may assume
that variates are randomly ordered initially or are in the order in which the
measurements have been taken. A simple arrangement would be an armr of
the data hy order of magnitude. Thus. for example, the variates 7, 6, 5, 7, X, 9,
6, 7, 4, 6, 7 could be arrayed in order of decreasing magnitude as follows: 9, X,
7. 7, 7, 7, 6, 6, 6, 5, 4. Where there an: some variates of the same value. such as
the 6\ and Ts in this lictitillllS example. a time-saving device might immediately
have occurred to you namely. to list a frequency for each of the recurring
variates; thus: 9, X, 7(4 x). ()(3 x I, 5,4. Such a shorthand notatioll is one way to
represent a FCII'h'IICI' disll'ihlllioll, which is simply an arrangement of the c1as~es

of variates with the frequency of I:ach class indicated. ConventIOnally, a tre­
qUl:ncy distrihutioll IS stall:d III tabular form; for our exampk, this is dOlle as
follows:

Phenotype .I

A- 86
aa 32

Ana/om;c silt'

Ilcad and ncck
Trunk and Iimhs
Buccal cavity
Rcst of gastr'lIntcslinaltracl
Gcnital Irael
Fyc

Totall:ascs

Sourct'. Data frolll ICL' (I i}X~)

')4')

.124.1
X
5

12
3X2

45')')

645
.1645

II
21
')3

371

47X6
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SouI'ce. Data from Archibald (t 950).

TABU: 2.2
A meristic frequency distribution.
Number of plants of the sedge earn
.f/acca found in 500 quadrats.

type of cancer. We often encounter other examples of qualitative frequency
distributions in ecology in the form of tables, or species lists, of the inhabitants
of a sampled ecological area. Such tables catalog the inhabitants by species or
at a higher taxonomic level and record the number of specimens observed for
each. The arrangement of such tables is usually alphabetical, or it may follow
a special convention, as in some botanical species lists.

A quantitative frequency distribution based on meristic variates is shown
in Table 2.2. This is an example from plant ecology: the number of plants per
quadrat sampled is listed at the left in the variable column; the observed fre­
quency is shown at the right.

Quantitative frequency distributions based on a continuous variable arc
the most commonly employed frequency distributions; you should become
thoroughly familiar with them. An example is shown in Box 2.1. It is based on
25 femur lengths measured in an aphid population. The 25 readings are shown
at the top of Box 2.1 in the order in which they were obtained as measurements.
(They could have been arrayed according to their magnitude.) The data are
next set up in a frequency distribution. The variates increase in magnitude by
unit steps of 0.1. The frequency distribution is prepared by entering each variate
in turn on the scale and indicating a count by a conventional tally mark. When
all of the items have heen tallied in the corresponding class, the tallies are con­
verted into numerals indicating frequencies in the next column. Their sum is
indicated by I.f.

What have we achieved in summarizing our data') The original 25 variates
arc now represented by only 15 classes. We find that variates 3.6, 3.8, and 4.3
have the highest frequencies. However, we also note that there arc several classes,
such as 3.4 or 3.7. that arc not represented by a single aphid. This gives the

No. of plallts
per quadrat

y

o
1
2
3
4
5
6
7
8

Total

Observed
fi-equellcy

f

181
118
97
54
32

9
5
3
1

500

entire frequency distribution a drawn-out and scattered appearance. The reason
for this is that we have only 25 aphids, too few to put into a frequency distribu­
tion with 15 classes. To obtain a more cohesive and smooth-looking distribu­
tion, we have to condense our data into fewer classes. This process is known
as groupin!} 0( classes of frequency distributions; it is illustrated in Box 2.1 and
described in the following paragraphs.

We should realize that grouping individual variates into classes of wider
range is only an extension of the same process that took place when we obtained
the initial measurement. Thus, as we have seen in Section 2.3, when we measure
an aphid and record its femur length as 3.3 units, we imply thereby that the
true measurement lies between 3.25 and 3.35 units, but that we were unable to
measure to the second decimal place. In recording the measurement initially as
3.3 units, we estimated that it fell within this range. Had we estimated that it
exceeded the value of 3.35, for example, we would have given it the next higher
score, 3.4. Therefore, all the measurements between 3.25 and 3.35 were in fact
grouped into the class identified by the class mark 3.3. Our class interval was
0.1 units. If we now wish to make wider class intervals, we are doing nothing
but extending the range within which measurements arc placed into one class.

Reference to Box 2.1 will make this process clear. We group the data twice
in order to impress upon the reader the flexibility of the process. In the first
example of grouping, the class interval has been doubled in width; that is, it
has been made to equal 0.2 units. If we start at the lower end, the implied class
limits will now be from 3.25 to 3.45, the limits for the next class from 3.45 to
3.65, and so forth.

Our next task is to find the class marks. This was quite simple in the fre­
quency distribution shown at the left side of Box 2.1, in which the original mea­
surements were used as class marks. However, now we are using a class interval
twice as wide as before, and the class marks are calculated by taking the mid­
point of the new class intervals. Thus, to lind the class mark of the first class,
we take the midpoint between 3.25 and 3.45. which turns out to be 3.35. We
note that the class mark has one more decimal place than the original measure­
ments. We should not now be led to believe that we have suddenly achieved
greater precision. Whenever we designate a class interval whose last siqnijicant
digit is even (0.2 in this case), the class mark will carry one more decimal place
than the original measurements. On the right side of the table in Box 2.1 the
data are grouped once again, using a class interval of 0.3. Because of the odd
last significant digit. the class mark now shows as many decimal places as the
original variates, the midpoint hetween 3.25 and 3.55 heing 3.4.

Once the implied class limits and the class mark for the lirst class have
been correctly found, the others can bc writtcn down by inspection without
any spccial comfJutation. Simply add the class interval repeatedly to each of
the values. Thus, starting with the lower limit 3.25. by adding 0.2 we obtain
3.45, 3.65. 3,X5. and so forth; similarly. for the class marks. we ohtain 3,35,3.55.
3.75, and so forth. It should he ohvious that the wider the class intervals. the
more comp;let the data hecome hut also the less precise. However, looking at
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BOX 2.1
Preparation of frequency distribution and grouping into fewer classes with wider class intervals.

Twenty-five femur lengths of the aphid Pemphigus. Measurements are in mm x 10- 1•

Original measurements

3.8 3.6 4.3 3.5 4.3
3.3 4.3 3.9 4.3 3.8
3.9 4.4 3.8 4.7 3.6
4.1 4.4 4.5 3.6 3.8
4.4 4.1 3.6 4.2 3.9

N
o

Grouping into 8 classes Groupi1tg. imo $cliJsses
Original frequency distribution 0/ interval 0.2 of il'JterlJaJ()'J

Implied Tally Implied Class Tally Implied Class Tally
limits Y marks / limits mark marks / limits mark marks /

3.25-3.35 3.3 I 1 3.25-3.45 3.35 I 1 3.25-3.55 3.4 II 2
3.35-3.45 3.4 0

3.45-3.55 3.5 I 1 3.45-3.65 3.55 J,H1 5

3.55-3.65 3.6 1111 4 3.55-3.85

3.65-3.75 3.7 0 3.65-3.85 3.75 1111 4
3.75-3.85 3.8 1111 4

3.85-3.95 3.9 III 3 3.85-4.05 3.95 III 3 3.85-4.15

3.95-4.05 4.0 0

4.05-4.15 4.1 II 2 4.05-4.25 4.15 III 3

4.15-4.25 4.2 I 1 4.15-4.45 4.3 IJ.tftll 8

4.25-4.35

4.35-4.45

4.45-4.55

4.55-4.65

4.65-4.75

'LJ

4.3

4.4

4.5

4.6

4.7

1
o
1

25

4.45-4.65

4.65-4.85

4.55

4.75

7

1
25

4.45-4.75

25

Source: Data from R. R. Sakal.

Histogram of the original frequency distribution shown above and of the grouped distribution with 5 classes. Line below
abscissa shows class marks for the grouped frequency distribution. Shaded bars represent original frequency distribution;
hollow bars represent grouped distribution.

10

>;8

~
176
f:
~

...... 4

3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7
I I I 1 I t

3.4 3.7 4.0 4.3 4.6

Y (femur length, in units of 0.1 rom)

For a detailed account of the process of grouping, see Section 2.5.
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When the shape of a frequency distribution is of particular interest, we may
wish 10 present the distribution in graphic form when discussing the results.
This is generally done by means of frequency diagrams, of which there arc two
common types. For a distribution of meristic data we employ a hal' dia!fl"il III ,

, 2 .2 .2 1-
J J , J 1,7
4 9 4 'l6 4 9() 4 964
) ) ) 5 ) )

" 6 6 4 6 4
7 7 7 7 U
X X X X
<) <) <) I <) IX

10 10 10 10
11 II II II
12 12 12 7 12 7
13 11 13 U
14 14 14 14
I) I) r) I)
16 16 16 J 16 J
17 17 17 17
IX IX IX IX 0

To learn how to construct a stem-and-Ieaf display, let us look ahead to
Table 3. I in the next chapter, which lists 15 blood neutrophil counts. The un­
ordered measurements are as follows: 4.9, 4.6, 5.5, 9.1, 16.3, 12.7,6.4, 7.1, 2.3,
3.6,18.0,3.7,7.3,4.4, and 9.8. To prepare a stem-and-Ieaf display, we scan the
variates in the sample to discover the lowest and highest leading digit or digits.
Next, we write down the entire range of leading digits in unit increments to
the left of a vertical line (the "stern"), as shown in the accompanying illustration.
We then put the next digit of the first variate (a "leaf") at that level of the stem
corresponding to its leading digit(s). The first observation in our sample is 4.9.
We therefore place a 9 next to the 4. The next variate is 4.6. It is entered by
finding the stem level for the leading digit 4 and recording a 6 next to the 9
that is already there. Similarly, for the third variate, 5.5, we record a 5 next to
the leading digit 5. We continue in this way until all 15 variates have been
entered (as "leaves") in sequence along the appropriate leading digits of the stem.
The completed array is the equivalent of a frequency distribution and has the
appearance of a histogram or bar diagram (see the illustration). Moreover, it
permits the efficient ordering of the variates. Thus, from the completed array
it becomes obvious that the appropriate ordering of the 15 variates is 2.3, 3.6,
3.7,4.4.4.6,4.9,5.5,6.4,7.1,7.3,9.1.9.8,12.7, 16.3, 18.0. The median can easily
be read off the stem-and-Ieaf display. It is clearly 6.4. For very large samples,
stem-and-Ieaf displays may become awkward. In such cases a conventional
frequency distribution as in Box 2. I would be preferable.

Coml'lc/cd array
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the frequency distribution of aphid femur lengths in Box 2. I, we notice that the
initial rather chaotic structure is being simplified by grouping. When we group
the frequency distribution into five classes with a class interval of 0.3 units, it
becomes notably bimodal (that is, it possesses two peaks of frequencies).

In setting up frequency distributions, from 12 to 20 classes should be estab­
lished. This rule need not be slavishly adhered to, but it should be employed
with some of the common sense that comes from experience in handling statis­
tical data. The number of classes depends largely on the size of the sample
studied. Samples of less than 40 or 50 should rarely be given as many as 12
classes, since that would provide too few frequencies per class. On the other
hand, samples of several thousand may profitably be grouped into more than
20 classes. If the aphid data of Box 2.1 need to be grouped, they should probably
not be grouped into more than 6 classes.

If the original data provide us with fewer classes than we think we should
have, then nothing can be done if the variable is meristic, since this is the nature
of the data in question. However, with a continuous variable a scarcity of classes
would indicate that we probably had not made our measurements with sufficient
precision. If we had followed the rules on number of significant digits for mea­
surements stated in Section 2.3, this could not have happened.

Whenever we come up with more than the desired number of classes, group­
ing should be undertaken. When the data are meristic, the implied limits of
continuous variables are meaningless. Yet with many meristic variables, such
as a bristle number varying from a low of 13 to a high of 81, it would probably
be wise to group the variates into classes, each containing several counts. This
can best be done by using an odd number as a class interval so that the class
mark representing the data will be a whole rather than a fractional number.
Thus. if we were to group the bristle numbers 13. 14, 15, and 16 into one class,
the class mark would have to be 14.5, a meaningless value in terms of bristle
number. It would therefore be better to use a class ranging over 3 bristles or
5 bristles. giving the integral value 14 or 15 as a class mark.

Grouping data into frequency distributions was necessary when compu­
tations were done by pencil and paper. Nowadays even thousands of variates
can be processed efficiently by computer without prior grouping. However, fre­
quency distributions are still extremcly useful as a tool for data analysis. This
is especially true in an age in which it is all too easy for a researcher to obtain
a numerical result from a computer program without ever really examining the
data for outliers or for other ways in which the sample may not conform to
the assumptions of the statistical methods.

Rather than using tally marks to set up a frequency distribution, as was
done in Box 2.1, we can employ Tukey's stem-and-lea{ display. This technique
is an improvement, since it not only results in a frequency distribution of the
variates of a sample but also permits easy checking of the variates and ordering
them into an array (neither of which is possible with tally marks). This technique
will therefore be useful in computing the median of a sample (sec Section 3.3)
and in computing various tests that require ordered arrays of the sample variates
,<>,~.... C"""f ; ,"'... " 1 f\ 1 qn,.-~ 1'1 "-\



Birth weight (in oz.)

2.6 The handling of data

Data must be handled skillfully and expeditiously so that statistics can be prac­
ticed successfully. Readers should therefore acquaint themselves with the var-

the variable (in our case, the number of plants per quadrat), and the ordinate
represents the frequencies. The important point about such a diagram is that
the bars do not touch each other, which indicates that the variable is not con­
tinuous. By contrast, continuous variables, such as the frequency distribution
of the femur lengths of aphid stem mothers, are graphed as a histogrum. In a
histogram the width of each bar along the abscissa represents a class interval
of the frequency distribution and the bars touch each other to show that the
actual limits of the classes are contiguous. The midpoint of the bar corresponds
to the class mark. At the bottom of Box 2.1 are shown histograms of the frc­
quency distribution of the aphid data. ungrouped and grouped. The height of
each bar represents the frequency of the corresponding class.

To illustrate that histograms are appropriate approximations to the con­
tinuous distributions found in nature, we may take a histogram and make the
class intervals more narrow, producing more classes. The histogram would then
clearly have a closer fit to a continuous distribution. We can continue this pro­
cess until the class intervals become infinitesimal in width. At this point the
histogram becomes the continuous distribution of the variable.

Occasionally the class intervals of a grouped continuous frequency distri­
hution arc unequal. For instance, in a frequency distrihution of ages we might
have more detail on the dilTerent ages of young individuals and less accurate
identilication of the ages of old individuals. In such cases, the class intervals
I'm the older age groups would be wider, those for the younger age groups. nar­
rower. In representing such data. the bars of the histogram arc drawn with
dilkrent widths.

Figure 2.3 shows another graphical mode of representation of a frequency
distribution of a continuous variahle (in this case, birth weight in infants). As
we shall sec later the shapes of distrihutions seen in such frequency polygons
can reveal much about the biological situations alTecting the given variable.
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In this book we ignore "pencil-and-paper" short-cut methods for computa­
tions, found in earlier textbooks of statistics, since we assume that the student
has access to a calculator or a computer. Some statistical methods are very
easy to use because special tables exist that provide answers for standard sta­
tistical problems; thus, almost no computation is involved. An example is
Finney's table, a 2-by-2 contingency table containing small frequencies that is
used for the test of independence (Pearson and Hartley, 1958, Table 38). For
small problems, Finney's table can be used in place of Fisher's method of finding
exact probabilities, which is very tedious. Other statistical techniques are so
easy to carry out that no mechanical aids are needed. Some are inherently
simple, such as the sign test (Section 10.3). Other methods are only approximate
but can often serve the purpose adequately; for example, we may sometimes
substitute an easy-to-evaluate median (defined in Section 3.3) for the mean
(described in Sections 3.1 and 3.2) which requires eomputation.

We can use many new types of equipment to perform statistical computa­
tions-many more than we eould have when Introduction to Biostutistics was
first published. The once-standard electrically driven mechanical desk calculator
has eompletely disappeared. Many new electronic devices, from small pocket
ealculators to larger desk-top computers, have replaced it. Such devices are so
diverse that we will not try to survey the field here. Even if we did, the rate of
advance in this area would be so rapid that whatever we might say would soon
become obsolete.

We cannot really draw the line between the more sophisticated electronic
calculators. on the one hand, and digital computers. There is no abrupt increase
in capabilities between the more versatile programmable calculators and the
simpler microcomputers, just as there is none as we progress from microcom­
puters to minicomputers and so on up to the large computers that one associates
with the central computation center of a large university or research laboratory.
All can perform computations automatically and be controlled by a set of
detailed instructions prepared by the user. Most of these devices, including pro­
grammable small calculators, arc adequate for all of the computations described
in this book. even for large sets of data.

The material in this book consists or relatively standard statistical
computations that arc available in many statistical programs. BIOMstat l is
a statistical software package that includes most or the statistical methods
covered in this hook.

The use of modern data processing procedures has one inherent danger.
One can all too easily either feed in erroneous data or choose an inappropriate
program. Users must select programs carefully to ensure that those programs
perform the desired computations, give numerically reliable results, and arc as
free from error as possible. When using a program for the lirst time, one should
test it using data from textbooks with which one is familiar. Some programs

CHAPTER 2 / DATA IN BIOSTATISTICS

FIGURE 2.3
Frequency polygon. Birth weights of 9465
males infants. Chinese third-class patients in
Singapore, 1950 and 1951. Data from Millis
and Seng (1954).
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are notorious because the programmer has failed to guard against excessive
rounding errors or other problems. Users of a program should carefully check
the data being analyzed so that typing errors are not present. In addition, pro­
grams should help users identify and remove bad data values and should provide
them with transformations so that they can make sure that their data satisfy
the assumptions of various analyses.

Exercises

2.1 Round the following numbers to three significant figures: 106.55,0.06819,3.0495,
7815.01,2.9149. and 20.1500. What are the implied limits before and afler round­
ing? Round these same numbers to one decimal place.
ANS. For the first value: 107; 106.545 -106.555; 106.5 -107.5; 106.6

2.2 Differentiate between the following pairs of terms and give an example of each.
(a) Statistical and biological populations. (b) Variate and individual. (c) Accuracy
and precision (repeatabilityl. (dl Class Interval and class marl\. leI Bar diagram
and histogram tf) Abscissa and ordinate.

2.3 Given 200 measurements ranging from 1.32 to 2.95 mm, how would you group
them into a frequency distribution? Give class limits as well as class marks.

2.4 Group the following 40 measurements of interorbital width of a sample of do­
mestic pigeons into a frequency distribution and draw its histogram (data from
Olson and Miller. 1958). Measuremcnts are in millimeters.

12.2 12.9 118 11.9 11.6 11.1 12.3 12.2 118 11.8
10.7 11.5 11.3 11.2 11.6 11.9 I:U 11.2 105 11.1
12.1 11.9 10.4 10.7 10.8 11.0 119 10.2 10.9 11.6
10.8 116 10.4 10.7 120 12.4 117 11.8 11.3 11.1

CHAPTER 3

Descriptive Statistics

2.5

2.6

2.7

2.8
2.9

How precisely should you measure the wing length of a species of mosquitoes
in a study of geographic variation if the smallest specimen has a length of anoul
2.X mm and the largest a length nf ahnut 3.5 mm'~

Transform the 40 measurements in Exercise 2.4 into common logarithms (use a
table or calculator) and make a frcquency distribution of these transformed
variates. Comment on the resulting change in the pattern of the frcquency dis­
tribution from that found before.
For the data (lfTahles 2.1 and 2.2 i<kntify the individual ohservatlons, samples,
populations, and varia nics.
Make a stem-and-Icaf display pf the data givcn In Exercise 2.4.
The distributIOn of ages of striped bass captured by book and line from the East
River and the Hudson River during 19XO were reported as follows (Young, 1981):

A'I"

13, 49-
-' 96
4 28
5 16
(, X

Show this distribution in the form of a bar diagram.

An early and fundamental stage in any science is the descriptive stage. Until
phenomena can be accurately described, an analysis of their causes IS p:emature.
The question "What?" comes before "How?" Unless we know so~ethmga~out

the usual distribution of the sugar content of blood In a populatIOn of gumea
pigs, as well as its fluctuations from day to day and within days, we .shall be
unable to ascertain the effect of a given dose of a drug upon thIS vanable. ln
a sizable sample it would be tedious to obtain our knowledge of the material
by contemplating each individual observation. We need some form of summary
to permit us to deal with the data in manageable form, as well as to be able
to share our findings with others in scientific talks and publications. A his­
togram or bar diagram of the frequency distribution would be one type of
summary, However, for most purposes, a numerical summary is needed to
describe concisely, yet accurately, the properties of the observed frequency
distribution. Quantities providing such a summary are called descriptive sta­
tistics. This chapter will introduce you to some of them and show how they

arc computed.
Two kinds of descriptive statistics will be discussed in this chapter: statistics

of location and statistics of dispersion. The statistics of location (also known as
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measures of central tendency) describe the position of a sample along a given
dimension representing a variable. For example, after we measure the length of
the animals within a sample, we will then want to know whether the animals
are closer, say, to 2 cm or to 20 cm. To express a representative value for the
sample of observations-for the length of the animals-we use a statistic of
location. But statistics of location will not describe the shape of a frequency
distribution. The shape may be long or very narrow, may be humped or U­
shaped, may contain two humps, or may be markedly asymmetrical. Quanti­
tative measures of such aspects of frequency distributions are required. To this
end we need to define and study the statistics of dispersion.

The arithmetic mean, described in Section 3.1, is undoubtedly the most
important single statistic of location, but others (the geometric mean, the
harmonic mean, the median, and the mode) are briefly mentioned in Sections
3.2, 3.3, and 3.4. A simple statistic of dispersion (the range) is briefly noted in
Section 3.5, and the standard deviation, the most common statistic for describing
dispersion, is explained in Section 3.6. Our first encounter with contrasts be­
tween sample statistics and population parameters occurs in Section 3.7, in
connection with statistics of location and dispersion. In Section 3.8 there is a
description of practical methods for computing the mean and standard devia­
tion. The coefficient of variation (a statistic that permits us to compare the
relative amount of dispersion in different samples) is explained in the last section
(Section 3.9).

The techniques that will be at your disposal after you have mastered this
chapter will not be very powerful in solving biological problems, but they will
be indispensable tools for any further work in biostatistics. Other descriptive
statistics, of both location and dispersion, will be taken up in later chapters.

A/J important /Jote: We shall first encounter the use of logarithms in this
chapter. To avoid confusion, common logarithms have been consistently ab­
breviated as log, and natural logarithms as In. Thus, log .\ means loglo x and
In x means log" x.

3.1 The arithmetic mean

The most common statistic of location is familiar to everyone. It is the arithml'lic
mean, commonly called the mean or averaye. The mean is calculated by summing
all the individual observations or items of a sample and dividing this sum by
the number of items in the sample. For instance, as the result of a gas analysis
in a respirometer an investigator obtains the following four readings of oxygen
percentages and sums them:

14.9
10.8
12.3
23.3

Sum =~ 61.3

The investigator calculates the mean oxygen percentage as the sum of the four
items divided by the number of items. Thus the average oxygen percentage is

Mean = 6~.3 = 15.325%

Calculating a mean presents us with the opportunity for learning statistical
symbolism. We have already seen (Section 2.2) that an individual observation
is symbolized by 1';, which stands for the ith observation in the sample. Four
observations could be written symbolically as follows:

Yt , Yz, Y3 , Y4

We shall define n, the sample size, as the number of items in a sample. In this
particular instance, the sample size n is 4. Thus, in a large sample, we can
symbolize the array from the first to the nth item as follows:

When we wish to sum items, we use the following notation:

i=n

L Y; = Y\ + Yz + ... + Yn
i= 1

The capital Greek sigma, L, simply means the sum of the items indicated. The
i = 1 means that the items should be summed, starting with the first one and
ending with the nth one, as indicated by the i = /J above the L. The subscript
and superscript are necessary to indicate how many items should be summed.
The "i = " in the superscript is usually omitted as superfluous. For instance, if
we had wished to sum only the first three items, we would have written Lf~ 1 Y;.
On the other hand, had we wished to sum all of them except the first one, we
would have written L7~ 2 Y;. With some exceptions (which will appear in later
chapters), it is desirable to omit subscripts and superscripts, which generally
add to the apparent complexity of the formula and, when they arc unnecessary,
distract the student's attention from the important relations expressed by the
formula. Below are seen increasing simplifications of the complete summation
notation shown at the extreme left:

i= n n "

L Y; =L Y; = 2: Y; = L Y = L Y
f= t ,= I I

The third symbol might be interpreted as meaning, "Sum the Y;'s over all
availahle values of i." This is a frequently used notation, although we shall
not employ it in this book. The next. with II as a superscript, tells us to sum II

items of Y; note that the i subscript of the Y has been dropped as unneces­
sary. Finally. the simplest notation is shown at the right. It merely says sum
the Y's. This will be the form we shall use most frequently: if a summation sign
precedes a variable, the summation will be understood to be over II items (all
the items in the sample) unless subscripts or superscripts specifically tell us
otherwise.
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We shall use the symbol Y for the arithmetic mean of the variable Y. Its
formula is written as follows:

(3.3)

(3.4)

(3.5)

(3.4a)

I =~ L I
/l y fI Y

GM y = "frY Y;\j l= I

. 1
GM y = antIlog - L log Y

fI

3.2 Other means

We shall see in Chapters 10 and 11 that variables are sometimes transformed
into their logarithms or reciprocals. If we calculate the means of such trans­
formed variables and then change the means back into the original scale, these
means will not be the same as if we had computed the arithmetic means of the
original variables. The resulting means have received special names in statistics.
The back-transformed mean of the logarithmically transformed variables is
called the geometric mean. It is computed as follows:

which indicates that the geometric mean GM y is the antilogarithm of the mean
of the logarithms of variable Y. Since addition of logarithms is equivalent to
multiplication of their antilogarithms, there is another way of representing this
quantity: it is

The computation of the geometric mean by Expression (3.4a) is lJ uite tedious.
In practice, the geometric mean has to be computed by transforming the variates
into logarithms.

The reciprocal of the arithmetic mean of reciprocals is called the harmonic
mea/l. If we symbolize it by H y, the formula for the harmonic mean can be
written in concise form (without subscripts and superscripts) as

The geometric mean permits us to become familiar with another operator
symbol: capital pi. n, which may be read as "product." Just as L symbolizes
summation of the items that follow it, so n symbolizes the multiplication of
the items that follow it. The subscripts and superscripts have exactly the same
meaning as in the summation case. Thus, Expression (3.4) for the geometric
mean can be rewritten more compactly as follows:

(3.1 )

(3.2)

f, 1/,

:U5 12
5.21 25
4.70 X

- LY 1y=- = )'y
n n L

their weighted average will be

This formula tells us, "Sum all the (n) items and divide the sum by n."
The mean ofa sample is the center ofgral'ity qfthe obserl'ations in the sample.

If you were to draw a histogram of an observed frequency distribution on a
sheet of cardboard and then cut out the histogram and lay it flat against a
blackboard, supporting it with a pencil beneath, chances are that it would be
out of balance, toppling to either the left or the right. If you moved the sup­
porting pencil point to a position about which the histogram would exactly
balance, this point of balance would correspond to the arithmetic mean.

We often must compute averages of means or of other statistics that may
differ in their reliabilities because they arc based on different sample sizes. At
other times we may wish the individual items to be averaged to have different
weights or amounts of influence. In all such cases we compute a \l'eighted
average. A general formula for calculating the weighted average of a set of
values Y; is as follows:

n

y = I 11', Y;
"' '1

IW i

where fI variates, each weighted by a factor Wi' are being averaged. The values
of Y; in such cases are unlikely to represent variates. They are more likely to
be sample means ~ or some other statistics of different reliabilities.

The simplest case in which this arises is when the Yi are not individual
variates but are means. Thus, if the following three means are based on differing
sample sizes, as shown,

Note that in this example, computation of the weighted mean is exactly elJuiv­
alent to adding up all the original measurements and dividing the sum by the
total number of the mcasurements. Thus, the sample with 25 observations,
having the highest mean, will IIllluence the weighted average in proportion to
its sizc.

- (12)(U5) + (25)(5.21) + (X)(4.70)
y = ----
"' 12 + 25 + X

214.05
- = 4.76

4S

You may wish to convince yourself that thc geometric mean and the harmonic
mean of the four oxygen percentages arc 14.65~~ and 14.09·~, respectively. Un­
less the individual items do not vary, the geometric mean is always less than
the arithmetic mean, and the harmonic mean is always less than the geometric
mean.

Some beginners in statistics have difficulty in accepting the fact that mea­
sures of location or central tendency other than the arithmetic mean are per­
missible or even desirable. They feel that the arithmetic mean is the "logical"
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average. and that any other mean would be a distortion. This whole problem
relates to the proper scale of measurement for representing data; this scale is
not always the linear scale familiar to everyone, but is sometimes by preference
a logarithmic or reciprocal scale. If you have doubts about this question, we
shall try to allay them in Chapter 10, where we discuss the reasons for trans­
forming variables.

3.3 The median

The median M is a statistic of location occasionally useful in biological research.
It is defined as that L'alue of the variable (in an ordered array) that has an equal

/lumber of items on either side of it. Thus, the median divides a frequency dis­
tribution into two halves. In the following sample of five measurements,

14, 15, 16. 19,23

M '= 16, since the third observation has an equal number of observations on
both sides of it. We can visualize the median easily if we think of an array
from largest to smallest-for example, a row of men lined up by their heights.
The median individual will then be that man having an equal number of men
on his right and left sides. His height will be the median height of the sam­
ple considered. This quantity is easily evaluated from a sample array with
an odd number of individuals. When the number in the sample is even, the
median is conventionally calculated as the midpoint between the (n/2)th and
the [(n/2) + IJth variate. Thus, for the sample of four measurements

14, 15. 16, 19

the median would be the midpoint between the second and third items. or 15.5.
Whenever any onc value of a variate occurs morc than once, problems may

devclop in locating the median. Computation of the median item becomes morc
involved because all the memhers of a given class in which the median item is
located will havc thc same class mark. The median then is the (/I/2)th variate
in the frequency distribution. It is usually computed as that point between the
class limits of the median class where thc median individual would be located
(assuml!1g the individuals in the class were evenly distributed).

The median is just one of a family of statistics dividing a frequency dis­
tribution into equal areas. It divides the distribution into two halves. The three
i/ullrli[l's cut the distribution at the 25. 50. and 75'';, points--that is, at points
dividing the distribution into first, second. third, and fourth quarters by area
(and frequencies). The second quartile is. of course, the median. (There are also
quintiles. deciles, and pcrcentiles. dividing the distribution into 5. 10. and 100
equal portions. rcspectively.)

Medians are most often used for distributions that do not conform to the
standard probahility models, so that nonparametric methods (sec Chaptcr 10)
must be uscd. Sometimcs the median is a more representative measure of loca­
tion than the arithmetic mean. Such instances almost always involve asymmetric

distributions. An often quoted example from economics would be a suitable
measure of location for the "typical" salary of an employee of a corporation.
The very high salaries of the few senior executives would shift the arithmetic
mean, the center of gravity, toward a completely unrepresentative value. The
median, on the other hand, would be little affected by a few high salaries; it
would give the particular point on the salary scale above which lie 50% of the
salaries in the corporation, the other half being lower than this figure.

In biology an example of the preferred application of a median over the
arithmetic mean may be in populations showing skewed distribution, such as
weights. Thus a median weight of American males 50 years old may be a more
meaningful statistic than the average weight. The median is also of importance
in cases where it may be difficult or impossible to obtain and measure all the
items of a sample. For example, suppose an animal behaviorist is studying
the time it takes for a sample of animals to perform a certain behavioral step.
The variable he is measuring. is the time from the beginning of the experiment
until each individual has performed. What he wants to obtain is an average
time of performance. Such an average time. however, can be calculated only
after records have been obtained on all the individuals. It may take a long time
for the slowest animals to complete their performance. longer than the observer
wishes to spend. (Some of them may never respond appropriately, m:.tking the
computation of a mean impossiblc.) Therefore. a convenient statistic of 10catil)Jl
to describe these animals may be the median time of performance. Thus. so
long. as the observn knows what the total sample size is, he need not have
measurements for the right-hand tail of his distribution. Similar examples would
be the responses to a drug or poison in a group of individuals (the median
lethal or effective dose. LD;;o or ED so ) or the median time for a mutation to
appear in a number of lines of a species.

3.4 The mode

The lIIodl' refers to Ihl' I'(ill/I' rl'pl'esellled h.l' Ihe I/I'ealesl Ill/Ill/WI' of i/ldi/'idl/a/s.

Whcn seen on a frequency distribution. the mode is the value of the variablc
at which the curvc pcaks. In grouped frequcncy distrihutions the mode as a
point has little mcaning. It usually sutlices to identify the modal class. III biology.
the mode docs not have many applications.

Distributions having two peaks (equal or unequal in height) are called
himoda/; those with more than two peaks are ml/[till1oda[. In those rarc dis­
tributions that arc U-shaped. we refcr to the low point at the middle of the
distribution as an {l/lfilllOde.

In evaluating the relative merits of the arithmctic mean. the mCdl;1I1. and
the mode. a numoer or considerati'lns have to be kept in mind. The mean is
generally preferred In statistics. since it has a smaller standard error than other
statistics of location (see Section 6.2), it is easier to work with mathcmatically.
and it has an additional desirable property (explained in Section 6.1): it will
tend 10 be normally distriouted even if the original data arc not. The mean is
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3.5 / THE RANGE

HGURE 3.2
Three frequency distributions having identical means and sample sizes but differing in dispersion
pattern.

One simple measure of dispersion is the ralli/e, which is defined as Ihe

diff£'re/lce herll'eell the /(I"!le~1 lllld Ihe ~mllllesl ilems ill II slimp/e. Thus. the range
of the four oxygen percentages listed earlier (Section 3.1) is

Range = 23.3 - 10.8 = 12S'~,

and the range of the aphid femur lengths (Box 2.1) is

Range = 4.7- 3.3 = 1.4 units of 0.1 mill

Since the range is a measure of the span of the variates along the scale of the
variable, it is in the same units as the original measurements. The range is
clearly affected hy even a single outlying value and for this reason is only a
rntll,h (~,;fim:ltp of the disnersion of all the items in the samole.
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FIGlIRI' 3.1

An asymmetrical frequency distribution (skewed to the right) showing location of the mean, median,
and mode. Percent butterfat in 120 samples of milk (from a Canadian cattle breeders' record book).

markedly alli:cted by outlying observations; the median and mode arc not. The
mean is generally more sensitive to changes in the shape of a frequency distri­
bution, and if it is desired to have a statistic reflecting such changes, the mean
may be preferred.

In symmetrical, unimodal distributions the mean, the median, and the mode
are all identical. A prime example of this is the well-known normal distribution
of Chapter 5. In a typical asymmetrical distrihution, such as the one shown in
Figure J I, the relative positions of the mode. median, and mean arc generally
these: the mean is closest to the drawn-out tail of the distribution, the

L

mode i's
farthest, and the median is hetween these. An easy way to rememher this se­
quence is to recall that they occur in alphabetical order from the longer tail of
the distribution.

J.S The range

We now turn to measures of dispersion. Figure 3.2 demonstrates that radically
dilkrent-Iooking distrihutions may possess the identical arithmetic mean. It is
tl"'r,.fl\t-"I,h\/;.\II ...: ,I'l-.t ,,,tl.,,.t· lll' •• ,.· f.r .. I..... ~·,.,., .••. ;.7; ....... r~~"t .. ;I.... •• 1~f·'" .... " ......... "t L-" C~," •••;,1
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3.6 The standard deviation

We desire that a measure of dispersion take all items of a distribution into
consideration, weighting each item by its distance from the center of the distri­
bution. We shall now try to construct such a statistic. In Table 3.1 we show a
sample of 15 ?lood neutrophil counts from patients with tumors. Column (1)
shows the vanates in the order in which they were reported. The computation
of the mean is shown below the table. The mean neutrophil count turns out to
be 7.713.

The distance of each variate from the mean is computed as the following
deviation:

y= y- Y

E.ach individual deviation, or deviate, is by convention computed as the indi­
Vidual observation minus the mean, Y - Y, rather than the reverse, Y - Y.
Deviates are symbolized by lowercase letters corresponding to the capital letters
of the variables. Column (2) in Table 3.1 gives the deviates computed in this
manner.

We now wish to calculate an average deviation that will sum all the deviates
and divide them by the number of deviates in the sample. But note that when

TABLE 3.1

The standard deviation. Long method, not recommended for
hand or calculator computations but shown here to illus­
trate the meaning or the standard deviation. The data are
hlood neutrophil counts (divided hy \()OO) per microliter, in
15 patients with non hematological tumors.

(I) (2) (3)
y y = y - y y'

4.9 -2.81 7.9148
4.6 -3.11 9.6928
5.5 -2.21 4.8988
9.1 1.39 1.9228

16.3 8.59 73.7308
12.7 4.99 24.8668
6.4 -1.31 1.7248
7.1 -0.61 0.3762
2.3 -5.41 29.3042
3.6 -4.11 16.9195

18.0 10.29 105.8155
3.7 -4.01 16.1068
7.3 -0.41 0.1708
4.4 -3.31 10.9782
9.X 2.09 4.3542

Total 115.7
--- --~~--

0.05 308.7770

Mean }'= l> 1157
= 7.713

/I 15

{', .......... I ; .... f <01 ,'(\0 II

we sum our deviates, negative and positive deviates cancel out, as is shown
by the sum at the bottom of column (2); this sum appears to be unequal to
zero only because of a rounding error. Deviations from the arithmetic mean
always sum to zero because the mean is the center of gravity. Consequently,
an average based on the sum of deviations would also always equal zero. You
are urged to study Appendix AU, which demonstrates that the sum of deviations
around the mean of a sample is equal to zero.

Squaring the deviates gives us column (3) of Table 3.1 and enables us to
reach a result other than zero. (Squaring the deviates also holds other mathe­
matical advantages, which we shall take up in Sections 7.5 and 11.3.) The sum
of the squared deviates (in this case, 308.7770) is a very important quantity in
statistics. It is called the sum of squares and is identified symbolically as I:y2.

Another common symbol for the sum of squares is 55.
The next step is to obtain the average of the n squared deviations. The

resulting quantity is known as the variance, or the mean square:

. Ly2 308.7770
Vanance = -n- = --15-- _. = 20.5851

The variance is a measure of fundamental importance in statistics. and we
shall employ it throughout this book. At the moment, we need only remember
that because of the squaring of the deviations, the variance is expressed in
squared units. To undo the etfect of the squaring, we now take the positive
square root of the variance and obtain the standard deviation:

Standard deviation = + rr:.Y~ = 4.5371
V~

Thus, standard dcviation is again cxprcssed ill the original units of measurc­
ment, since it is a square root of the squared units of the variance.

An important note: The technique just learned and illustrated in Table 3.1
is not the simplest for direct computation of a variance and standard deviation.
However, it is often used in computer programs, where accuracy of computa­
tions is an important consideration. Alternativc and simpler computational
methods are given in Section 3.8.

The observant reader may havc noticed that we have avoided assigning
any symbol to either the variance or the standard deviation. We shall explain
why in the next section.

3.7 Sample statistics and parameters

Up to now we have calculated statistics from samples without giving too much
thought to what these statistics represent. When correctly calculated, a mean
and standard deviation will always be absolutely true mcasures of location and
dispersion for the samples on which they are based. Thus. thc truc mcan of the
four oxygen percentagc readings in Section 3.1 is 15.325 ";,. The standard devia­
tion of the 15 ncutrophil counts is 4.537. Howevcr, only rardy in biology (or
in ,",t'lf;(.'f;f~I.:' in n~""t1r'r'll\ 'It",,, \11." ;t1It .... rl...ct ....~ in n"lp.·.lC'1I r .... '-' ... f 1, .. ,,,.1;1"\1'1 'In,1 ,ti .....'n..lo.·l:iAn
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(3.6)

This formulation explains most clearly the meaning of the sum of squares, al­
though it may be inconvenient for computation by hand or calculator, since
one must first compute the mean before one can square and sum the deviations.
A quicker computational formula for this quantity is

3.8 Practical methods for computing mean and standard deviation

Three steps are necessary for computing the standard deviation: (I) find I:y2,
the sum of squares; (2) divide by n - I to give the variance; and (3) take the
square root of the variance to obtain the standard deviation. The procedure
used to compute the sum of squares in Section 3.6 can be expressed by the
following formula:

(3.8)

(3.7)

standard deviation as descriptive statistics of the sample. This would be in
contrast to using these as estimates of the population parameters. There are
also the rare cases in which the investigator possesses data on the entire popu­
lation; in such cases division by n is perfectly justified, because then the inves­
tigator is not estimating a parameter but is in fact evaluating it. Thus the
variance of the wing lengths of all adult whooping cranes would be a parametric
value; similarly, if the heights of all winners of the Nobel Prize in physics had
been measured, their variance would be a parameter since it would be based
on the entire population.

Let us see exactly what this formula represents. The first term on the right side
of the cquation, :Ey2, is the sum of all individual Y's, each squared, as follows:

"y2 = y2 + Y; + y2 + ... + y2
1...,; 1 " J tI

When referred to by name, I: y2 should be called the "sum of Y squared" and
should be carefully distinguished from I: y 2, "the sum of squares of Y." These
names are unfortunate, but they are too well established to think of amending
them. The other quantity in Expression (.l8) is (I: Y)2/n. It is often called the
correction term (eT). The numerator of this term is the square of the sum of the
V's; that is, all the Y's are first summcd. and this sum is then squared. In general,
this quantity is diffcrent from I: y2, which first squares the Y's and thcn sums
thcm. These two terms are identical only if all the Y's are equal. If you are not
certain about this, you can convince yourself of this fact by calculating these
two quantities for a few numbers.

The disadvantage of Expression (3.X) is that the quantities I: y2 and (I: Y)2/11

may both be quite large, so that accuracy may be lost in computing their dif­
ference unless one takes the precaution of carrying sufllcient significant ligures.

Why is Expression (3.8) identical with Expression (3.7)? The proof of this
identity is very simple and is given in Appendix A1.2. You are urged to work

In the neutrophil-count data the standard deviation would thus be computed as

)
308.7770

5 = = 4.6961
14 -

only as descriptive summaries of the samples we have studied. Almost always we
are interested in the populations from which the samples have been taken. What
we want to know is not the mean of the particular four oxygen precentages,
but rather the true oxgyen percentage of the universe of readings from which
the four readings have been sampled. Similarly, we would like to know the true
mean neutrophil count of the population of patients with nonhematological
tumors, not merely the mean of the 15 individuals measured. When studying
dispersion we generally wish to learn the true standard deviations of the popu­
lations and not those of the samples. These population statistics, however, are
unknown and (generally speaking) are unknowable. Who would be able to col­
lect all the patients with this particular disease and measure their neutrophil
counts? Thus we need to use sample statistics as estimators of population statis­
tics or parameters.

It is conventional in statistics to use Greek letters for population parameters
and Roman letters for sample statistics. Thus, the sample mean Yestimates p,
the parametric mean of the population. Similarly, a sample variance, symbolized
by S2, estimates a parametric variance, symbolized by (f2. Such estimators should
be unbiased. By this we mean that samples (regardless of the sample size) taken
from a population with a known parameter should give sample statistics that,
when averaged, will give the parametric value. An estimator that does not do
so is called biased.

The sample mean Yis an unbiased estimator of the parametric mean p.
However, the sample variance as computed in Section 3.6 is not unbiased. On
the average, it will underestimate the magnitude of the population variance (J2

To overcome this bias, mathematical statisticians have shown that when sums
of squares are divided by n - I rather than by II the resulting sample variances
will be unbiased estimators of the population variance. For this reason, it is
customary to compute variances by dividing the sum of squares by n - I. The
formula for the standard deviation is therefore customarily given as follows:

j LJ)T
5 = + ----­

n-I

We note that this value is slightly larger than our previous estimate of 4.537.
Of course, the greater the sample size, the less difference there will be between
division by 11 and by II 1. However. regardless of sample size, it is good
practice to divide a sum of squares by 11 -, I when computing a variance or
standard deviation. It may be assumed that when the symbol 52 is encountered,
it refers to a variance obtained by division of the sum of squares by the dewee5
of freedom, as the quantity 11- I is generally referred to.

Division of the sum of squares by II is appropriate only when the interest
of the investigator is limited to the sample at hand and to its variance and
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The resulting class marks are values slll:h as 0, 8, 16, 24, 32, and so on. They
are then divided by 8. which changes them to 0, I, 2. 3, 4, and so on, which is
the desired formal. The details of the computation can be learned from the box.

When checking the results of calculations, it is frequently useful to have
an approximate method for estimating statistics so that gross errors in compu­
tation can be detected. A simple method for estimating the mean is to average
the largest and smallest observation to obtain the so-called midranye. For the
neutrophil counts of Table 3.1, this value is (2.3 + 18.0)/2 = 10.15 (not a very
good estimate). Standard deviations can be estimated from ranges by appro­
priate division of the range. as follows:

BOX 3.1
Cakulation or Yand s from unordered data.

Neutrophilconots, unordered as shown in Table 3.1.

through it to build up your confidence in handling statistical symbols and
formulas.

It is sometimes possible to simplify computations by recoding variates into
simpler form. We shall use the term additive coding for the addition or sub­
traction of a constant (since subtraction is only addition of a negative number).
We shall similarly use multiplicative coding to refer to the multiplication or
division by a constant (since division is multiplication by the reciprocal of the
divisor). We shall use the term combination coding to mean the application of
both additive and multiplicative coding to the same set of data. In Appendix
A 1.3 we examine the consequences of the three types of coding in the com­
putation of means, variances, and standard deviations.

For the case of means, the formula for combination coding and decoding is
the most generally applicable one. If the coded variable is ~ = D(Y + C). then

- Y.
Y=--"- C

D

where C is an additive code and D is a multiplicative code.
On considering the effects of coding variates on the values of variances and

standard deviations, we find that additive codes have no effect on the sums of
squares, variances, or standard deviations. The mathematical proof is given in
Appendix A 1.3. but we can see this intuitively, because an additive code has
no effect on the distance of an item from its mean. The distance from an item
of 15 to its mean of 10 would be 5. If we were to code the variates by sub­
tracting a constant of 10, the item would now be 5 and the mean zero. The
difference between them would still be 5. Thus. if only additive coding is em­
ployed, the only statistic in need of decoding is the mean. But multiplicative
coding docs have an effect on sums of squares. varianccs. and standard devia­
tions. The standard deviations have to be divided by the multiplicative code.
just as had to be done for the mean. However, the sums of squares or variances
have to be divided by the multiplicative codes squared, because they are squared
terms, and the multiplicative factor becomes squared during the operations. In
combination coding the additive code can be ignored.

When the data are unordered. the computation of the mean and standard
deviation proceeds as in Box 3.1, which is based on the unordered neutrophiJ­
count data shown in Table 3.1. We chose not to apply coding to these data.
since it would not have simplilled the computations appreciably.

When the data arc arrayed in a frequency distribution, the computations
can be made much simpler. When computing the statistics, you can often avoid
the need for manual entry of large numbers of individual variates jf you first
set up a frequency distribution. Sometimes the data will come to you already
in the form of a frequency distribution. having been grouped by the researcher.

The computation of Yand s from a frequency distribution is illustrated in
Box 3.2. The data are the birth weights of male Chinese children, first encountered
in Figure 2.3. The calculation is simplilled by coding to remove the awk ward
class marks. This is done by subtracting 59.5, the lowest class mark of the array.

•

Computation

n = 15

IY = 115.7

_ 1"
Y =- L.. Y =7.713

n

I y 2 = 1201.21

~:;Y2 =I y2 _ (I y)2
n

(115.7)2
= 1201.21 - -1-5-

= 308.7773

2 I y2 308.7773
S = n -1 = 14

= 22.056

s = J22.056 = 4.696

For samples 0(

10
30

100
soo

tOOO

Dil'idl' Ihl' ran'll' IJy

3
4
5
6
6~

•
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•
BOX 3.2
Calculation of Y, s, ami V from a frequency distribution.

Birth weights of male Chinese in ounces.

The range of the neutrophil counts is 15.7. When this value is divided by 4, we
get an estimate for the standard deviation of 3.925, which compares with the
calculated value of 4.696 in Box 3.1. However, when we estimate mean and
standard deviation of the aphid femur lengths of Box 2.1 in this manner, we
obtain 4.0 and 0.35, respectively. These are good estimates of the actual values
of 4.004 and 0.3656, the sample mean and standard deviation.

s 13.593
V = -= x 100 = --- x 100 = 12.369%

Y 109.9

•

(1) (2) (3)
Class mark Coded class mark

y f r.,

59.5 2 0
67.5 6 1
75.5 39 2
83.5 385 3
91.5 888 4
99.5 1729 5

107.5 2240 6
115.5 2007 7
123.5 1233 8
131.5 641 9
139.5 201 10
147.5 74 11
155.5 14 12
163.5 5 13
171.5 1 14

--
9465 = n

Source: Millis and $eng (1954).

(J.9)

Having obtained the standard deviation as a measure of the amount of variation
in the data, you may be led to ask, "Now what'?" At this stage in our com­
prehension of statistical theory, nothing really useful comes of the computations
we have carried out. However, the skills just learned are basic to all later statis­
tical work. So far, the only use that we might have for the standard deviation
is as an estimate of the amount of variation in a population. Thus. we may
wish to compare the magnitudes of the standard deviations of similar popula­
tions and see whether population A is more or less variable than population B.

When populations differ appreciably in their means. the direct comparison
of their variances or standard deviations is less useful, since larger organisms
usually vary more than smaller one. For instance, the standard deviation of
the tail lengths of elephants is obviously much greater than the entire tail1cngth
of a mouse. To compare the relative amounts of variation in populations having
different means, the coefficient (!{ variation, symbolized by V (or occasionally
CV), has been developed. This is simply the standard deviation expressed as a
percentage of the mean. Its formula is

s x 100
V = -~--

y

3.9 The coefficient of variation

For example, the coeflicient of variation of the birth weights in Box J.2 IS

12.37".:, as shown at the bottom of that box. The coeflicient of variation IS

independent of the unit of measurement and is expressed as a percentage.
Coefficients of variation are used when one wishes to compare the variation

of two populations without considering the magnitude of their means. (It is
probably of little interest to discover whether the birth weights of the Chinese
children are more or less variable than the femur lengths of the aphid stem
mothers. However, we can calculate V for the latter as (0.3656 x 1(0)/4.004 =
9.13%, which would suggest that the birth weights arc morc variable.) Often,
we shall wish to test whether a given biological sample is more variable for one
character than for another. Thus, for a sample of rats, is hody weight morc
variable than blood sugar content'! A second, frequent typc of comparison,
especially in systematics, is among different populations for the same character.
Thus, we may have measured wing length in samples of hirds from several
localities. We wish to know whether anyone of these populations is more vari­
able than the others. An answer to this question can be obtained hyexamining
the coeillcients of variation of wing length in these samples.

Coding and decoding

To decode Sc: s = 8se = 13.5930z

Y - 59.5
Code: Ye = 8

To decode ~: Y= SY,. + 59.5

= 50.4 + 59.5

= 109.9 oz

Se = 1.6991

('omputation

L!Y; = LfY; - CT = 27,327.450

L!Y"/-S2 = ...._..- .. = 2.888
en_I

,
L fYe = 59,629

~ = 6.300

L fY; = 402,987

(r (yv
C1' =~:-.~-- = 375,659.550

n
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3.1 Find Y, s, V, and the median for the following data (mg of glycine per mg of
creatinine in the urine of 37 chimpanzees; from Gartler, Firschein, and Dob­
zhansky, 1956). ANS. Y= 0.1l5, s = 0.10404.

3.2 Find the mean, standard deviation, and coefficient of variation for the pigeon
data given in Exercise 2.4. Group the data into ten classes, recompute Y and s,
and compare them with the results obtained from ungrouped data. Compute
the median for the grouped data.

3.3 The following are percentages of butterfat from 120 registered three-year-old
Ayrshire cows selected at random from a Canadian stock record book.
(a) Calculate Y, s, and V directly from the data. _
(b) Group the data in a frequency distribution and again calculate Y, s, and V.

Compare the results with those of (a). How much precision has been lost by
grouping? Also calculate the median.

4.32 4.24 4.29 4.00
3.96 4.48 3.89 4.02
3.74 4.42 4.20 3.87
4.10 4.00 4.33 3.81
4.33 ~16 3.88 4.81
4.23 4.67 3.74 4.25
4.28 4.03 4.42 4.09
4.15 429 4.27 4.38
4.49 4.05 3.97 4.32
4.67 4.11 4.24 5.00
460 4.38 3.72 3.99
4.00 4.46 4.82 3.91
4.71 3.96 3.66 4.10
4.38 4.16 3.77 4.40
4.06 4.08 3.66 4.70
3.97 3.97 4.20 4.41
4.31 3.70 3.83 4.24
4.30 4.17 3.97 4.20
4.51 3.86 4.36 4.18
4.24 4.05 4.05 3.56
3.94 3.89 4.58 3.99
4.17 3.82 3.70 4.33
4.06 3.89 4.07 3.58
3.93 420 3.89 4.60
4.38 414 4.66 3.97
4.22 3.47 3.92 4.91
3.95 4.38 4.12 4.52
4.35 3.91 4.10 4.09
4'(J9 4.34 4.09 4.88
4.28 3.98 3.86 4.58

Exercises

.008

.025

.011

.100

.018

.036

.060

.155

.056

.043

.070

.370

.055

.100

.050

.019

.135

.120

.080

.100

.052

.110

.110

.100

.077

.100

.110

.116

.026

.350

.120

.440

.100

.133

.300

.300

.100

3.5

3.6

3.7

3.8

mode, range? What would be the effect of adding 5.2 and then multiplying the
sums by 8.0? Would it make any difference in the above statistics if we multiplied
by 8.0 first and then added 5.2?
Estimate J1 and (f using the midrange and the range (see Section 3.8) for the data
in Exercises 3.1, 3.2, and 3.3. How well do these estimates agree with the esti­
mates given by Yand s? ANS. Estimates of J1 and (f for Exercise 3.2 are 0.224
and 0.1014.
Show that the equation for the variance can also be written as

L y 2
- ny2

52 =._-~._--
n-I

Using the striped bass age distribution given in Exercise 2.9, compute the fol­
lowing statistics: Y, S2, s, V, median, and mode. ANS. Y= 3.043, S2 = 1.2661,
s = 1.125, V = 36.98%, median = 2.948, mode = 3.
Use a calculator and compare the results of using Equations 3.7 and 3.8 to
compute S2 for the following artificial data sets:
(a) 1, 2, 3, 4, 5
(b) 9001, 9002, 9003, 9004, 9005
(c) 90001, 90002, 90003, 90004, 90005
(d) 900001,900002,900003,900004,900005
Compare your results with those of one or more computer programs. What is
the correct answer? Explain your results.

3.4 What ciTed would adding a constant 5.2 t() all observations have upon the
Ill/merical values of the following statistics: Y. 5. 1/, average deviation, median.
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CHAPTER 4

Introduction to Probability

Distributions: The Binomial and

Poisson Distributions

In Section 2.5 we first encountered frequency distributions. For example, Table
2.2 shows a distribution for a meristic, or discrete (discontinuous), variable, the
number of sedge plants per quadrat. Examples of distributions for continuous
variables are the femur lengths of aphids in Box 2.1 and the human birth weights
in Box 3.2. Each of these distributions informs us about the absolute frequency
of any given class and permits us to computate the relative frequencies of any
class of variable. Thus, most of the quadrats contained either no sedges or one
or two plants. In the 139.5-oz class of birth weights, we find only 201 out of
the total of 9465 babies recorded; that is, approximately only 2.1 % of the infants
are in that birth weight class.

We realize, of course, that these frequency distributions are only samples
from given populations. The birth weights, for example, represent a population
of male Chinese infants from a given geographical area. But if we knew our
sample to be representative of that population, we could make all sorts of pre­
dictions based upon the sample frequency distribution. For instance, we could
say that approximately 2.1 % of male Chinese babies born in this population
should weigh between 135.5 and 143.5 07 at birth. Similarly, we might say that

the probability that the weight at birth of anyone baby in this population will
be in the 139.5-oz birth class is quite low. If all of the 9465 weights were mixed
up in a hat and a single one pulled out, the probability that we would pull out
one of the 201 in the 139.5-oz class would be very low indeed-only 2.1 %. It
would be much more probable that we would sample an infant of 107.5 or
115.5 OZ, since the infants in these classes are represented by frequencies 2240
and 2007, respectively. Finally, if we were to sample from an unknown popula­
tion of babies and find that the very first individual sampled had a birth weight
of 170 oz, we would probably reject any hypothesis that the unknown population
was the same as that sampled in Box 3.2. We would arrive at this conclusion
because in the distribution in Box 3.2 only one out of almost 10,000 infants
had a birth weight that high. Though it is possible that we could have sampled
from the population of male Chinese babies and obtained a birth weight of 170
oz, the probability that the first individual sampled would have such a value
is very low indeed. It seems much more reasonable to suppose that the unknown
population from which we are sampling has a larger mean that the one sampled
in Box 3.2.

We have used this empirical frequency distribution to make certain predic­
tions (with what frequency a given event will occur) or to make judgments and
decisions (is it likely that an infant of a given birth weight belongs to this
population?). In many cases in biology, however, we shall make such predictions
not from empirical distributions, but on the basis of theoretical considerations
that in our judgment are pertinent. We may feel that the data should be distrib­
uted in a certain way because of basic assumptions about the nature of the
forces acting on the example at hand. If our actually observed data do not
conform sufficiently to the values expected on the basis of these assumptions,
we shall have serious doubts about our assumptions. This is a common use of
frequency distributions in biology. The assumptions being tested generally lead
to a theoretical frequency distribution known also as a prohahility distrihution.
This may be a simple two-valued distribution, such as the 3: 1 ratio in a
Mendelian cross; or it may be a more complicated function, as it would be if
we were trying to predict the number of plants in a quadrat. If we find that
the observed data do not fit the expectations on the basis of theory, we are
often led to the discovery of some biological mechanism causing this deviation
from expectation. The phenomena of linkage in genetics, of preferential mating
between different phenotypes in animal behavior, of congregation of animals
at certain favored places or, conversely, their territorial dispersion are cases in
point. We shall thus make use of probability theory to test our assumptions
about the laws of occurrence of certain biological phenomena. We should point
out to the reader, however, that probability theory underlies the entire structure
of statistics, since, owing to the non mathematical orientation of this hook, this
may not be entirely obvious.

In this chapter we shall first discuss probability, in Section 4.1, but only to
the extent necessary for comprehension of the sections that follow at the intended
level of mathematical sophistication. Next, in Section 4.2, we shall take up the
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binomial frequency distribution, which is not only important in certain types
of studies, such as genetics, but also fundamental to an understanding of the
various kinds of probability distributions to be discussed in this book.

The Poisson distribution, which folIows in Section 4.3, is of wide applicability
in biology, especially for tests of randomness of occurrence of certain events.
Both the binomial and Poisson distributions are discrete probability distribu­
tions. The most common continuous probability distribution is the normal
frequency distribution, discussed in Chapter 5.

4.1 Probability, random sampling, and hypothesis testing

We shalI start this discussion with an example that is not biometrical or
biological in the strict sense. We have often found it pedagogically effective to
introduce new concepts through situations thoroughly familiar to the student,
even if the example is not relevant to the general subject matter of biostatistics.

Let us betake ourselves to Matchless University, a state institution
somewhere between the Appalachians and the Rockies. Looking at its enrollment
figures, we notice the following breakdown of the student body: 70% of the
students are American undergraduates (AU) and 26% are American graduate
students (AG); the remaining 4% are from abroad. Of these, I % are foreign
undergraduates (FU) and 3% are foreign graduate students (FG). In much of
our work we shall use proportions rather than percentages as a useful convention.
Thus the enrollment consists of 0.70 AU's, 0.26 AG's, 0.01 FU's, and 0.03 FG's.
The total student body, corresponding to 100%, is therefore represented by the
figure 1.0.

If we were to assemble alI the students and sample 100 of them at random,
we would intuitively expect that, on the average. 3 would be foreign graduate
students. The actual outcome might vary. There might not be a single FG
student among the 100 sampled, or there might be quite a few more than 3.
The ratio of the number of foreign graduate students sampled divided by the
total number of students sampled might therefore vary from zero to considerably
greater than 0.03. If we increased our sample size to 500 or 1000, it is less likely
that the ratio would fluctuate widely around 0.03. The greater the sample taken,
the closer the ratio of FG students sampled to the total students sampled will
approach 0.03. In fact, the probability of sampling a foreign student can be
defined as the limit as sample size keeps increasing of the ratio of foreign students
to the total number of students sampled. Thus. we may formally summarize
the situation by stating that the probability that a student at Matchless
University will be a foreign graduate student is P[FG] = 0.03. Similarly, the
probability of sampling a foreign undergraduate is P[FU] = 0.0 I. that of
sampling an American undergraduate is PlA UJ = 0.70, and that for American
graduate students, P[AG] = 0.26.

Now let us imagine the following experiment: We try to sample a student
at random from among the student body at Matchless University. This is not
as easy a task as might be imagined. If we wanted to do this operation physically,

we would have to set up a colIection or trapping station somewhere on campus.
And to make certain that the sample was truly random with respect to the
entire student population, we would have to know the ecology of students on
campus very thoroughly. We should try to locate our trap at some station
where each student had an equal probability of passing. Few, if any, such places
can be found in a university. The student union facilities are likely to be
frequented more by independent and foreign students, less by those living in
organized houses and dormitories. Fewer foreign and graduate students might
be found along fraternity row. Clearly, we would not wish to place our trap
near the International Club or House, because our probability of sampling a
foreign student would be greatly enhanced. In front of the bursar's window we
might sample students paying tuition. But those on scholarships might not be
found there. We do not know whether the proportion of scholarships among
foreign or graduate students is the same as or different from that among the
American or undergraduate students. Athletic events, political rallies, dances,
and the like would alI draw a differential spectrum of the student body; indeed,
no easy solution seems in sight. The time of sampling is equally important, in
the seasonal as well as the diurnal cycle.

Those among the readers who are interested in sampling organisms from
nature will already have perceived parallel problems in their work. If we were
to sample only students wearing turbans or saris, their probability of being
foreign students would be almost 1. We could no longer speak of a random
sample. In the familiar ecosystem of the university these violations of proper
sampling procedure are obvious to all of us, but they are not nearly so obvious
in real biological instances where we are unfamiliar with the true nature of the
environment. How should we proceed to obtain a random sample of leaves
from a tree, of insects from a field, or of mutations in a culture? In sampling
at random, we are attempting to permit the frequencies of various events
occurring in nature to be reproduced unalteredly in our records; that is, we
hope that on the average the frequencies of these events in our sample will be
the same as they are in the natural situation. Another way of saying this is that
in a random sample every individual in the population being sampled has an
equal probability of being included in the sample.

.We might go about obtaining a random sample by using records repre­
~entmg the student body, such as the student directory, selecting a page from
It at r~ndom and a name at random from the page. Or we could assign an
an arbItrary number to each student, write each on a chip or disk, put these
in a large container, stir well, and then pull out a number.

Imagine now that we sample a single student physically by the trapping
method, after carefully planning the placement of the trap in such a way as to
make sampling random. Wtat are the possible outcomes? Clearly, the student
could be either an AU, AG, FU or FG. The set of these four possible outcomes
exhausts the possibilities of this experiment. This set, which we can represent
as {AU, AG, FU, FG} is called the sample space. Any single trial of the experiment
described above would result in only one ofthe four possible outcomes (elements)
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in the set. A single element in a sample space is called a simple event. It is
distinguished from an event, which is any subset of the sample.space. Thus, in
the sample space defined above {AU}, {AG}, {FU}, and {FG} are each sim­
ple events. The following sampling results are some of the possible events:
{AU, AG, FU}, {AU, AG, FG}, {AG, FG}, {AU, FG}, ... By the definition of
"event," simple events as well as the entire sample space are also events. The
meaning of these events should be clarified. Thus {AU, AG, FU} implies being
either an American or an undergraduate, or both.

Given the sampling space described above, the event A = {AU, AG} en­
compasses all possible outcomes in the space yielding an American student.
Similarly, the event B = {AG, FG} summarizes the possibilities for obtaining
a graduate student. The intersection of events A and B, written An B, describes
only those events that are shared by A and B. Clearly only AG qualifies, as
can be seen below:

A = {AU, AG}

B = {AG, FG}

Thus, An B is that event in the sample space giving rise to the sampling of an
American graduate student. When the intersection of two events is empty, as
in B n C, where C = {AU, FU}, events Band C are mutually exclusive. Thus
there is no common element in these two events in the sampling space.

We may also define events that are unions of two other events in the sample
space. Thus Au B indicates that A or B or both A and B occur. As defined
above, Au B would describe all students who are either American students,
graduate students, or American graduate students.

Why are we concerned with defining sample spaces and events? Because
these concepts lead us to useful definitions and operations regarding the
probability of various outcomes. If we can assign a number p, where °.$ p .$ 1,
to each simple event in a sample space such that the sum of these p's over.all
simple events in the space equals unity, then the space becomes a (finIte)
probability space. In our example above, the following numbers were associated
with the appropriate simple events in the sample space:

{AU,AG, FU, FG}

{O.70, 0.26, O.ol, 0.03}

Given this probability space, we are now able to make statements regarding
the probability of given events. For example, what is the probability that .a
student sampled at random will be an American graduate student? Clearly, It
is P[! AG)] = 0.26. What is the probability that a student is either American
If. h"

or a graduate student? In terms of the events defined earlier, t IS IS

PLA u BJ = PL[AU, AG}J + P[[AG, FG}] - PUAG}]

= 0.96 + 0.29 0.26

= 0.99

We subtract P[{AG}] from the sum on the right-hand side of the equation
because if we did not do so it would be included twice, once in P[A] and once
in P[B], and would lead to the absurd result of a probability greater than 1.

Now let us assume that we have sampled our single student from the student
body of Matchless University and that student turns out to be a foreign graduate
student. What can we conclude from this? By chance alone, this result would
happen 0.03, or 3%, of the time-not very frequently. The assumption that
we have sampled at random should probably be rejected, since if we accept the
hypothesis of random sampling, the outcome of the experiment is improbable.
Please note that we said improbable, not impossible. It is obvious that we could
have chanced upon an FG as the very first one to be sampled. However, it is
not very likely. The probability is 0.97 that a single student sampled will be a
non-FG. If we could be certain that our sampling method was random (as
when drawing student numbers out of a container), we would have to decide
that an improbable event has occurred. The decisions of this paragraph are all
based on our definite knowledge that the proportion of students at Matchless
University is indeed as specified by the probability space. If we were uncertain
about this, we would be led to assume a higher proportion of foreign graduate
students as a consequence of the outcome of our sampling experiment.

We shall now extend our experiment and sample two students rather than
just one. What are the possible outcomes of this sampling experiment? The new
sampling space can best be depicted by a diagram (Figure 4.1) that shows the
set of the 16 possible simple events as points in a lattice. The simple events are
the following possible combinations. Ignoring which student was sampled first,
they are (AU, AU), (AU, AG), (AU, FU), (AU, FG), (AG, AG), (AG, FU),
(AG, FG), (FU, FU), (FU, FG), and (FG, FG).
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Sample space for sampling two students from Matchless University.
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What are the expected probabilities of these outcomes? We know the
expected outcomes for sampling one student from the former probability space,
but what will be the probability space corresponding to the new sampling space
of 16 elements? Now the nature of the sampling procedure becomes quite im­
portant. We may sample with or without replacement: we may return the first
student sampled to the population (that is, replace the first student), or we may
keep him or her out of the pool of the individuals to be sampled. If we do not
replace the first individual sampled, the probability of sampling a foreign
graduate student will no longer be exactly 0.03. This is easily seen. Let us assume
that Matchless University has 10,000 students. Then, since 3% are foreign
graduate students, there must be 300 FG students at the university. After
sampling a foreign graduate student first, this number is reduced to 299 out of
9999 students. Consequently, the probability of sampling an FG student now
becomes 299/9999 = 0.0299, a slightly lower probability than the value of
0.03 for sampling the first FG student. If, on the other hand, we return the
original foreign student to the student population and make certain that the
population is thoroughly randomized before being sampled again (that is, give
the student a chance to lose him- or herself among the campus crowd or, in
drawing student numbers out of a container, mix up the disks with the numbers
on them), the probability of sampling a second FG student is the same as
before-O.03. [n fact, if we keep on replacing the sampled individuals in the
original population, we can sample from it as though it were an infinite-sized
population.

Biological populations are, of course, finite, but they are frequently so large
that for purposes of sampling experiments we can consider them effectively
infinite whether we replace sampled individuals or not. After all, even in this
relatively small population of 10,000 students, the probability of sampling a
second foreign graduate student (without replacement) is only minutely different
from 0.03. For the rest of this section we shall consider sampling to be with
replacement, so that the probability level of obtaining a foreign student does
not change.

There is a second potential source of difficulty in this design. We have to
assume not only that the probability of sampling a second foreign student is
equal to that of the first, but also that it is independent of it. By independence
of events we mean that the prohahility that one event will occur is not affected
hy whether or not another evcnt has or has not occurred. In the case of the
students, if we have sampled one foreign student, is it more or less likely that a
second student sampled in the same manner will also be a foreign student? Inde­
pendence of the events may depend on where we sample the students or on the
method of sampling. Ifwe have sampled students on campus, it is quite likely that
the events are not independent; that is, if one foreign student has been sampled,
the probability that the second student will be foreign is increased, since foreign
students tend to congregate. Thus, at Matchless University the probability that
a student walking with a foreign graduate student is also an FG will be greater
than 0.03.

Events D and E in a sample space will be defined as independent whenever
P[D n E] = P[D]P[E]' The probability values assigned to the sixteen points
in the sample-space lattice of Figure 4.1 have been computed to satisfy the
above condition. Thus, letting P[D] equal the probability that the first student
will be an AU, that is, P[{AU lAU2 , AU lAG2 , AU IFU2' AU IFG 2}], and letting
peE] equal the probability that the second student will be an FG, that is,
P[{AU 1FG 2 , AG 1FG2 , FU1FG2 , FG1FG2}], we note that the intersection
DnE is {AU 1FG2 }. This has a value of 0.0210 in the probability space of
Figure 4.1. We find that this value is the product P[{AU}]P[{FG}] = 0.70 x
0.03 = 0.0210. These mutually independent relations have been deliberately
imposed upon all points in the probability space. Therefore, if the sampling
probabilities for the second student are independent of the type of student
sampled first, we can compute the probabilities of the outcomes simply as the
product of the independent probabilities. Thus the probability of obtaining two
FG students is P[{FG}]P[{FG}] = 0.03 x 0.03 = 0.0009.

The probability of obtaining one AU and one FG student in the sample
should be the product 0.70 x 0.03. However, it is in fact twice that proba­
bility. It is easy to see why. There is only one way of obtaining two FG
students, namely, by sampling first one FG and then again another FG. Sim­
ilarly, there is only one way to sample two AU students. However, sampling
one of each .type of student can be done by sampling first an AU and then an
FG or by sampling first an FG and then an AU. Thus the probability is
2P[{AU}]P[{FG}] = 2 x 0.70 x 0.03 = 0.0420.

Ifwe conducted such an experiment and obtain a sample of two FG students,
we would be led to the following conclusions. Only 0.0009 of the samples (l~O

of I % or 9 out of 10,000 cases) would be expected to consist of two foreign
graduate students. It is quite improbable to obtain sllch a result by chance
alone. Given P[{FG}] = 0.03 as a fact, we would therefore suspect that sampling
was not random or that the events were not independent (or that both as­
sumptions--random sampling and independence of events--were incorrect).

Random sampling is sometimes confused with randomness in nature. The
former is the faithful representation in the sample of the distribution of the
events in nature; the latter is the independence of the events in nature. The first
of these generally is or should be under the control of the experimenter and is
related to the strategy of good sampling. The second generally describes an
innate property of the objects being sampled and thus is of greater biological
interest. The confusion between random sampling and independence of events
arises because lack of either can yield observed frequencies of events differing
from expectation. We have already seen how lack of independence in samples
offoreign students can be interpreted from both points of view in our illustrative
example from Matchless University.

The above account of probability is adequate for our present purposes but
far too sketchy to convey an understanding of the field. Readers interested in
extending their knowledge of the subject are referred to Mosimann (1968) for
a simple introduction.
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is through the use of Pascal's triangle:4.2 The binomial distribution

For purposes of the discussion to follow we shall simplify our sample space to
consist of only two elements, foreign and American students, and ignore whether
the students are undergraduates or graduates; we shall represent the sample
space by the set {F, A}. Let us symbolize the probability space by {p, q}, where
p = P[F], the probability that the student is foreign, and q = PEA], the prob­
ability that the student is American. As before, we can compute the probability
space of samples of two students as follows:

k
1
2
3
4
5

1 1
1 2 1

1 3 3 1
1 4 6 4 1
510105

{FF, FA, AA}

{p2, 2pq, q2 }

If we were to sample three students independently, the probability space of
samples of three students would be as follows:

{FFF,FFA,FAA,AAA}

{ p3, 3p2q, 3pq2, q3 }

Samples of three foreign or three American students can again be obtained in
only one way, and their probabilities are p3 and q3, respectively. However, in
samples of three there are three ways of obtaining two students of one kind
and one student of the other. As before, if A stands for American and F stands
for foreign, then the sampling sequence can be AFF, FAF, FFA for two foreign
students and one American. Thus the probability of this outcome will be 3p 2 q.

Similarly, the probability for two Americans and one foreign student is 3pq 2.
A convenient way to summarize these results is by means of the binomial

expansion, which is applicable to samples of any size from populations in which
objects occur independently in only two classes--students who may be foreign
or American, or individuals who may be dead or alive, male or female, black
or white, rough or smooth, and so forth. This is accomplished by expanding
the binomial term (p + q)\ where k equals sample size, p equals the probability
of occurrence of the first class, and q equals the probability of occurrence of
the second class. By definition, p + q = 1; hence q is a function of p: q = 1 - p.

We shall expand the expression for samples of k from 1 to 3:

For samples of I, (p + q)1 = P + q

For samples of 2, (p + q)2 = p2 + 2pq + q2
For samples of 3, (p + q)3 = p3 + 3p2q + 3pq2 + q3

It will be seen that these expressions yield the same probability spaces
discussed previously. The coefficients (the numbers before the powers of p and
q) express the number of ways a particular outcome is obtained. An easy method
for evaluating the coefficients of the expanded terms of the binomial expression

Pascal's triangle provides the coefficients of the binomial expression-that is,
the number of possible outcomes of the various combinations of events. For
k = 1 the coefficients are 1 and 1. For the second line (k = 2), write 1 at the
left-hand margin of the line. The 2 in the middle of this line is the sum of the
values to the left and right of it in the line above. The line is concluded with a
1. Similarly, the values at the beginning and end of the third line are 1, and
the other numbers are sums of the values to their left and right in the line
above; thus 3 is the sum of 1 and 2. This principle continues for every line. You
can work out the coefficients for any size sample in this manner. The line for
k = 6 would consist of the following coefficients: 1, 6, 15, 20, 15, 6, I. The p
and q values bear powers in a consistent pattern, which should be easy to
imitate for any value of k. We give it here for k = 4:

p4qO+ p3q l + p2q2 + plq3 + pOq4

The power of p decreases from 4 to 0 (k to 0 in the general case) as the power
of q increases from 0 to 4 (0 to k in the general case). Since any value to the
power 0 is 1 and any term to the power 1 is simply itself, we can simplify this
expression as shown below and at the same time provide it with the coefficients
from Pascal's triangle for the case k = 4:

p4 + 4p3q + 6p2q2 + 4pq 3 + q4

Thus we are able to write down almost by inspection the expansion of the
binomial to any reasonable power. Let us now practice our newly learned ability
to expand the binomial.

Suppose we have a population of insects, exactly 40% of which are infected
with a given virus X. If we take samples of k = 5 insects each and examine each
insect separately for presence of the virus, what distribution of samples could
we expect if the probability of infection of each insect in a sample were
independent of that of other insects in the sample? In this case p = 004, the
proportion infected, and q = 0.6, the proportion not infected. It is assumed that
the population is so large that the question of whether sampling is with or
without replacement is irrelevant for practical purposes. The expected propor­
tions would be the expansion of the binomial:

(p + q)k = (0.4 + 0.6)5
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With the aid of Pascal's triangle this expansion is

{p5 + 5p4 q + lOp3q2 + lOp2q3 + 5pq4 + q5}

or

(0.4)5 + 5(0.4)4(0.6) + 10(0.4)3(0.6)2 + 10(0.4)2(0.6)3 + 5(0.4)(0.6)4 + (0.6)5

representing the expected proportions of samples of five infected insects, four
infected and one noninfected insects, three infected and two noninfected insects,
and so on.

The reader has probably realized by now that the terms of the binomial
expansion actually yield a type of frequency distribution for these different
outcomes. Associated with each outcome, such as "five infected insects," there
is a probability of occurrence-in this case (0.4)5 = 0.01024. This is a theoretical
frequency distribution or probability distribution of events that can occur in two
classes. It describes the expected distribution of outcomes in random samples
of five insects from a population in which 40% are infected. The probability
distribution described here is known as the binomial distribution, and the bino­
mial expansion yields the expected frequencies of the classes of the binomial
distribution.

A convenient layout for presentation and computation of a binomial
distribution is shown in Table 4.1. The first column lists the number of infected
insects per sample, the second column shows decreasing powers of p from p5
to pO, and the third column shows increasing powers of q from qO to q5. The
binomial coefficients from Pascal's triangle are shown in column (4). The relative

TABLE 4.1
Expected frequencies of infected insects in samples of 5 insects sampled from an infinitety large
population with an assumed infection rate of 40%.

(I)
N"mher of (5) (6)

infected (2) (3) Relati"e Ahso/we (7)
in.5ects Powers Powers (4) expected expected Ohserved

per sample of 0( Binomial Feq"",ncies Feq,,~ncje., freq"encies
y p = 0.4 q = 0.6 coefficients l~e' f f

5 0.01024 1.00000 1 0.01024 24.8 29
4 0.02560 0.60000 5 0.07680 186.1 t97
3 0.06400 0.36000 10 0.23040 558.3 535
2 0.16000 0.21600 10 0.34560 837.4 817
I 0.40000 0.12960 5 0.25920 628.0 643
0 1.00000 0.07776 I 0.07776 188.4 202

IiorIi(=n)
--- --~

1.00000 2423.0 2423
IY 2.00000 4846.1 4815

Mean 2.00000 2.00004 1.98721
Standard deviation 1.09545 1.09543 1.11934

expected frequencies, which are the probabilities of the various outcomes, are
shown in column (5). We label such expecred frequencies .l.el' They are simply
the product of columns (2), (3), and (4). Their sum is equal to 1.0, since the
events listed in column (1) exhaust the possible outcomes. We see from column
(5) in Table 4.1 that only about 1% of samples are expected to consist of 5
infected insects, and 25.9% are expected to contain I infected and 4 noninfected
insects. We shall test whether these predictions hold in an actual experiment.

Experiment 4.1. Simulate the sampling of infected insects by using a table of random
numbers such as Table I in Appendix Ai. These are randomly chosen one-digit numbers
in which each digit 0 through 9 has an equal probability of appearing. The numbers
are grouped in blocks of 25 for convenience. Such numbers can also be obtained from
random number keys on some pocket calculators and by means of pseudorandom
number-generating algorithms in computer programs. (In fact, this entire experiment
can be programmed and performed automatically--even on a small computer.) Since
there is an equal probability for anyone digit to appear, you can let any four digits
(say, 0, 1, 2, 3) stand for the infected insects and the remaining digits (4, 5, 6, 7, 8, 9)
stand for the noninfected insects. The probability that anyone digit selected from the
table will represent an infected insect (that is, will he a 0, 1,2. or 3) is therefore 40%, or
0.4, since these are four of the ten possible digits. Also, successive digits are assumed to
be independent of the values of previous digits. Thus the assumptions of the binomial
distribution should be met in this experiment. Enter the table of random numbers at
an arbitrary point (not always at the beginning!) and look at successive groups of five
digits, noting in each group how many of the digits are 0, I, 2, or 3. Take as many
groups of five as you can find time to do, but no fewer than 100 groups.

Column (7) in Table 4.1 shows the results of one such experiment during
one year by a biostatistics class. A total of 2423 samples of five numbers were
obtained from the table of random numbers; the distribution of the four digits
simulating the percentage of infection is shown in this column. The observed
frequencies are labeled f. To calculate the expected frequencies for this actual
example we multiplied the relative frequencies l:cl of column (5) times n = 2423,
the number of samples taken. This results in ahso[lIle expecled frequencies,
labeled j, shown in column (6). When we compare the observed frequencies in
column (7) with the expected frequencies in column (6) we note general agreement
between the two columns of figures. The two distributions are also illustrated
in Figure 4.2. If the observed frequencies did not fit expected frequencies, we
might believe that the lack of fit was due to chance alone. Or we might be led
to reject one or more of the following hypotheses: (I) that the true proportion
of digits 0, I, 2, and 3 is 0.4 (rejection of this hypothesis would normally not
be reasonable, for we may rely on the fact that the proportion of digits 0, I. 2,
and 3 in a table of random numbers is 0.4 or very close to it); (2) that sampling
was at random; and (3) that events were independent.

These statements can be reinterpreted in terms of the original infection
model with which we started this discussion. If, instead of a sampling experiment
of digits by a biostatistics class, this had been a real sampling experiment of
insects, we would conclude that the insects had indeed been randomly sampled
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FIGURE 4.2
Bar diagram of observed and expected frequencies given in Table 4.1.
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TABLE 4.2
Artificial distributions to illustrate clumping and repulsion. Expected frequencies from Table 4.1.

(1) (2) (3)
Number of Absolute Clumped (4) (5) (6)

infected insects expected (contagious) Deviation Repulsed Deviation

per sample frequ~ncies frequencies from frequencies from
y f f expectation f expectation

5 24.8 47 + 14
4 186.1 227 + 157
3 558.3 558 0 548
2 837.4 663 943 +
1 628.0 703 + 618
0 188.4 225 + 143

-- -- --
If or n 2423.0 2423 2423.0

IY 4846.1 4846 4846

Mean 2.00004 2.00000 2.00000
Standard deviation 1.09543 1.20074 1.01435

and that we had no evidence to reject the hypothesis that the proportion of
infected insects was 40%. If the observed frequencies had not fitted the expected
frequencies, the lack of fit might be attributed to chance, or to the conclusion
that the true proportion of infection was not 0.4; or we would have had to
reject one or both of the following assumptions: (1) that sampling was at random
and (2) that the occurrence of infected insects in these samples was independent.

Experiment 4.1 was designed to yield random samples and independent
events. How could we simulate a sampling procedure in which the occurrences
of the digits 0, 1,2, and 3 were not independent? We could, for example, instruct
the sampler to sample as indicated previously, but, every time a 3 was found
among the first four digits of a sample, to replace the following digit with
another one of the four digits standing for infected individuals. Thus, once a 3
was found, the probability would be 1.0 that another one of the indicated digits
would be included in the sample. After repeated samples, this would result in
higher frequencies of samples of two or more indicated digits and in lower
frequencies than expected (on the basis of the binomial distribution) of samples
of one such digit. A variety of such different sampling schemes could be devised.
It should be quite clear to the reader that the probability of the second event's
occurring would be different from that of the first and dependent on it.

How would we interpret a large departure of the observed frequencies from
expectation? We have not as yet learned techniques for testing whether observed
frequencies differ from those expected by more than can be attributed to chance
alone. This will be taken up in Chapter 13. Assume that such a test has been
carried out and that it has shown us that our observed frequencies are
significantly different from expectation. Two main types of departure from ex­
pectation can be characterized: (I) clumpinq and (2) repulsion, shown in fictitious

examples in Table 4.2. In actual examples we would have no a priori notions
about the magnitude of p, the probability of one of the two possible outcomes.
In such cases it is customary to obtain p from the observed sample and to
calculate the expected frequencies. using the sample p. This would mean that
the hypothesis that p is a given value cannot be tested, since by design the
expected frequencies will have the same p value as the observed frequencies.
Therefore, the hypotheses tested are whether the samples are random and the
events independent.

The clumped frequencies in Table 4.2 have an excess of observations at the
tails of the frequency distribution and consequently a shortage of observations
at the center. Such a distribution is also said to be contagious. (Remember that
the total number of items must be the same in both observed and expected fre­
quencies in order to make them comparable.) In the repulsed frequency distri­
bution there are more observations than expected at the center of the distribution
and fewer at the tails. These discrepancies are most easily seen in columns (4)
and (6) of Table 4.2, where the deviations of observed from expected frequencies
are shown as plus or minus signs.

What do these phenomena imply? In the clumped frequencies, more samples
were entirely infected (or largely infected), and similarly, more samples were en­
tirely noninfected (or largely noninfected) than you would expect if proba­
bilities of infection were independent. This could be due to poor sampling design.
If, for example, the investigator in collecting samples of five insects always
tended to pick out like ones-that is, infected ones or noninfected ones·~then

such a result would likely appear. But if the sampling design is sound, the
results become more interesting. Clumping would then mean that the samples
of five are in some way related. so that if one insect is infected, others in the
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same sample are more likely to be infected. This could be true if they come
from adjacent locations in a situation in which neighbors are easily infected.
Or they could be siblings jointly exposed to a source of infection. Or possibly
the infection might spread among members of a sample between the time that
the insects are sampled and the time they are examined.

The opposite phenomenon, repulsion, is more difficult to interpret bio­
logically. There are fewer homogeneous groups and more mixed groups in such
a distribution. This involves the idea of a compensatory phenomenon: if some
of the insects in a sample are infected, the others in the sample are less likely
to be. If the infected insects in the sample could in some way transmit im­
munity to their associates in the sample, such a situation could arise logically,
but it is biologically improbable. A more reasonable interpretation of such a
finding is that for each sampling unit, there were only a limited number of
pathogens available; then once several of the insects have become infected, the
others go free of infection, simply because there is no more infectious agent.
This is an unlikely situation in microbial infections, but in situations in which
a limited number of parasites enter the body of the host, repulsion may be
more reasonable.

From the expected and observed frequencies in Table 4.1, we may calculate
the mean and standard deviation of the number of infected insects per sample.
These values arc given at the bottom of columns (5), (6), and (7) in Table 4.1.
We note that the means and standard deviations in columns (5) and (6) are
almost identical and differ only trivially because of rounding errors. Column (7),
being a sample from a population whose parameters are the same as those of
the expected frequency distribution in column (5) or (6), differs somewhat. The
mean is slightly smaller and the standard deviation is slightly greater than in
the expected frequencies. If we wish to know the mean and standard deviation
of expected binomial frequency distributions, we need not go through the com­
putations shown in Table 4.1. The mean and standard deviation of a binomial
frequency distribution are, respectively,

Ii = kp

Substituting the values II. = 5, p = 0.4, and q = 0.6 of the above example, we
obtain II = 2.0 and (J = 1.095,45, which arc identical to the values computed
from column (5) in Table 4.1. Note that we use the Greek parametric notation
here because II and (J arc parameters of an expected frequency distribution, not
sample statistics, as are the mean and standard deviation in column (7). The
proportions p and q are parametric values also, and strictly speaking, they
should be distinguished from sample proportions. In fact, in later chapters we
resort to pand 4for parametric proportions (rather than TC, which convention­
ally is used as the ratio of the circumference to the diameter of a circle). Here,
however, we prefer to keep our notation simple. If we wish to express our
variable as a proportion rather than as a count·-that is, to indicate mean
incidence of infection in the insects as 0.4, rather than as 2 per sample of 5 we
can use other formulas for the mean and standard deviation in a binomial

distribution:

J1.=p

It is interesting to look at the standard deviations of the clumped and
replused frequency distributions of Table 4.2. We note that the clumped distri­
bution has a standard deviation greater than expected, and that of the repulsed
one is less than expected. Comparison of sample standard deviations with their
expected values is a useful measure of dispersion in such instances.

We shall now employ the binomial distribution to solve a biological prob­
lem. On the basis of our knowledge of the cytology and biology of species A,
we expect the sex ratio among its offspring to be 1: 1. The study of a litter in
nature reveals that of 17 offspring 14 were females and 3 were males. What
conclusions can we draw from this evidence? Assuming that p~ (the probability
of being a female offspring) = 0.5 and that this probability is independent among
the members of the sample, the pertinent probability distribution is the binomial
for sample size k = 17. Expanding the binomial to the power 17 is a formidable
task, which, as we shall see, fortunately need not be done in its entirety. How­
ever, we must have the binomial coefficients, which can be obtained either from
an expansion of Pascal's triangle (fairly tedious unless once obtained and stored
for future use) or by working out the expected frequencies for any given class of
Y from the general formula for any term of the binomial distribution

C(k, y)pYqk-Y (4.1)

The expression C(k, Y) stands for the number of combinations that can be
formed from k items taken Y at a time. This can be evaluated as k!/[ Y!(k - Y)!].
where! means "factorial." In mathematics k factorial is the product of all the
integers from 1 up to and including k. Thus,S! = I x 2 x 3 x 4 x 5 = 120. By
convention,O! = 1. In working out fractions containing factorials, note that any
factorial will always cancel against a higher factorial. Thus 5!/3! = (5 x 4 x 3!)/
31 = 5 x 4. For example, the binomial coefficient for the expected frequency
of samples of 5 items containing 2 infected insects is C(5, 2) = 5!/2'3! =
(5 x 4)/2 = 10.

The setup of the example is shown in Table 4.3. Decreasing powers of p.,
from p~ 7 down and increasing powers of q> are computed (from power 0 to
power 4). Since we require the probability of 14 females, we note that for the
purposes of our problem, we need not proceed beyond the term for 13 females
and 4 males. Calculating the relative expected frequencies in column (6), we
note that the probability of 14 females and 3 males is 0.005,188,40, a very small
value. [f we add to this value all "worse" outcomes-that is, all outcomes that
are even more unlikely than 14 females and 3 males on the assumption of a
1: 1 hypothesis--we obtain a probability of 0.006,363,42, still a very small value.
(In statistics, we often need to calculate the probability of observing a deviation
as large as or larger than a given value.)
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TABLE 4.3
Some expected frequencies of males and females for samples of 17 offspring on the assumption that
the sex ratill is 1:1 [p., = 0.5, 4" = 0.5; (p', + qd = (0.5 + 0.W 7

].

(1) (2) (3) (4) (5) (6)
Relative
expected

Binomial frequ.encies

¥¥ 33 Pi; 4j coefficients hel

17 0.000,007,63 1 1 0.000,001,63}
16 1 0.000,015,26 0.5 17 0.000,129,71 000636342
15 2 0.000,030,52 0.25 136 0.001,037,68 . , ,

14 3 0.000,061,04 0.125 680 0.005,188,40
13 4 0.000,122,07 0.0625 2380 0.018,157,91

On the basis of these findings one or more of the following assumptions is
unlikely: (I) that the true sex ratio in species A is 1: 1, (2) that we have sampled
at random in the sense of obtaining an unbiased sample, or (3) that the sexes
of the offspring are independent of one another. Lack of independence of events
may mean that although the average sex ratio is 1: 1, the individual sibships, or
litters, are largely unisexual, so that the offspring from a given mating would
tend to be all (or largely) females or all (or largely) males. To confirm this
hypothesis, we would need to have more samples and then examine the distri­
bution of samples for clumping, which would indicate a tendency for unisexual
sibships.

We must be very precise about the questions we ask of our data. There
are really two questions we could ask about the sex ratio. First, are the sexes
unequal in frequency so that females will appear more often than males? Second,
are the sexes unequal in frequency? It may be that we know from past experience
that in this particular group of organisms the males are never more frequent
than females; in that case, we need be concerned only with the first of these
two questions, and the reasoning followed above is appropriate. However, if we
know very little about this group of organisms, and if our question is simply
whether the sexes among the offspring are unequal in frequency, then we have
to consider both tails of the binomial frequency distribution; departures from
the I: 1 ratio could occur in either direction. We should then consider not only
the probability of samples with 14 females and 3 males (and all worse cases) but
also the probability of samples of 14 males and 3 females (and all worse cases
in that direction). Since this probability distribution is symmetrical (because
p" = q; = 0.5), we simply double the cumulative probability of 110?6,363,42 ob­
tained previously, which results in 0.012,726,84. This new value is stili very small,
making it quite unlikely that the true sex ratio is 1: 1.

This is your first experience with one of the most important applications of
statistics-- hypothesis testing. A formal introduction to this field will be deferred

until Section 6.8. We may simply point out here that the two approaches fol­
lowed above are known appropriately as one-tailed tests and two-tailed tests,
respectively. Students sometimes have difficulty knowing which of the two tests
to apply. In future examples we shall try to point out in each case why a one­
tailed or a two-tailed test is being used.

We have said that a tendency for unisexual sibships would result in a
clumped distribution of observed frequencies. An actual case of this nature is a
classic in the literature, the sex ratio data obtained by Geissler (1889) from
hospital records in Saxony. Table 4.4 reproduces sex ratios of 6115 sibships of
12 children each from the more extensive study by Geissler. All columns of the
table should by now be familiar. The expected frequencies were not calculated
on the basis of a 1: 1 hypothesis, since it is known that in human populations
the sex ratio at birth is not 1: 1. As the sex ratio varies in different human
populations, the best estimate of it for the population in Saxony was simply
obtained using the mean proportion of males in these data. This can be obtained
by calculating the average number of males per sibship (Y = 6.230,58) for the
6115 sibships and converting this into a proportion. This value turns out to be
0.519,215. Consequently, the proportion of females = 0.480,785. In the devia­
tions of the observed frequencies from the absolute expected frequencies shown
in column (9) of Table 4.4, we notice considerable clumping. There are many
more instances of families with all male or all female children (or nearly so)
than independent probabilities would indicate. The genetic basis for this is not
clear, but it is evident that there are some families which "run to girls" and
similarly those which "run to boys." Evidence of clumping can also be seen from
the fact that S2 is much larger than we would expect on the basis of the binomial
distribution (0'2 = kpq = 12(0.519,215)0.480,785 = 2.995,57).

There is a distinct contrast between the data in Table 4.1 and those in
Table 4.4. In the insect infection data of Table 4.1 we had a hypothetical propor­
tion of infection based on outside knowledge. In the sex ratio data of Table 4.4
we had no such knowledge; we used an empirical value of p obtained from the
data, rather than a hypothetical value external to the data. This is a distinction
whose importance will become apparent later. In the sex ratio data of Table 4.3,
as in much work in Mendelian genetics, a hypothetical value of p is used.

4.3 The Poisson distribution

In the typical application of the binomial we had relatively small samples
(2 students, 5 insects, 17 offspring, 12 siblings) in which two alternative states
occurred at varying frequencies (American and foreign, infected and nonin­
fected, male and female). Quite frequently, however, we study cases in which
sample size k is very large and one of the events (represented by probability q) is
very much more frequent than the other (represented by probability pl. We have
seen that the expansion of the binomial (p + q)k is quite tiresome when k is
large. Suppose you had to expand the expression (0.001 + 0.999)1000. In such
cases we are generally interested in one tail of the distribution only. This is the
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tail represented by the terms

pOqk, C(k, l)plqk-t, C(k, 2)p2qk-2, C(k, 3)p3qk-3, ...

The first term represents no rare events and k frequent events in a sample of k
events. The second term represents one rare event and k - 1 frequent events.
The third term represents two rare events and k - 2 frequent events, and so
forth. The expressions of the form C(k, i) are the binomial coefficients, repre­
sented by the combinatorial terms discussed in the previous section. Although
the desired tail of the curve could be computed by this expression, as long as
sufficient decimal accuracy is maintained, it is customary in such cases to
compute another distribution, the Poisson distribution, which closely approxi­
mates the desired results. As a rule of thumb, we may use the Poisson distribu­
tion to approximate the binomial distribution when the probability of the rare
event p is less than 0.1 and the product kp (sample size x probability) is less
than 5.

The Poisson distribution is also a discrete frequency distribution of the
number of times a rare event occurs. But, in contrast to the binomial distribu­
tion, the Poisson distribution applies to cases where the number of times that
an event does not occur is infinitely large. For purposes of our treatment here,
a Poisson variable will be studied in samples taken over space or time. An
example of the first would be the number of moss plants in a sampling quadrat
on a hillside or the number of parasites on an individual host; an example of a
temporal sample is the number of mutations occurring in a genetic strain in the
time interval of one month or the reported cases of influenza in one town
during one week. The Poisson variable Y will be the number of events per
sample. It can assume discrete values from 0 on up. To be distributed in Poisson
fashion the variable must have two properties: (I) Its mean must be small relative
to the maximum possible number of events per sampling unit. Thus the event
should be "rare." But this means that our sampling unit of space or time must
be large enough to accommodate a potentially substantial number of events.
For example, a quadrat in which moss plants are counted must be large enough
that a substantial number of moss plants could occur there physically if the
biological conditions were such as to favor the development of numerous moss
plants in the quadrat. A quadrat consisting of a I-cm square would be far too
small for mosses to be distributed in Poisson fashion. Similarly, a time span
of I minute would be unrealistic for reporting new influenza cases in a town,
but within I week a great many such cases could occur. (2) An occurrence of the
event must be independent of prior occurrences within the sampling unit. Thus,
the presence of one moss plant in a quadrat must not enhance or diminish the
probability that other moss plants are developing in the quadrat. Similarly, the
fact that one influenza case has been reported must not affect the probability
of reporting subsequent influenza cases. Events that meet these conditions (rare
and random events) should be distributed in Poisson fashion.

The purpose of fitting a Poisson distribution to numbers of rare events in
nature is to test whether the events occur independently with respect to each
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where the terms are the relative expected frequencies corresponding to the fol­
lowing counts of the rare event Y:

other. If they do, they will follow the Poisson distribution. If the occurrence of
one event enhances the probability of a second such event, we obtain a clumped,
or contagious, distribution. If the occurrence of one event impedes that of a
second such event in the sampling unit, we obtain a repulsed, or spatially or
temporally uniform, distribution. The Poisson can be used as a test for random­
ness or independence of distribution not only spatially but also in time, as some
examples below will show.

The Poisson distribution is named after the French mathematician Poisson,
who described it in 1837. It is an infinite series whose terms add to 1 (as must
be true for any probability distribution). The series can be represented as

fi fi2 fi3 fi4 fir

ell' 1!e IL ' 2'ell ' 3!ell ' 4!ell"'" r!ell "" (4.2)

Thus, the first of these terms represents the relative expected frequency of
samples containing no rare event; the second term, one rare event; the third
term, two rare events; and so on. The denominator of each term contains ell,
where e is the base of the natural, or Napierian, logarithms, a constant whose
value, accurate to 5 decimal places, is 2.718,28. We recognize fi as the parametric
mean of the distribution; it is a constant for any given problem. The exclamation
mark after the coefficient in the denominator means "factorial," as explained
in the previous section.

One way to learn more about the Poisson distribution is to apply it to an
actual case. At the top of Box 4.1 is a well-known result from the early statistical
literature based on the distribution of yeast cells in 400 squares of a hemacyto­
meter, a counting chamber such as is used in making counts of blood cells and
other microscopic objects suspended in liquid. Column (I) lists the number of
yeast cells observed in each hemacytometer square. and column (2) gives the
observed frequency-the number of squares containing a given number of yeast
cells. We note that 75 squares contained no yeast cells, but that most squares
held either 1 or 2 cells. Only 17 squares contained 5 or more yeast cells.

Why would we expect this frequency distribution to be distributed in
Poisson fashion'! We have here a relatively rare event, the frequency of yeast
cells per hemacytometer square, the mean of which has been calculated and
found to be 1.8. That is, on the average there are 1.8 cells per square. Relative
to the amount of space provided in each square and the number of cells that
could have come to rest in anyone square, the actual number found is low
indeed. We might also expect that the occurrence of individual yeast cells in a
square is independent of the occurrence of other yeast cells. This is a commonly
encountered class of application of the Poisson distribution.

The mean of the rare event is the only quantity that we need to know to
calculate the relative expected frequencies of a Poisson distribution. Since we do

0, I, 2, 3, 4, ... , r, ...

•
BOX 4.1
Calculation of expected Poisson frequencies.

Yeast cells in 400 squares of a hemacytometer: f = l.8 cells per square; n =400
lIquares sampled.

(1) (2) (3) (4)

Number of Observed Absolute Deviation from

cells per square frequencies expectedfrequendes expectarjon
y f f-f

0 75 66.1 +
1 103 119.0
2 121 107.1 +
3 54 64.3
4 30 28.9 +
5 13} 104

1 }6

~ 11

3.1
7 0.8 14.5
8 0.2
9 0.0

400 399.9

Source: "Student" (1907).

Computational steps

Flow of computation based on Expressipn (4.3) multiplied by n, since we wish
to obtain absolute expected frequencies,f.

1. Find eY in a table of exponentials or compute it using an exponential key:

e'f "" e1.8 "" 6.0496
• n 400 612

2. 10 "" ""l = 6.0496 "" 6.

3./1 =loY =66.12(1.8) = 119.02

4./2"" 11 i "" 119.02(;8) = 107.11

5./3 =12 i = 107.11 (\8) = 64.27

• A Y (1.8) 8 926. 14 "" h 4 "" 64.27 "4 2 .

A A Y (1.8) 0417. Is"" 14"5 = 28.92 "5 1 .

• • if (1.8)8.16 =Is (; = 10.41 (; 3.12
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•

At step 3 enter Yas a constant multiplier. Then multiply it by nleY (quantity 2).
At each subsequent step multiply the result of the previous step by Yand then
divide by the appropriate integer.

not know the parametric mean of the yeast cells in this problem, we employ an
estimate (the sample mean) and calculate expected frequencies of a Poisson
distribution with J1 equal to the mean of the observed frequency distribution
of Box 4.1. It is convenient for the purpose of computation to rewrite Expres­
sion (4.2) as a recursion formula as follows:

This value will be near 1 in distributions that are essentially Poisson distribu­
tions, will be > I in clumped samples, and will be < I in cases of repulsion. In
the yeast cell example, CD = 1.092.

The shapes of five Poisson distributions of different means arc shown in
Figure 4.3 as frequency polygons (a frequency polygon is formed by the line
connecting successive midpoints in a bar diagram). We notice that for the low
valuc of f1 = 0.1 the frequency polygon is extrcmely L-shaped, hut with an
increase in the value of J1 the distributions become humped and eventually
nearly symmetrical.

We conclude our study of the Poisson distribution with a consideration of
two examples. The first example (Table 4.5) shows the distribution of a number

ence of the first one, but is higher than the probability for the first cell. This
would result in a clumping of the items in the classes at the tails of the distri­
bution so that there would be some squares with larger numbers of cells than ex­
pected, others with fewer numbers.

The biological interpretation of the dispersion pattern varies with the
problem. The yeast cells seem to be randomly distributed in the counting
chamber, indicating thorough mixing of the suspension. Red blood cells, on the
other hand, will often stick together because of an electrical charge unless the
proper suspension fluid is used. This so-called rouleaux effect would be indi­
cated by clumping of the observed frequencies.

Note that in Box 4.1, as in the subsequent tables giving examples of the
application of the Poisson distribution, we group the low frequencies at one
tail of the curve, uniting them by means of a bracket. This tends to simplify
the patterns of distribution somewhat. However, the main reason for this group­
ing is related to the G test for goodness of fit (of observed to expected frequen­
cies), which is discussed in Section 13.2. For purposes of this test, no expected
frequency j should be less than 5.

Before we turn to other examples, we need to learn a few more facts about
the Poisson distribution. You probably noticed that in computing expected
frequencies, we needed to know only one parameter-the mean of the distri­
bution. By comparison, in the binomial distribution we needed two parameters,
p and k. Thus, the mean completely defines the shape of a given Poisson distri­
bution. From this it follows that the variance is some function of the mean. In
a Poisson distribution, we have a very simple relationship between the two:
J1 = (f2, the variance being equal to the mean. The variance of the number of
yeast cells per square based on the observed frequencies in Box 4.1 equals 1.965,
not much larger than the mean of 1.8, indicating again that the yeast cells arc
distributed in Poisson fashion, hence randomly. This relationship between vari­
ance and mean suggests a rapid test of whether an observed frequency distribu­
tion is distributed in Poisson fashion even without fitting expected frequencies
to the data. We simply compute a cocfficicnt or dispersioll

(4.3)wherefo=e- Y

0.05

=

for i = 1,2, ... ,A A (Y).1:=;;-1 i

BOX 4.1
Continued

9. /7 =/6 ~ =3.12(\8)
10. /. "" /7f = O.80C~8)

Total

J9 and beyond

Note first of all that the parametric mean f1 has been replaced by the sample
mean Y. Each term developed by this recursion formula is mathematically
exactly the same as its corresponding term in Expression (4.2). It is important
to make no computational error, since in such a chain multiplication the cor­
rectness of each term depends on the accuracy of the term before it. Expression
(4.3) yields relative expected frequencies. If, as is more usual, absolute expected
frequencies are desired, simply set the first term fo to Iller, where n is the number
of samples, and then proceed with the computational steps as before. The actual
computation is illustrated in Box 4.\, and the expected frequencies so obtained
are listed in column (3) of the frequency distribution.

What have we learned from this computation? When we compare the
observed with the expected frequencies, we notice quite a good fit of our ob­
served frequencies to a Poisson distribution of mean 1.8, although we have not
as yet learned a statistical test for goodness of fit (this will be covered in Chap­
ter 13). No clear pattern of deviations from expectation is shown. We cannot
test a hypothesis about the mean, because the mean of the expected distribu­
tion was taken from the sample mean of the observed variates. As in the bino­
mial distribution, clumping or aggregation would indicate that the probability
that a second yeast cell will be found in a square is not independent of the pres-
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FIGURE 4.3
Frequency polygons of the Poisson distribution for various values of the mean.

(4)
Deviation

from
expectatjon

f-f

70.4
32.7

7.6}
1.2 8.9
0.1

112.0

(3)
Poisson

expected
frequepcies

f

61
50

H'
112

(2)
Observed

frequencies

f

o
1
2
3
4

Total

(1)
Number of

weevils
emerging
per bean

y

TABLE 4.6
Azuki bean weevils (Ca//osobruchus chinensis) emerging from
112 Azuki beans (Phaseo/us ramatus).

16 18

Jj = 10

10 12 14

Number of rare events per sample

1.0
»
<.l
0:
(l) 0.8::l
0'

~
"0 0.6
~
<.l
(l)

"">< 0.4Q)

(l)

>
'';:;

0.2oj
a:;
0::

y= 0.4643 S2 = 0.269 CD = 0.579

of accidents per woman from an accident record of 647 women working in a
munitions factory during a five-week period. The sampling unit is one woman
during this period. The rare event is the number of accidents that happened
to a woman in this period. The coefficient of dispersion is 1.488, and this is
clearly reflected in the observed frequencies, which are greater than expected in
the tails and less than expected in the center. This relationship is easily seen in
the deviations in the last column (observed minus expected frequencies) and
shows a characteristic clumped pattern. The model assumes, of course, that the
accidents are not fatal or very serious and thus do not remove the individual
from further exposure. The noticeable clumping in these data probably arises

TABLE 4.5
Accidents in 5 weeks to 647 women working on high-explosive
shells.

(3) (4)
(/) (2) Poisson Deviation

NlImher or Ohserl'ed expected from
accidents frequencie.\ freqllepcies expectatjon

per woman f f I-I

0 447 406.3 +
1 132 189.0
2 42 44.0
3

2t} 6.8} !} +4 ~. 26
0.8 7.7

5+ 0.1

Total 647 647.0

Source: Utida (1943).

either because some women are accident-prone or because some women have
more dangerous jobs than others. Using only information on the distributions
of accidents, one cannot distinguish between the two alternatives, which sug­
gest very different changes that should be made to reduce the numbers of
accidents.

The second example (Table 4.6) is extracted from an experimental study
of the effects of different densities of the Azuki bean weevil. Larvae of these
weevils enter the beans, feed and pupate inside them, and then emerge through
an emergence hole. Thus the number of holes per bean is a good measure of the
number of adults that have emerged. The rare event in this case is the presence
of the weevil in the bean. We note that the distribution is strongly repulsed.
There are many more beans containing one weevil than the Poisson distribution
would predict. A statistical finding of this sort leads us to investigate the biology
ofthe phenomenon. In this case it was found that the adult female weevils tended
to deposit their eggs evenly rather than randomly over the available beans. This
prevented the placing of too many eggs on anyone bean and precluded heavy
competition among the developing larvae on anyone bean. A contributing
factor was competition among remaining larvae feeding on the same bean, in
which generally all but one were killed or driven out. Thus, it is easily under­
stood how the above biological phenomena would give rise to a repulsed
distribution.

Exercises

Sourcl'.· (ireenwood and Yule 11920).

f = 0.4652 S2 = 0.692 CD = 1.488 4.1 The two columns below give fertility of eggs of the CP strain of Drosophila
melanogasler raised in 100 vials of 10 eggs each (data from R. R. Sokal). Find
the expected frequencies on the assumption of independence of mortality for
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Number of eggs
hatched N umber of vials

y f

0 1 4.8
1 3
2 8 4.9
3 10
4 6
5 15
6 14
7 12
8 13
9 9

10 9

4.10
4.2

4.3

4.4

4.~

4.6

each egg in a vial. Use the observed mean. Calculate the expected variance and
compare it with the observed variance. Interpret results, knowing that the eggs
of each vial are siblings and that the different vials contain descendants from
different parent pairs. ANS. a 2 = 2.417, S2 = 6.636. There is evidence that mor­
tality rates are different for different vials.

In human beings the sex ratio of newborn infants is about 100(.(~: 105.3',3'. Were
we to take 10,000 random samples of 6 newborn infants from the total population
of such infants for one year, what would be the expected frequency of groups
of 6 males, 5 males, 4 males, and so on?
The Army Medical Corps is concerned over the intestinal disease X. From
previous experience it knows that soldiers suffering from the disease invariably
harbor the pathogenic organism in their feces and that to all practical purposes
every stool specimen from a diseased person contains the organism. However,
the organisms are never abundant, and thus only 20% of all slides prepared by
the standard procedure will contain some. (We assume that if an organism is
present on a slide it will be seen.) How many slides should laboratory technicians
be directed to prepare and examine per stool specimen, so that in case a speci­
men is positive, it will be erroneously diagnosed negative in fewer than I % of
the cases (on the average)? On the basis of your answer, would you recommend
that the Corps attempt to improve its diagnostic methods? ANS. 21 slides.
Calculate Poisson expected frequencies for the frequency distribution given in
Table 2.2 (number of plants of the sedge Carex fiacca found in 500 quadrats).
A cross is made in a genetic experiment in Drosophila in which it is expected
that i of the progeny will have white eyes and! will have the trait called "singed
bristles." Assume that the two gene loCI segregate independently. (a) What
proportion of the progeny should exhibit both traits simultaneously? (b) If four
flies are sampled at random, what is the probability that they will all be
white-eyed? (c) What is the probability that none of the four flies will have either
white eyes or "singed bristles?" (d) If two flies are sampled, what is the probability
that at least one of the flies will have either white eyes or "singed bristles" or
both traits? ANS. (a) A; (b) (~)4; (c) [(I - !)(1 -lW; (d) I - L(1 - ~)( I - ny
Those readers who have had a semester or two of calculus may wish to try to
prove that Expression (4.1) tends to Expression (4.2) as k becomes indefinitely

4.7

large (and p becomes infinitesimal, so that J.I = kp remains constant). HINT:

(1-~)"->e-x as n->oo

If the frequency of the gene A is p and the frequency of the gene a is q, what
are the expected frequencies of the zygotes AA, Aa, and aa (assuming a diploid
zygote represents a random sample of size 2)? What would the expected frequency
be for an autotetraploid (for a locus close to the centromere a zygote can be
thought of as a random sample of size 4)? ANS. P{AA} = p2, P{Aa} = 2pq,
P{aa} = q2, for a diploid; and P{AAAA} = p4, P{AAAa} = 4p3q, P{AAaa} =
6p2q2, P{Aaaa} = 4pq3, P{aaaa} = q4, for a tetraploid.
Summarize and compare the assumptions and parameters on which the binomial
and Poisson distributions are based.
A population consists of three types of individuals, AI' A 2 , and A 3 , with relative
frequencies of0.5, 0.2, and 0.3, respectively. (a) What is the probability ofobtaining
only individuals of type AI in samples of size 1,2,3, ... , n? (b) What would be
the probabilities of obtaining only individuals that were not of type Al or A 2

in a sample of size n? (c) What is the probability of obtaining a sample containing
at least one representation of each type in samples of size 1, 2, 3, 4, 5, ... , n?
ANS. (a)}, LA. ... , 1/2". (b) (0.3)". (c) 0, 0, 0.18, 0.36, 0.507, ,

n - 2 " i-I n' .
for n: L L :-:---'-.-. (O.5)'(0.2Y(O.3)"-'-J

i=l j=II!J!(n-I-J)!

If the average number of weed seeds found in a ~-ounce sample of grass seed is
1.1429, what would you expect the frequency distribution of weed seeds to be
in ninety-eight A-ounce samples? (Assume there is random distribution of the
weed seeds.)
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CHAPTER 5 ing mean and standard deviation in approximately normal distributions is given
in Section 5.5, as are some of the reasons for departure from normality in
observed frequency distributions.

5.1 Frequency distributions of continuous variables

For continuous variables, the theoretical probability distribution, or probability
density junction, can be represented by a continuous curve, as shown in Figure
5.1. The ordinate of the curve gives the density for a given value of the variable
shown along the abscissa. By density we mean the relative concentration of
variates along the Y axis (as indicated in Figure 2.1). In order to compare the
theoretical with the observed frequency distribution, it is necessary to divide
the two into corresponding classes, as shown by the vertical lines in Figure 5.1.
Probability density functions are defined so that the expected frequency of ob­
servations between two class limits (vertical lines) is given by the area between
these limits under the curve. The total area under the curve is therefore equal
to the sum of the expected frequencies (1.0 or n, depending on whether relative
or absolute expected frequencies have been calculated).

When you form a frequency distribution of observations of a continuous
variable, your choice of class limits is arbitrary, because all values of a variable
are theoretically possible. In a continuous distribution, one cannot evaluate the
probability that the variable will be exactly equal to a given value such as 3
or 3.5. One can only estimate the frequency of observations falling between two
limits. This is so because the area of the curve corresponding to any point along
the curve is an infinitesimal. Thus, to calculate expected frequencies for a con­
tinuous distribution, we have to calculate the area under the curve between the
class limits. In Sections 5.3 and 5.4, we shall see how this is done for the normal
frequency distribution.

Continuous frequency distributions may start and terminate at finite points
along the Y axis, as shown in Figure 5.1, or one or both ends of the curve may
extend indefinitely, as will be seen later in Figures 5.3 and 6.11. The idea of an
area under a curve when one or both ends go to infinity may trouble those of
you not acquainted with calculus. Fortunately, however, this is not a great con­
ceptual stumbling block, since in all the cases that we shall encounter, the tail

The Normal

Probability Distribution

The theoretical frequency distributions in Chapter 4 were discrete. Their vari­
ables assumed values that changed in integral steps (that is, they were meristic
variables). Thus, the number of infected insects per sample could be 0 or 1 or 2
but never an intermediate value between these. Similarly, the number of yeast
cells per hemacytometer square is a meristic variable and requires a discrete
probability function to describe it. However, most variables encountered in
biology either are continuous (such as the aphid femur lengths or the infant
birth weights used as examples in Chapters 2 and 3) or can be treated as con­
tinuous variables for most practical purposes, even though they are inherently
meristic (such as the neutrophil counts encountered in the same chapters).
Chapter 5 will deal more extensively with the distributions of continuous
variables.

Section 5.1 introduces frequency distributions of continuous variables. In
Section 5.2 we show one way of deriving the most common such distribution,
the normal probability distribution. Then we examine its properties in Section
5.3. A few applications of the normal distribution are illustrated in Section 5.4.
A graphic technique for pointing out departures from normality and for estimat-

f
1·)(;URI,5.1

A prohahililY Ji'lrihuljplJ "r a colJlinum"
variahk
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FIGURE 5.2
Histogram based on relative expected frequencies resulting from expansion of binomial (0.5 + 0.5)10.
The Y axis measures the number of pigmentation factors F.

of the curve will approach the Y axis rapidly enough that the portion of the
area beyond a certain point will for all practical purposes be zero and the fre­
quencies it represents will be infinitesimal.

We may fit continuous frequency distributions to some sets of meristic data
(for example, the number of teeth in an organism). In such cases, we have reason
to believe that underlying biological variables that cause differences in numbers
of the structure are really continuous, even though expressed as a discrete
variable.

We shall now proceed to discuss the most important probability density
function in statistics, the normal frequency distribution.

0.4

0.3
.r"., 0.2

0.1

0
0 I 2

Ten factors

;) 4 5 fi 7 8 !l 10

Y

Half the animals would have intensity I, the other half 0. With k = 2 factors
present in the population (the factors are assumed to occur independently of
each other), the distribution of pigmentation intensities would be represented by

5.2 Derivation of the normal distribution

There are several ways of deriving the normal frequency distribution from ele­
mentary assumptions. Most of these require more mathematics than we expect
of our readers. We shall therefore use a largely intuitive approach, which we
have found of heuristic value. Some inherently meristic variables, such as counts
of blood cells, range into the thousands. Such variables can, for practical pur­
poses, be treated as though they were continuous.

Let us consider a binomial distribution of the familiar form (p + q)k in which
k becomes indefinitely large. What type of biological situation could give rise
to such a binomial distribution? An example might be one in which many
factors cooperate additively in producing a biological result. The following
hypothetical case is possibly not too far removed from reality. The intensity of
skin pigmentation in an animal will be due to the summation of many factors,
some genetic, others environmental. As a simplifying assumption, let us state
that every factor can occur in two states only: present or absent. When the factor
is present, it contributes one unit of pigmentation to skin color, but it contributes
nothing to pigmentation when it is absent. Each factor, regardless of its nature
or origin, has the identical effect, and the effects are additive: if three out of five
possible factors are present in an individual, the pigmentation intensity will be
three units, or the sum of three contributions of one unit each. One final assump­
tion: Each factor has an equal probability of being present or absent in a given
individual. Thus, p = PcP] = 0.5, the probability that the factor is present; while
q = P[f] = 0.5, the probability that the factor is absent.

With only one factor (k = I), expansion of the binomial (p + q)1 would yield
two pigmentation classes among the animals, as follows:

the expansion of the binomial (p + q)2:

One-fourth of the individuals would have pigmentation intensity 2; one-half,
intensity 1; and the remaining fourth, intensity O.

The number of classes in the binomial increases with the number of factors.
The frequency distributions are symmetrical, and the expected frequencies at the
tails become progressively less as k increases. The binomial distribution for
k = 10 is graphed as a histogram in Figure 5.2 (rather than as a bar diagram,
as it should be drawn). We note that the graph approaches the familiar bell­
shaped outline of the normal frequency distribution (seen in Figures 5.3 and 5.4).
Were we to expand the expression for k = 20, our histogram would be so close
to a normal frequency distribution that we could not show the difference be­
tween the two on a graph the size of this page.

At the beginning of this procedure, we made a number of severe limiting
assumptions for the sake of simplicity. What happens when these are removed?
First, when p -# q, the distribution also approaches normality as k approaches
infinity. This is intuitively difficult to see, because when p -# q, the histogram
is at first asymmetrical. However, it can be shown that when k, p, and q are
such that kpq ~ 3, the normal distribution will be closely approximated. Second,
in a more realistic situation, factors would be permitted to occur in more than
two states-one state making a large contribution, a second state a smaller
contribution, and so forth. However, it can also be shown that the multinomial
(p + q + r + ... + Z)k approaches the normal frequency distribution as k ap­
proaches infinity. Third, different factors may be present in different frequencies
and may have different quantitative effects. As long as these are additive and
independent, normality is still approached as k approaches infinity.

Lifting these restrictions makes the assumptions leading to a normal dis­
tribution compatible with innumerable biological situations. It is therefore
not surprising that so many biological variables are approximately normally
distributed.
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Let us summarize the conditions that tend to produce normal frequency
distributions: (1) that there be many factors; (2) that these factors be independent
in occurrence; (3) that the factors be independent in effect-that is, that their
effects be additive; and (4) that they make equal contributions to the variance.
The fourth condition we are not yet in a position to discuss; we mention it here
only for completeness. It will be discussed in Chapter 7.

5.3 Properties of the normal distribution

Formally, the normal probability density function can be represented by the
expression

I _!-(Y-Il)2
Z=--e 2 (f (5.1)

uj2;

Here Z indicates the height of the ordinate of the curve, which represents the
density of the items. It is the dependent variable in the expression, being a func­
tion of the variable Y. There are two constants in the equation: n, well known
to be approximately 3.141,59, making 1/ j2; approximately 0.398,94, and e,
the base of the natural logarithms, whose value approximates 2.718,28.

There are two parameters in a normal probability density function. These
are the parametric mean fl and the parametric standard deviation u, which
determine the location and shape of the distribution. Thus, there is not just one
normal distribution, as might appear to the uninitiated who keep encountering
the same bell-shaped image in textbooks. Rather, there are an infinity of such
curves, since these parameters can assume an infinity of values. This is illustrated
by the three normal curves in Figure 5.3, representing the same total frequencies.

Curves A and B differ in their locations and hence represent populations with
different means. Curves Band C represent populations that have identical means
but different standard deviations. Since the standard deviation of curve C is only
half that of curve B, it presents a much narrower appearance.

In theory, a normal frequency distribution extends from negative infinity
to positive infinity along the axis of the variable (labeled Y, although it is
frequently the abscissa). This means that a normally distributed variable can
assume any value, however large or small, although values farther from the
mean than plus or minus three standard deviations are quite rare, their relative
expected frequencies being very small. This can be seen from Expression (5.1).
When Y is very large or very small, the term (Y - fl)2/2u2 will necessarily
become very large. Hence e raised to the negative power of that term will be very
small, and Z will therefore be very small.

The curve is symmetrical around the mean. Therefore, the mean, median,
and mode of the normal distribution are all at the same point. The following
percentages of items in a normal frequency distribution lie within the indicated
limits:

fl ± u contains 68.27% of the items
fl ± 2u contains 95.45% of the items
/l ± 3u contains 99.73% of the items

Conversely,

50% of the items fall in the range /l ± 0.674u
95% of the items fall in the range fl ± 1.960u
99% of the items fall in the range /l ± 2.576u

These relations are shown in Figure 5.4.
How have these percentages been calculated? The direct calculation of any

portion of the area under the normal curve requires an integration of the func­
tion shown as Expression (5.1). Fortunately, for those of you who do not know
calculus (and even for those of you who do) the integration has already been
carried out and is presented in an alternative form of the normal distribution:
the normal distrihution function (the theoretical cumulative distribution function
of the normal probability density function), also shown in Figure 5.4. It gives the
total frequency from negative infinity up to any point along the abscissa. We can
therefore look up directly the probabili'ty that an observation will be less than
a specified value of Y. For example, Figure 5.4 shows that the total frequency
up to the mean is 50.00% and the frequency up to a point one standard deviation
below the mean is 15.87%. These frequencies are found, graphically, by raising
a vertical line from a point, such as- a, until it intersects the cumulative distri­
bution curve, and then reading the frequency (15.87%) ofT the ordinate. The
probability that an observation will fall between two arbitrary points can be
found by subtracting the probability that an observation will fall below the
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to go an infinite distance from the mean to reach an area of 0.5. The use of the
table of areas of the normal curve will be illustrated in the next section.

A sampling experiment will give you a "feel" for the distribution of items
sampled from a normal distribution.

Experiment 5.1. You are asked to sample from two populations. The first one is an
approximately normal frequency distribution of 100 wing lengths of houseflies. The
second population deviates strongly from normality. It is a frequency distribution of the
total annual milk yield of 100 Jersey cows. Both populations are shown in Table 5.1.
You are asked to sample from them repeatedly in order to simulate sampling from an
infinite population. Obtain samples of 35 items from each of the two populations. This
can be done by obtaining two sets of 35 two-digit random numbers from the table of
random numbers (Table I), with which you became familiar in Experiment 4.1. Write
down the random numbers in blocks of five, and copy next to them the value of Y (for
either wing length or milk yield) corresponding to the random number. An example of
such a block of five numbers and the computations required for it are shown in the

TABLE 5.1
Populations of wing lengths and milk yields. Column J. Rank number. Column 2. Lengths (in
mm x 1O- 1)ofl00wingsofhouseftiesarrayedin orderofmagnitude;/l = 45.5.a2 = 15.21,a = 3.90;
distribution approximately normal. Column 3. Total annual milk yield (in hundreds of pounds) of
100 two-year-old registered Jersey cows arrayed in order of magnitude; /l = 66.61, a2 = 124.4779,
a = 11.1597; distribution departs strongly from normality.

FIGURE 5.4
Areas under the normal probability density function and the cumulative normal distribution
function.

lower point from the probability that an observation will fall below the upper
point. For example, we can see from Figure 5.4 that the probability that an
observation will fall between the mean and a point one standard deviation below
the mean is 0.5000 - 0.1587 = 0.3413.

The normal distribution function is tabulated in Table II in Appendix A2,
"Areas of the normal curve," where, for convenience in later calculations, 0.5
has been subtracted from all of the entries. This table therefore lists the propor­
tion of the area between the mean and any point a given number of standard
deviations above it. Thus, for example, the area between the mean and the point
0.50 standard deviations above the mean is 0.1915 of the total area of the curve.
Similarly, the area between the mean and the point 2.64 standard deviations
above the mean is 0.4959 of the curve. A point 4.0 standard deviations from
the mean includes 0.499,968 of the area between it and the mean. However, since
the normal distribution extends from negative to positive infinity, one needs

(1) (2) (3) (/) (2) (3) (I) (2) (3) (/) (2) (3) (I) (2) (3)

01 36 51 21 42 58 41 45 61 61 47 67 81 49 76
02 37 51 22 42 58 42 45 61 62 47 67 82 49 76
03 38 51 23 42 58 43 45 61 63 47 68 83 49 79
04 38 53 24 43 58 44 45 61 64 47 68 84 49 80
05 39 53 25 43 58 45 45 61 65 47 69 85 50 80
06 39 53 26 43 58 46 45 62 66 47 69 86 50 81
07 40 54 27 43 58 47 45 62 67 47 69 87 50 82
08 40 55 28 43 58 48 45 62 68 47 69 88 50 82
09 40 55 29 43 58 49 45 62 69 47 69 89 50 82
10 40 56 30 43 58 50 45 63 70 48 69 90 50 82

11 41 56 31 43 58 51 46 63 71 48 70 91 5\ 83
12 41 56 32 44 59 52 46 63 72 48 72 92 51 85
13 41 57 33 44 59 53 46 64 73 48 73 93 51 87
14 41 57 34 44 59 54 46 65 74 48 73 94 51 88
15 41 57 35 44 60 55 46 65 75 48 74 95 52 88
16 41 57 36 44 60 56 46 65 76 48 74 96 52 89
17 42 57 37 44 60 57 46 65 77 48 74 97 53 93
18 42 57 38 44 60 58 46 65 78 49 74 98 53 94
19 42 57 39 44 60 59 46 67 79 49 75 99 54 96
20 42 57 40 44 61 60 46 67 80 49 76 00 55 98

Source· Column 2-Data adapted from Sokal and Hunter (l955). Column 3 -Data from Canadian government
records.
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following listing, using the housefly wing lengths as an example:

Those with ready access to a computer may prefer to program this exercise and take
many more samples. These samples and the computations carried out for each sample
will be used in subsequent chapters. Therefore, preserve your data carefully!

j

Milk yields

Variates
jal/lng
between

these
limits

-00

-30" ---

-210"
-20" ----

-110" ----

-0" 51-55----

-1a 56-61---

II = 66.61 62-66----

10" 67-72

0" 73-77

lia 78-83--_ ..

20" 84- 88
----

2~a 89-94

30" 9598
---.-

+00

Wing lengths
-----

Variates
falling
between

these
limits f

-00

-30"

-210"
-20" ~7

-110" 38,39

-0" 40,41

-10" 42,43

II = 45.5 44,45

10" 46,47

0" 48,49

110" 50,51

20" 52, 53

2to" 54, 55

30"
~--

+00

TABLE 5.2
Table for recording frequency distributions of standard deviates (I; - p)/a for samples of
Experiment 5.1.

-1.1538

Wing
length

y

41
46
54
44
42

I Y = 227

I y 2
= 10.413

Y = 45.4

16
59
99
36
21

Random
number

In this experiment, consider the 35 variates for each variable as a single
sample. rather than breaking them down into groups of five. Since the true mean
and standard deviation (11 and a) of the two distributions are known, you can
calculate the expression (Y j - Il)/a for each variate Yj • Thus, for the first housefly
wing length sampled above, you compute

41 - 45.5

3.90

This means that the first wing length is 1.1538 standard deviations below the
true mean of the population. The deviation from the mean measured in standard
deviation units is called a standardized deviate or ,\tandard deviate. The argu­
ments of Table II, expressing distance from the mean in units of a, are called
standard normal deviates. Group all 35 variates in a frequency distribution; then
do the same for milk yields. Since you know the parametric mean and standard
deviation, you need not compute each deviate separately, but can simply write
down class limits in terms of the actual variable as well as in standard deviation
form. The class limits for such a frequency distribution are shown in Table
5.2. Combine the results of your sampling with those of your classmates and
study the percentage of the items in the distribution one, two, and three standard
deviations to each side of the mean. Note the marked differences in distribution
bctween the housefly wing lengths and thc milk yields.

5.4 Applications of the norma,l distribution

The normal frequency distribution is the most widely used distribution in sta­
tistics, and time and again we shall have recourse to it in a variety of situa­
tions. For the moment. we may suhdivide its applications as follows.

1. We sometimes have to know whether a given sample is normally distributed
before we can apply a certain test to it. To test whether a given sample is
normally distributed. we have to calculate expected frequencies for a normal
curve of the same mean and standard deviation using the table of areas of
thc normal curve. In this book we shall employ only approximate graphic
methods for testing normality. These are featured in the next section.

2. Knowing whether a sample is normally distributed may confirm or reject
certain underlying hypotheses about the nature of the factors aflccting the
phenomenon studied. This is related to the conditions making for normality
in a frequency distribution, discussed in Section 5.2. Thus. if we lind a given
variable to be normally distributed, we have no reason for rejecting the hy­
pothesis that the causal factors affecting the variable arc additive and inde­
pendent and of equal variance. On the other hand. when we lind departure
from normality. this may indicate certain forces. such as selection. affecting
the variahle under study. For instance, bimodality may indicate a mixture
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of observations from two populations. Skewness of milk yield data may indi­
cate that these are records of selected cows and substandard milk cows have
not been included in the record.

3. If we assume a given distribution to be normal, we may make predictions
and tests of given hypotheses based upon this assumption. (An example of
such an application follows.)

You will recall the birth weights of male Chinese children, illustrated in
Box 3.2. The mean of this sample of 9465 birth weights is 109.90z, and its
standard deviation is 13.593 oz. If you sample at random from the birth records
of this population, what is your chance of obtaining a birth weight of 151 oz or
heavier? Such a birth weight is considerably above the mean of our sample, the
difference being 151 - 109.9 = 41.1 oz. However, we cannot consult the table
of areas of the normal curve with a difference in ounces. We must express it in
standardized units~that is, divide it by the standard deviation to convert it into
a standard deviate. When we divide the difference by the standard deviation,
we obtain 41.1/13.593 = 3.02. This means that a birth weight of 151 oz is 3.02
standard deviation units greater than the mean. Assuming that the birth weights
are normally distributed, we may consult the table of areas of the normal curve
(Table II), where we find a value of 0.4987 for 3.02 standard deviations. This
means that 49.87% of the area of the curve lies between the mean and a point
3.02 standard deviations from it. Conversely, 0.0013, or 0.13%, of the area lies
beyond 3.02 standard deviation units above the mean. Thus, assuming a normal
distribution of birth weights and a value of (J = 13.593, only 0.13 %, or 13 out
of 10,000, of the infants would have a birth weight of 151 oz or farther from
the mean. It is quite improbable that a single sampled item from that population
would deviate by so much from the mean, and if such a random sample of one
weight were obtained from the records of an unspecified population, we might
be justified in doubting whether the observation did in fact come from the
population known to us.

The above probability was calculated from one tail of the distribution. We
found the probability that an individual would be greater than the mean by
3.02 or more standard deviations. If we are not concerned whether the indi­
vidual is either heavier or lighter than the mean but wish to know only how
different the individual is from the population mean, an appropriate question
would be: Assuming that the individual belongs to the population, what is the
probability of observing a birth weight of an individual deviant by a certain
amount from the mean in either direction? That probability must be computed
by using both tails of the distribution. The previous probability can be simply
doubled, since the normal curve is symmetrical. Thus, 2 x 0.0013 = 0.0026.
This, too, is so small that we would conclude that a birth weight as deviant
as 151 oz is unlikely to have come from the population represented by our
sample of male Chinese children.

We can learn one more important point from this example. Our assumption
has been that the birth weights are normally distributed. Inspection of the

frequency distribution in Box 3.2, however, shows clearly that the distribution
is asymmetrical, tapering to the right. Though there are eight classes above
the mean class, there are only six classes below the mean class. In view of this
asymmetry, conclusions about one tail of the distribution would not neces­
sarily pertain to the second tail. We calculated that 0.13% of the items would
be found beyond 3.02 standard deviations above the mean, which corresponds
to 151 oz. In fact, our sample contains 20 items (14 + 5 + 1) beyond the 147.5-oz
class, the upper limit of which is 151.5 oz, almost the same as the single birth
weight. However, 20 items of the 9465 of the sample is approximately 0.21 %,
more than the 0.13% expected from the normal frequency distribution. Although
it would still be improbable to find a single birth weight as heavy as 151 oz in
the sample, conclusions based on the assumption of normality might be in error
if the exact probability were critical for a given test. Our statistical conclusions
are only as valid as our assumptions about the population from which the
samples are drawn.

5.5 Departures from normality: Graphic methods

In many cases an observed frequency distribution will depart obviously from
normality. We shall emphasize two types of departure from normality. One is
skewness, which is another name for asymmetry; skewness means that one tail
of the curve is drawn out more than the other. Tn such curves the mean and
the median will not coincide. Curves are said to be skewed to the right or left,
depending upon whether the right or left tail is drawn out.

The other type of departure from normality is kurtosis, or "peakedness"
of a curve. A leptokurtic curve has more items near the mean and at the tails,
with fewer items in the intermediate regions relative to a normal distribution
with the same mean and variance. A platykurtic curve has fewer items at the
mean and at the tails than the normal curve but has more items in intermediate
regions. A bimodal distribution is an extreme platykurtic distribution.

Graphic methods have been developed that examine the shape of an ob­
served distribution for departures from normality. These methods also permit
estimates of the mean and standard deviation of the distribution without
computation.

The graphic methods are based on a cumulative frequency distribution. In
Figure 5.4 we saw that a normal frequency distribution graphed in cumulative
fashion describes an S-shaped curve, called a sigmoid curve. In Figure 5.5 the
ordinate of the sigmoid curve is given as relative frequencies expressed as
percentages. The slope of the cumulative curve reflects changes in height of the
frequency distribution on which it is based. Thus the steep middle segment of
the cumulative normal curve corresponds to the relatively greater height of the
normal curve around its mean.

The ordinate in Figures 5.4 and 5.5 is in linear scale, as is the abscissa in
Figure 5.4. Another possible scale is the normal probability scale (often simply
called probability sealc), which can be generated by dropping perpendiculars
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FIGURE 5.6
Examples of some frequency distributions with their cumulative distributions plotted with the
ordinate in normal probability scale. (See Box 5.1 for explanation.)

probability paper. They are useful as guidelines· for examining the distributions
of data on probability paper.

Box 5.1 shows you how to use probability paper to examine a frequency
distribution for normality and to obtain graphic estimates of its mean and
standard deviation. The method works best for fairly large samples (n > 50).
The method does not permit the plotting of the last cumulative frequency, 100%,

from the cumulative normal curve, corresponding to given percentages on the
ordinate, to the abscissa (as shown in Figure 5.5). The scale represented by the
abscissa compensates for the nonlinearity of the cumulative normal curve. It
contracts the scale around the median and expands it at the low and high
cumulative percentages. This scale can be found on arithmetic or normal prob­
ability graph paper (or simply probability graph paper), which is generally avail­
able. Such paper usually has the long edge graduated in probability scale, while
the short edge is in linear scale. Note that there are no 0% or 100% points on
the ordinate. These points cannot be shown, since the normal frequency distri­
bution extends from negative to positive infinity and thus however long we
made our line we would never reach the limiting values of 0% and 100%.

If we graph a cumulative normal distribution with the ordinate in normal
probability scale, it will lie exactly on a straight line. Figure 5.6A shows such a
graph drawn on probability paper, while the other parts of Figure 5.6 show a
series of frequency distributions variously departing from normality. These are
graphed both as ordinary frequency distributions with density on a linear scale
(ordinate not shown) and as cumulative distributions as they would appear on

50.00

0.01 '---'----------'----
Platykurtic Leptokurtic
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99.99

BOX 5.1
Continued

The median is estimated by dropping a perpendicular from theintersection>of
the 50% point on the ordinate and the cumulative frequency curve to the
abscissa (see Figure 5.7). The estimate of the mean of 110.7oz is.quite close to
the computed mean .of 109.9 oz.

The standard deviation can be estimated by dropping similar perpendiculars
from the intersections of the 15.9% and the 84.1 % points with the cumulative
curve, respectively. These points enclose the portion of a normal curve repre­
sented by p ± (T. By measuring the difference between these perpendiculars and
dividing this by 2, we obtain an estimate of one standard deviation. In this
instance the estimate is s = 13.6, since the difference is 27.2 oz divided by 2. This
is a close approximation to the computed value of 13.59 oz.

•

Xl.l

FI<ilJRE 5.7
Graphic analysis of data from Box 5.1.
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(1) (2) (3) (4) (5)
Class Upper Cumulative Percent
mark class frequencies cumulative

y limit f F frequencies

59.5 63.5 2 2 0.02
67.5 71.5 6 8 0.08
75.5 79.5 39 47 0.50
83.5 87.5 385 432 4.6
91.5 95.5 888 1320 13.9
99.5 103.5 1729 3049 32.2

107.5 111.5 2240 5289 55.9
115.5 119.5 2007 7296 77.1
123.5 127.5 1233 8529 90.1
131.5 135.5 641 9170 96.9
139.5 143.5 201 9371 99.0
147.5 151.5 74 9445 99.79
155.5 159.5 14 9459 99.94
163.5 167.5 5 9464 99.99
171.5 175.5 1 9465 100.0

9465

Computational steps

1. Prepare a frequenc)' distribution as shown in columns (1), (2), and (3).

2. Form a cumulative frequency distribution as shown in column (4). It is obtained
by successive summation of the frequency values. In column (5) express the
cumulative frequencies as percentages of total sample size n, which is 9465 in
this example. These percentages are 100 times the values of column (4) divided
by 9465.

3. Graph the upper class limit of each class along the abscissa (in linear scale)
against percent cumulative frequency along the ordinate (in probability scale)
on normal probability paper (see Figure 5.7). A straight line is fitted to the points
by eye, preferably using a transparent plastic ruler, which permits all the points
to be seen as the line is drawn. In drawing the line, most weight should be
given to the points between cumulative frequencies of 25% to 75%. This is
because a difference of a single item may make appreciable changes in the
percentages at the tails. We notice that the upper frequencies deviate to the right
of the straight line. This is typical of data that are skewed to the right (see
Figure 5.6D).

4. Such a graph permits the rapid estimation of the mean and standard deviation
of a sample. The mean is approximated by a graphic estimation of the median.
The more normal the distribution is, the closer the mean will be to the median.

BOX 5.1
Graphktest for normaJityofafrequency distribution and estimate.of mean and
standard deviation. Use of arithmetic probability paper.

Birth weights of male Chinese in ounces, from Box 3.2.

•
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5.1 Using the information given in Box 3.2, what is the probability of obtaining an
individual with a negative birth weight? What is this probability if we assume
that birth weights are normally distributed? ANS. The empirical estimate is zero.
If a normal distribution can be assumed, it is the probability that a standard
normal deviate is less than (0 - 109.9)/13.593 = - 8.01\5. This value is heyond
the range of most tahles, and the probability can be considered zero for practical
purposes.

Exercises

In this expression n is the sample size and j is the class interval of the frequency
distribution. If this needs to be done without a computer program, a table of
ordinates of the normal curve is useful. In Figure 5.8A we show the frequency
distribution of birth weights of male Chinese from Box 5.1 with the ordinates
of the normal curve superimposed. There is an excess of observed frequencies
at the right tail due to the skewness of the distribution.

You will probably find it difficult to compare the heights of bars against
the arch of a curve. For this reason, John Tukey has suggested that the bars
of the histograms be suspended from the curve. Their departures from expecta­
tion can then be easily observed against the straight-line abscissa of the graph.
Such a hanging histogram is shown in Figure 5.8B for the birth weight data.
The departure from normality is now much clearer.

Because important departures are frequently noted in the tails of a curve,
it has been suggested that square roots of expected frequencies should be com­
pared with the square roots of observed frequencies. Such a "hanging rooto­
gram" is shown in Figure 5.8C for the Chinese birth weight data. Note the
accentuation of the departure from normality. Finally, one can also use an
analogous technique for comparing expected with observed histograms. Figure
5.80 shows the same data plotted in this manner. Square roots of frequencies
are again shown. The excess of observed over expected frequencies in the right
tail of the distribution is quite evident.

since that corresponds to an infinite distance from the mean. Ifyou are interested
in plotting all observations, you can plot, instead of cumulative frequencies F,
the quantity F - t expressed as a percentage of n.

Often it is desirable to compare observed frequency distributions with their
expectations without resorting to cumulative frequency distributions. One
method of doing so would be to superimpose a normal curve on the histogram
of an observed frequency distribution. Fitting a normal distribution as a curve
superimposed upon an observed frequency distribution in the form of a histo­
gram is usually done only when graphic facilities (plotters) are available. Ordi­
nates are computed by modifying Expression (5.1) to conform to a frequency
distribution:
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5.2

5.3

5.4

5.5

5.6

5.7

5.8

CHAPTER 5 / THE NORMAL PROBABILITY DISTRIBUTION

Carry out the operations listed in Exercise 5.1 on the transformed data generated
in Exercise 2.6.
Assume you know that the petal length of a population of plants of species X
is normally distributed with a mean of /l = 3.2 em and a standard deviation of
(j = 1.8. What proportion of the population would be expected to have a petal
length (a) greater than 4.5 cm? (b) Greater than 1.78 cm? (c) Between 2.9 and
3.6 cm? ANS. (a) = 0.2353, (b) = 0.7845, and (c) = 0.154.
Perform a graphic analysis of the butterfat data given in Exercise 3.3, using prob­
ability paper. In addition, plot the data on probability paper with the abscissa
in logarithmic units. Compare the results of the two analyses.
Assume that traits A and B are independent and normally distributed with param­
eters /lA = 28.6, (jA = 4.8, /l8 = 16.2, and a8 = 4.1. You sample two individuals
at random (a) What is the probability of obtaining samples in which both
individuals measure less than 20 for the two traits? (b) What is the probability
that at least one of the individuals is greater than 30 for trait B? ANS.
(a) P{A < 20}P{B < 20) = (0.3654)(0.082,38) = 0.030; (b) 1 - (P{A < 30}) x
(P{B < 30}) = 1 - (0.6147)(0.9960) = 0.3856.
Perform the following operations on the data of Exercise 2.4. (a) If you have
not already done so, make a frequency distribution from the data and graph the
results in the form of a histogram. (b) Compute the expected frequencies for each
of the classes based on a normal distribution with /l = Y and (j = s. (c) Graph
the expected frequencies in the form of a histogram and compare them with the
observed frequencies. (d) Comment on the degree of agreement between observed
and expected frequencies.
Let us approximate the observed frequencies in Exercise 2.9 with a normal fre­
quency distribution. Compare the observed frequencies with those expected when
a normal distribution is assumed. Compare the two distributions by forming
and superimposing the observed and the expected histograms and by using a
hanging histogram. ANS. The expected frequencies for the age classes are: 17.9,
48.2, 72.0, 51.4, 17.5, 3.0. This is clear evidence for skewness in the observed
distribution.
Perform a graphic analysis on the following measurements. Arc they consistent
with what one would expect in sampling from a normal distribution?

CHAPTER 6

Estimation and

Hypothesis Testing

Compute the mean, the standard deviation, and the coefficient of variation. Make
a histogram of the data. Do the data seem consistent with a normal distribution
on the basis of a graphic analysis? If not, what type of departure is suggested?
ANS. Y = 27.4475, s = 8.9035, V = 32.438. There is a suggestion of bimodality.

The following data are total lengths (in em) of bass from a southern lake:

29.9 40.2 37.8 19.7 300 29.7 19.4 39.2 24.7 20.4
19.1 34.7 33.5 18.3 19.4 27.3 38.2 16.2 36.8 33.1
41.4 13.6 32.2 24.3 19.1 37.4 2.18 33.3 31.6 20.1
17.2 13.3 37.7 12.6 39.6 24.6 18.6 18.0 33.7 38.2

5.9

11.44
15.81
5.60

12.88
9.46

14.20

11.06
21.27

6.60

7.02
9.72

10.42

10.25
6.37
8.18

6.26
5.40

11.09

7.92
3.21
8.74

12.53 6.74
6.50 3.40

In this chapter we provide methods to answer two fundamental statistical ques­
tions that every biologist must ask repeatedly in the course of his or her w?r~:
(1) how reliable are the results I have obtained? and (2) how probable IS ~t
that the differences between observed results and those expected on the basts
of a hypothesis have been produced by chance alone? The first question, about
reliability, is answered through the setting of confidence limits to sample sta­
tistics. The second question leads into hypothesis testing. Both subjects belong
to the field of statistical inference. Thc subject matter in this chapter is funda­

mental to an understanding of any of the subsequent chapters.
In Section 6.1 we consider the form of the distribution of means and their

variance. In Section 6.2 we examine the distributions and variances of statistics
other than the mean. This brings us to the general subject of standard errors,
which are statistics measuring the reliability of an estimate. Confidence limits
provide bounds to our estimates of population parameters. We develop the idea
of a confidence limit in Section 6.3 and show its application to samples where
the true standard deviation is known. However, one usually deals with small,
more or less normally distributed samples with unknown standard deviations,
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in which case the t distribution must be used. We shall introduce the t dis­
tribution in Section 6.4. The application of t to the computation of confidence
limits for statistics of small samples with unknown population standard devia­
tions is shown in Section 6.5. Another important distribution, the chi-square
distribution, is explained in Section 6.6. Then it is applied to setting confidence
limits for the variance in Section 6.7. The theory of hypothesis testing is intro­
duced in Section 6.8 and is applied in Section 6.9 to a variety of cases exhibiting
the normal or t distributions. Finally, Section 6.10 illustrates hypothesis testing
for variances by means of the chi-square distribution.

6.1 Distribution and variance of means

We commence our study of the distribution and variance of means with a sam­
pling experiment.

Experiment 6.1 You were asked to retain from Experiment 5.1 the means of the seven
samples of 5 housefly wing lengths and the seven similar means of milk yields. We
can collect these means from every student in a class, possibly adding them to the sam­
pling results of previous classes, and construct a frequency distribution of these means.
For each variable we can also obtain the mean of the seven means, which is a mean
of a sample 35 items. Here again we shall make a frequency distribution of these means,
although it takes a considerable number of samplers to accumulate a sufficient number
of samples of 35 items for a meaningful frequency distribution.

In Table 6.1 we show a frequency distribution of 1400 means of samples
of 5 housefly wing lengths. Consider columns (I) and (3) for the time being.
Actually, these samples were obtained not by biostatistics classes but by a digi­
tal computer, enabling us to collect these values with littlc effort. Their mean
and standard deviation arc given at the foot of the table. These values are plot­
tcd on probability paper in Figure 6.1. Notc that the distribution appears quite
normal, as does that of the means based on 200 samples of 35 wing lengths
shown in the same figure. This illustrates an important theorem: The means of
samplesj"rom a normally distributed population are themsell'es normally distributed
re{jardless of sample size n. Thus, we note that the means of samples from the
normally distributed houscfly wing lengths are normally distributed whether
they are based on 5 or 35 individual readings.

Similarly obtained distributions of means of the heavily skewed milk yields,
as shown in Figure 6.2. appear to be close to normal distributions. However,
the means based on five milk yields do not agree with the normal nearly as
well as do the means of 35 items. This illustrates another theorem of funda­
mental importance in statistics: As sample size increases, the means o( samples
drawn/rom a population ofany distribution will approach the normal distrihution.
This theorem, when rigorously stated (about sampling from populations with
finite variances), is known as the central limit theorem. The importance of this
theorem is that if 11 is large enough. it permits us to use the normal distri-

TABLE 6.1
Frequency distribution of means of 1400 random samples of
5 housefly wing lengths. (Data from Table 5.1.) Class marks
chosen to give intervals of -!-uy to each side of the parametric

mean J1..

(1)
Class mark (2)

y Class mark (3)

(in mm x 10-') (in Uy units) f

39.832 -31 1

40.704 -2i 11

41.576 -2i 19

42.448 -Ii 64

43.320 -Ii 128

44.192
3 2474

= 45.5 ~ 45.064
1 226-4

J1. 45.936 1 2594

46.808
3 2314

47.680 I1 121
4

48.552 1,1 61
4

49.424 21 234

50.296 23 6
4

51.168 31 34
-~--

1400

Y= 45.480 s= 1.778 a y = 1.744

bution to make statistical inferences about means of populations in which the
items are not at all normally distributed. The necessary size of n depends upon
the distribution. (Skewed populations require larger sample sizes.)

Thc next fact of importancc that we note is that the range of the means is
considerably less than that of the original items. Thus, the wing-length means
range from 39.4 to 51.6 in samples of 5 and from 43.9 to 47.4 in samples of
35, hut the individual wing lengths range from 36 to 55. The milk-yield means
range from 54.2 to 89.0 in samples of 5 and from 61.9 to 71.3 in samples of 35,
but thc individual milk yields range from 51 to 98. Not only do means show
less scatter than the items upon which they are based (an easily understood
phenomenon if you give some thought to it), but the range of the distribution
of the means diminishes as the sample size upon which the means are based

increases.
The differences in ranges are rcflected in differences in the standard devia-

tions of these distributions. If we calculate the standard deviations of the means
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FIGURE 6.1
Graphie analysis of means of 1400 random samples of 5 housefly wing lengths (from Tahle 6.1)
and of means of 200 random samples of :15 housefly wing lengths.

FIGURE 6.2
Graphic analysis of means of 1400 random samples of 5 milk yields and of means of 200 random

samples of 35 milk yields.



98
CHAPTER 6 / ESTIMATION AND HYPOTHESIS TESTING 6.1 / DISTRIBUTION AND VARIANCE OF MEANS 99

in the four distributions under consideration, we obtain the following values: If we assume that the variances (J; are all equal to (J2, the expected variance
of the mean is

/I

)' a 2
"--' ,

"
y= L~Y.

"' ,.
LW;

for the weighted mean. We shall state without proof that the variance of the
weighted sum of independcllt items L" w Y is

I I

"
(T~ = L__"'lrrl

I.,. (fw;Y
Since the weights 11'; in this case equal I. r" Wi = n, and we can rewrite the above
ex pressIOn as

(6.3)

(6.2)

and consequently, the expected standard deviation of means is

(J

(Jy = - C (6.2a)
\i'll

From this formula it is clear that the standard deviation of means is a function
of the standard deviation of items as well as of sample size of means. The greater
the sample size, the smaller will be the standard deviation of means. In fact,
as sample size increases to a very large number, the standard deviation of means
becomes vanishingly small. This makes good sense. Very large sample sizes,
averaging many observations, should yield estimates of means closer to the
population mean and less variable than those based on a few items.

When working with samples from a population, we do not, of course, know
its parametric standard deviation (J, and we can obtain only a sample estimate
s of the latter. Also, we would be unlikely to have numerous samples of size
n from which to compute the standard deviation of means directly. Customarily,
we therefore have to estimate the standard deviation of means from a single
sample by using Expression (6.2a), substituting s for (J:

s
Sy = In

Thus, from the standard deviation of a single sample, we obtain, an estimate
of the standard deviation of means wc would expcl:t were we to obtain a collel:­
tion of means based on equal-sized samples of n items from the same population.
As we shall sec, this estimate of the standard deviation of a mean is a very
important and frequently used statistic.

Table 6.2 illustrates some estimates of the standard deviations of means
that might be obtained from random samples of the two populations that we
have been discussing. The means of 5 samples of wing lengths based on 5
individuals ranged from 43.6 to 46.~, their standard deviations from 1.095 to
4.827, and the estimate of standard deviation of the means from 0.490 to 2.159.
Ranges for the other categories of samples in Table 6.2 similarly include the
parametric values of these statistics. The estimates of the standard deviations
of the means of the milk yields cluster around the expected value, since they
are not dependent on normality of the variates. However, in a particular sample
in which by chance the sample standard deviation is a poor estimate of the
population standard deviation (as in the second sample of 5 milk yields), the
estimate of the standard deviation of means is equally wide of the mark.

We should emphasize one point of difference between the standard devia­
tion of items and the standard deviation of sample means. If we estimate a
population standard deviation through the standard deviation of a sample, the
magnitude of the estimate will not change as we increase our sample size. We
~.", "v~",·, ,h·" fl." ..~1;rr1·"" "fill irnnrnvp ~nrl will :lnnrn;lch the trlle standard

(6.1 )

0.584
1.799

Observed standard deviations
of distriblltioflS (!j'meaflS

n = 5 n = 35

1.778
5.040

Wing lengths
Milk yields

Note that the standard deviations of the sample means based on 35 items are
conSIderably less than those based on 5 items. This is also intuitively obvious.
Means based on large samples should be close to the parametric mean, and
means based on large samples will not vary as much as will means based on
smal~ samples. The variance of means is therefore partly a function of the sam­
ple s.Ize on. whIch the means are based. It is also a function of the variance of
t~e Items III the samples. Thus, in the text table above, the means of milk
Ylel~s have a much great~r standard deviation than means of wing lengths based
on comp~rab.le sample SIze Simply because the standard deviation of the indi­
Vidual mIlk yields (11.l597) is considerably greater than that of individual wing
lengths (3.90).

It is possible to work out the expected value of the variance of sample
me~ns~By espe.cred value ~e mean the average value to be obtained by infinitely
repi au d sampling. Thus, If we were to take samples of a means of n items
repeatedly and were to calculate the variance of these a means each time, the
average of these varIances would be the expected value. We can visualize the
mean as a weighted average of the n independently sampled observations with
each weight w, equal to I. From Expression (3.2) we obtain

(" ) "Var I Wi Y; = I w;a;
where a; is the variance of Y;. It follows that
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TABLE 6.2
Means, standard deviations, and standard deviations of means
(standard errors) of five random samples of 5 and 35 housefly
wing lengths and Jersey cow milk yields, respectively. (Data
from Table 5.!.) Parametric values for the statistics are given
in the sixth line of each category.

deviation of the population. However, its order of magnitude will be the same,
whether the sample is based on 3, 30, or 3000 individuals. This can be seen
clearly in Table 6.2. The values of s are closer to (J in the samples based on
n = 35 than in samples of n = 5. Yet the general magnitude is the same in both
instances. The standard deviation of means, however, decreases as sample size
increases, as is obvious from Expression (6.3). Thus, means based on 3000 items
will have a standard deviation only one-tenth that of means based on 30 items.
This is obvious from

Winy lengths

45.8 1.095 0.490
45.6 3.209 1.435
43.6 4.827 2.159
44.8 4.764 2.131
46.8 1.095 0.490

It = 45.5 (J = 3.90 (Jy = 1.744

45.37 3.812 0.644
45.00 3.850 0.651
45.74 3.576 0.604
45.29 4.198 0.710
45.91 3.958 0.669

It = 45.5 (J = 3.90 (Jy = 0.659

Milk yields

66.0 6.205 2.775
61.6 4.278 1.913
67.6 16.072 7.1l~8

65.0 14.195 6.348
62.2 5.215 2.332

Il = 66.61 (J = 11.160 (Jy = 4.991

65.429 11.003 1.860
64.971 11.221 1.897
66.543 9.978 1.687
64.400 9.001 1.52\
68.914 12.415 2.099

11=66.61 (J = 11.160 (Jy = 1.886
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6.2 Distribution and variance of other statistics

Just as we obtained a mean and a standard deviation from each sample of the
wing lengths and milk yields, so we could also have obtained other statistics
from each sample, such as a variance, a median, or a coefficient of variation.
After repeated sampling and computation, we would have frequency distribu­
tions for these statistics and would be able to compute their standard deviations,
just as we did for the frequency distribution of means. In many cases the statistics
are normally distributed, as was true for the means. In other cases the statistics
will be distributed normally only if they are based on samples from a normally
distributed population, or if they are based on large samples, or if both these
conditions hold. In some instances, as in variances, their distribution is never
normal. An illustration is given in Figure 6.3, which shows a frequency distri­
bution of the variances from the 1400 samples of 5 housefly wing lengths. We
notice that the distribution is strongly skewed to the right, which is character­
istic of the distribution of variances.

Standard deviations of various statistics are generally known as standard
errors. Beginners sometimes get confused by an imagined distinction between
standard deviations and standard errors. The standard error of a statistic such
as the mean (or V) is the standard deviation of a distribution of means (or V's)
for samples of a given sample size n. Thus, the terms "standard error" and
"standard deviation" are used synonymously, with the following exception: it is
not customary to use "standard error" as a synonym of "standard deviation"
for items in a sample or population. Standard error or standard deviation has
to be qualified by referring to a given statistic, such as the standard deviation
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of V, which is the same as the standard error of V. Used without any qualifica­
tion, the term "standard error" conventionally implies the standard error of the
mean. "Standard deviation" used without qualification generally means stan­
dard deviation of items in a sample or population. Thus, when you read that
means, standard deviations, standard errors, and coefficients of variation are
shown in a table, this signifies that arithmetic means, standard deviations of
items in samples, standard deviations of their means (= standard errors of
means), and coefficients of variation are displayed. The following summary
of terms may be helpful:

Standard deviation = s = Jr.)l2 /(n --=-1).
Standard deviation of a statistic St = standard error of a statistic St = SSt.

Standard error = standard error of a mean
= standard deviation of a mean = Sr'

Standard errors are usually not obtained from a frequency distribution by
repeated sampling but are estimated from only a single sample and represent
the expected standard deviation of the statistic in case a large number of such
samples had been obtained. You will remember that we estimated the standard
error of a distribution of means from a single sample in this manner in the
previous section.

Box 6.1 lists the standard errors of four common statistics. Column (1) lists
the statistic whose standard error is described; column (2) shows the formula

•
BOX 6.1
Standard errors for common statistics.

for the estimated standard error; column (3) gives the degrees of freedom on
which the standard error is based (their use is explained in Section 6.5); and
column (4) provides comments on the range of application of the standard
error. The uses of these standard errors will be illustrated in subsequent sections.

6.3 Introduction to confidence limits

The various sample statistics we have been obtaining, such as means or standard
deviations, are estimates of population parameters J1 or (J, respectively. So far
we have not discussed the reliability of these estimates. We first of all wish to
know whether the sample statistics are unbiased estimators of the population
parameters, as discussed in Section 3.7. But knowing, for example, that Yis an
unbiased estimate of J1 is not enough. We would like to find out how reliable
a measure of J1 it is. The true values of the parameters will almost always remain
unknown, and we commonly estimate reliability of a sample statistic by setting
confidence limits to it.

To begin our discussion of this topic, let us start with the unusual case of
a population whose parametric mean and standard deviation are known to be
J1 and (J, respectively. The mean of a sample of n items is symbolized by Y. The
expected standard error of the mean is (J/ J;t. As we have seen, the sample
means will be normally distributed. Therefore, from Section 5.3, the region from
1.96(J/J;t below 11 to 1.96(J/J;t above J1 includes 95~~ of the sample means of
size n. Another way of stating this is to consider the ratio (Y- 11)/((J/Jn). This
is the standard deviate of a sample mean from the parametric mean. Since they
are normally distributed, 95% of such standard deviates will lie between -- 1.96
and + 1.96. We can express this statement symbolically as follows:

(1) (2) (3)
Statistic Estimate of standard error 4f

1 Y s Sy f; n - 1Sf = Jn = Jn = -;

2 Median Smed ~ (1.2533)s)' n-l

P{-1.96::; Y.
J
- fl::; + 1.96} = 0.95

a/ t!

This means that the probability P that the sample means Y will difTcr by no
more than 1.96 standard errors a/J~ from the parametric mean Il equals 0_95.
The expression between the brackets is an inequality, all terms of which can be
multiplied by (J/ J;t to yield

3 s
S

Ss = (0.7071068) In n -- 1

(4)
Comments on applicability

True for any population
with finite variance

Large samples from
normal populations

Samples from normal
populations (n > 15) {

(J-
-1.96····· ::; (Y

JI1 Il) ::; + 1.96 ;J
4 v Samples from normal

populations

Used when V < 15

•

We can rewrite this expression as

{ a - a}-- 1.96· i. ::; (Il - Y) ::; + I.96f-
vt! yl1

because - a ::; b ::; (/ implies a z - b z - a, which can be written as -- (l ::;

-b ::; a. And finally, we can transfer - Yacross the inequality signs,just as in an
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equation it could be transferred across the equal sign. This yields the final desired
expression:

The lower limit is L 1 = 44.8 -- (1.960)(0.6592) = 43.51.
The upper limit is L 2 C~ 44.8 + (1.960)(0.6592) = 46.09.

This means that the probability P that the term Y ~ 1.96oo y is less than or equal
to the parametric mean fJ and that the term Y + 1.96ooy is greater than or equal
to fJ is 0.95. The two terms Y - 1.960'y and Y + 19.60'y we shall call L 1 and L2 ,

respectively, the lower and upper 95% confidence limits of the mean.
Another way of stating the relationship implied by Expression (6.4a) is that

if we repeatedly obtained samples of size n from the population and constructed
these limits for each, we could expect 95% of the intervals between these limits
to contain the true mean, and only 5% of the intervals would miss fJ. The interval
from L 1 to L2 is called a confidence interval.

If you were not satisfied to have the confidence interval contain the true
mean only 95 times out of 100, you might employ 2.576 as a coefficient in place
of 1.960. You may remember that 99~~ of the area of the normal curve lies in
the range fJ ± 2.5760'. Thus, to calculate 99% confidence limits, compute the two
quantities L 1 = Y - 2.5760'/ j;; and L2 = Y + 2.5760'/ j;; as lower and upper
confidence limits, respectively. In this case 99 out of 100 confidence intervals
obtained in repeated sampling would contain the true mean. The new confidence
interval is wider than the 95% interval (since we have multiplied by a greater
coefficient). If you were still not satisfied with the reliability of the confidence
limit, you could increase it, multiplying the standard error of the mean by 3.291
to obtain 99.97., confidence limits. This value could be found by inverse inter­
polation in a more extensive table of areas of the normal curve or directly in
a table of the inverse of the normal probability distribution. The new coefficient
would widen the interval further. Notice that you can construct confidence
intervals that will be expected to contain II an increasingly greater percentage
of the time. First you would expect to be right 95 times out of 100, then 99 times
out of 100, finally 999 times out of 1000. But as your confidence increases, your
statement becomes vaguer and vaguer. since the confidence interval lengthens.
Let us examine this by way of an actual sample.

We obtain a sample of 35 housefly wing lengths from the population of
Table 5.1 with known mean (fJ = 45.5) and standard deviation (0' = 3.90). Let us
assume that the sample mean is 44.8. Wc can expect the standard deviation
of means based on samples of 35 items to be (J r = (J / /n = 3.90/ /35 = 0.6592.
We compute confidence limits as follows:

or

{
- 1.9600 - 1.96OO}

P Y - j;; ~ fJ ~ Y + j;; = 0.95

P{Y - 1.96ooy ~ fJ ~ Y + 1.96ooy} = 0.95

(6.4)

(6.4a)

Remember that this is an unusual case in which we happen to know the true
mean of the population (fJ = 45.5) and hence we know that the confidence limits
enclose the mean. We expect 95% of such confidence intervals obtained in
repeated sampling to include the parametric mean. We could increase the reli­
ability of these limits by going to 99% confidence intervals, replacing 1.960 in
the above expression by 2.576 and obtaining L 1 = 43.10 and L 2 = 46.50. We
could have greater confidence that our interval covers the mean, but we could
be much less certain about the true value of the mean because of the wider
limits. By increasing the degree of confidence still further, say, to 99.9%, we
could be virtually certain that our confidence limits (L 1 = 42.63, L2 = 46.97)
contain the population mean, but the bounds enclosing the mean are now so
wide as to make our prediction far less useful than previously.

Experiment 6.2. For the seven samples of 5 housefly wing lengths and the seven similar
samples of milk yields last worked with in Experiment 6.1 (Section 6.1), compute 95%
confidence limits to the parametric mean for each sample and for the total sample based
on 35 items. Base the standard errors of the means on the parametric standard deviations
of these populations (housefly wing lengths (J = 3.90, milk yields (J = 11.1597). Record
how many in each of the four classes of confidence limits (wing lengths and milk yields,
n = 5 and n = 35) are correct-that is, contain the parametric mean of the population.
Pool your results with those of other class members.

We tried the experiment on a computer for the 200 samples of 35 wing
lengths each, computing confidence limits of the parametric mean by employing
the parametric standard error of the mean, 0' y = 0.6592. Of the 200 confidence
intervals plotted parallel to the ordinate, 194 (97.0%) cross the parametric mean
of the population.

To reduce the width of the confidence interval, we have to reduce the stan­
dard error of the mean. Since O'r = all,;, this can be done only by reducing
the standard deviation of the items or by increasing the sample size. The first of
these alternatives is not always available. If we are sampling from a population
in nature, we ordinarily have no way of reducing its standard deviation. How­
ever, in many experimental procedures we may be able to reduce the variance
of the data. For example, if we are studying the eflect of a drug on heart weight
in rats and find that its variance is rather large, we might be able to reduce this
variance by taking rats of only one age group, in which the variation of heart
weight would be considerably less. Thus, by controlling one of the variables of
the experiment, the variance of the response variable, heart weight, is reduced.
Similarly, by keeping temperature or other environmental variables constant in
a procedure, we can frequently reduce the variance of our response variable and
hence obtain more precise estimates of population parameters.

A common way to reduce the standard error is to increase sample siz.e.
Obviously from Expression (6.2) as 11 increases, the standard error decreases;
hence, as 11 approaches inlinity, the standard error and the lengths of confidence
intervals approach zero. This ties in with what we have learned: in samples
whose size approaches infinity, the sample mean would approach the parametric
mean.
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FIGURE 6.4
Distribution of quantity', = (Y - II)/Sy along abscissa computcd for t400 S<lIl1plcs of 5 housefly wing
lengths presented as a histogram and as a cumulativc frequency distribution. Right-hand ordinatc
represents frequencies for the histogram: left-hand ordinate is cumulative frequency in probability

scale.
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We must guard against a common mistake in expressing the meaning ofthe
confidence limits of a statistic. When we have set lower and upper limits (L 1 and
L z, respectively) to a statistic, we imply that the probability that this interval
covers the mean is, for example, 0.95, or, expressed in another way, that on the
average 95 out of 100 confidence intervals similarly obtained would cover the
mean. We cannot state that there is a probability of 0.95 that the true mean is
contained within a given pair of confidence limits, although this may seem to be
saying the same thing. The latter statement is incorrect because the true mean
is a parameter; hence it is a fixed value, and it is therefore either inside the interval
or outside it. It cannot be inside the given interval 95% of the time. It is important,
therefore, to learn the correct statement and meaning of confidence limits.

So far we have considered only means based on normally distributed sam­
ples with known parametric standard deviations. We can, however, extend the
methods just learned to samples from populations where the standard deviation
is unknown but where the distribution is known to be normal and the samples
are large, say, n .:::: 100. In such cases we use the sample standard deviation for
computing the standard error of the mean.

However, when the samples are small (/I < 100) and we lack knowledge of
the parametrie standard deviation. we must take into consideration the reli­
ability of our sample standard deviation. To do so, we must make use of the
so-called I or Student's distribution. We shall learn how to set confidence limits
employing the t distribution in Section 6.5. Before that, however, we shall have
to become familiar with this distribution in the next section.

6.4 Student's t distribution

The deviations Y - Ii of sample means from the parametric mean of a normal
distribution are themselves normally distributed. If these deviations arc divided
hy the parametric standard deviation, the resulting ratios, (Y - Il)/a y, are still
normally distributed. with 11 = 0 and (J = I. Subtracting the constant It from
every Y, is simply an additive code (Section lXI and will not change the form
of the distribution of sample means, which is normal (Section 6.1). Dividing each
deviation hy the constant I'J r reduees the variance to unity, but proportionately
so for the entire distribution, so that its shape is not altered and a previously
normal distrihution remains so.

If, on thc other hand, we calculate the variance sf of each of the samples
and calculate the deviation for each mean 9. as (9. - Ill/sr" where Sy, stands for
the estimate of the standard error of the mean of the dh sample, we will find
the distrihution of the deviations wider and more peaked than the normal distri­
bution. This is illustrated in Figure 6.4, which shows the ratio (9.- Ill/sy, for
the 14()() samples of live housefly wing lengths of Table 6.1. The new distribution
ranges wider than the corresponding normal distribution. because the denomi­
nator is thc sample standard error rather than the parametric standard error and
will somctimes be smaller and sometimes greater than expected. This increased
variation will he rellected in thL' greater variance of the ratio (Y III 'Sy. The

expected distribution of this ratio is called the I distribution, also known as
"Student's" dislrihUlion, named after W. S. Gossett, who first described it, pub­
lishing under the pseudonym "Studen!." The I distrihution is a function with a
complicated mathematical formula that need not be presented here.

The I distribution shares with the normal the properties ofheing symmetric
and of extending from negative to positive infinity. However. it differs from the
normal in that it assumes different shapes depending on the numher of degrees
of freedom. By "degrees of freedom" we mean the quantity n I, where n is the
sample size upon which a variance has been based. It will be remembered that
n - I is the divisor in obtaining an unbiased estimate of the variance from a sum
of squares. The number of degrees of freedom pertinent to a given Student's
distribution is the same as the number of degrees of freedom of the standard
deviation in the ratio (Y - Ill/sy. Degrees of freedom (ahhreviated df or some­
times v) can range from 1 to infinity. A t distribution for df = I deviates most
markedly from the normal. As the number of degrees of freedom increases,
Student's distribution approaches the shape of the standard norlllal distribution
(J1 = 0, a = I) ever more closely, and in a graph the size of this page a I distri­
bution of df = JO is essentially indistinguishable from a normal distrihution. At
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ilf = CD, the t distribution is the normal distribution. Thus, we can think of the
t distribution as the general case, considering the normal to be a special case
of Student's distribution with df = 00. Figure 6.5 shows t distributions for 1 and
2 degrees of freedom compared with a normal frequency distribution.

We were able to employ a single table for the areas of the normal curve by
coding the argument in standard deviation units. However, since the t distri­
butions differ in shape for differing degrees of freedom, it will be necessary to
have a separate t table, corresponding in structure to the table of the areas of
the normal curve, for each value of df. This would make for very cumbersome
and elaborate sets of tables. Conventional t tables are therefore differently
arranged. Table III shows degrees of freedom and probability as arguments and
the corresponding values of t as functions. The probabilities indicate the percent
of the area in both tails of the curve (to the right and left of the mean) beyond
the indicated value of t. Thus, looking up the critical value of t at probability
P = 0.05 and df = 5, we find t = 2.571 in Table III. Since this is a two-tailed
table, the probability of 0.05 means that 0.025 of the area will fall to the left of
a t value of - 2.571 and 0.025 will fall to the right of t = +2.571. You will recall
that the corresponding value for infinite degrees of freedom (for the normal curve)
is 1.960. Only those probabilities generally used are shown in Table Ill.

You should become very familiar with looking up t values in this table. This
is one of the most important tables to be consulted. A fairly conventional
symbolism is {alvl' meaning the tabled { value for v degrees of freedom and
proportion a in both tails (a12 in each tail), which is equivalent to the t value for
the cumulative probability of I - (aI2). Try looking up some of these values
to become familiar with the table. For example, convince yourself that {0.05[71'

{001131' {002110\, and (0.05[u.\ correspond to 2.365, 5.841, 2.764, and 1.960, respec­
tively.

We shall now employ the t distribution for the setting of confidence limits
to means of small samples.

o.~
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FI(;lIIU 6.5
Fre411cIH:Y curvcs of ( distrihulions for 1 and 2 degrees

of frecd(\lll colllpared with the normal distribution.

6.5 Confidence limits based on sample statistics

Armed with a knowledge of the t distribution, we are now able to set confidence
limits to the means of samples from a normal frequency distribution whose
parametric standard deviation is unknown. The limits are computed as L) =
Y - ta[n-ljSy and L 2 = Y + ta[n-l]sy for confidence limits of probability P =
1 - rx. Thus, for 95% confidence limits we use values of to.05[n-I]' We can rewrite
Expression (6.4a) as

P{L) ~ J1 ~ L2 } = P{Y - ta[n-)jsy ~ J1 ~ Y + ta1n-ljsy} = I - r:t. (6.5)

An example of the application of this expression is shown in Box 6.2. We can

•
BOX 6.2
Confidence limits for p.

Aphid stem mother femur lengths from Box 2.1: Y= 4.004; s = 0.366; n = 25.

Values for tarn -I) from a two-tailed {table (Table III), where 1 - cds the proportion
expressing confidence and n - 1 are the degrees of freedom:

to .05[241 = 2.064 to.olr241 = 2.797

The 95% confidence limits for the population mean J1 are given by the equations
_ S

L I (lower limit) = Y - to.05(n-11 j;,

(
0.366)= 4.004 - 2.064.j25 = 4.004 - 0.151

= 3.853
_ S

L2 (upper timit) = Y + to.oS[n-11 j;,

=4.004 + 0.151

= 4.155

The 99% confidence limits are
_ S

L 1 = Y - to .01 (24) Jf,

(
0.366)= 4.004 - 2.797 J25 = 4.004 - 0.205

= 3.799
_ S

L 2 = Y + t o .01 [241 Jf,

= 4.004 + 0.205

= 4.209
•
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Experiment 6.3. Repeat the computations and procedures of Experiment 6.2 (Section 6.3),
but base standard errors of the means on the standard deviations computed for each
sample and use the appropriate t value in place of a standard normal deviate.

convince ourselves of the appropriateness of the 1 distribution for setting con­
fidence limits to means of samples from a normally distributed population with
unknown (J through a sampling experiment.

H<oUKF 6.6

Ninety-five pereent wnlidence intervals of means of 200 samples of 35 housefly wing lengths, based
on sample standard errors 'I _ The heavy horizontal line is the parametric mean 1'- The ordinate
represents the variahle

L 1 = V - IO.OS[24]Sv

= 9.13 - (2.064)(1.29)

= 9.13 - 2.66

= 6.47

L 2 = V + to .OS [24]SV

= 9.13 + 2.66

= 11.79

When sample size is very large or when (J is known, the distribution is effec­
tively normal. However, rather than turn to the table of areas of the normal
curve, it is convenient to simply use I,[en]' the 1 distribution with infinite degrees
of freedom.

Although confidence limits are a useful measure of the reliability of a sam­
ple statistic, they are not commonly given in scientific publications, the statistic
plus or minus its standard error being cited in their place. Thus, you will fre­
quently see column headings such as "Mean ± S.E." This indicates that the
reader is free to use the standard error to set confidence limits if so inclined .

It should be obvious to you from your study of the t distribution that you
cannot set confidence limits to a statistic without knowing the sample size on
which it is based, 11 being necessary to compute the correct degrees of freedom.
Thus, the occasional citing of means and standard errors without also stating
sample size 11 is to be strongly deplored.

It is important to state a statistic and its standard error to a sulIicient
number of decimal places. The following rule of thumb helps. Divide the stan­
dard error by 3, then note the decimal place of the first nonzero digit of the
quotient; give the statistic significant to that decimal place and provide one
further decimal for the standard error. This rule is quite simple, as an example
will illustrate. If the mean and standard error of a sample arc computed as
2.354 ± 0.363, we divide 0.363 by 3, which yields 0.121. Therefore the mean
should be reported to one decimal place, and the standard error should be
reported to two decimal places. Thus, we report this result as 2.4 ± 0.36. If, on
the other hand, the same mean had a standard error of 0.243, dividing this
standard error by 3 would have yielded 0.081, and the first nonzero digit would
have been in the second decimal place. Thus the mean should have been re­
ported as 2.35 ± 0.243.

where Vp stands for the parametric value of the coefficient of variation. Since
the standard error of the coefficient of variation equals approximately Sv =

V/$, we proceed as follows:

_ 100s _ 100(0.3656) _ 13
V - Y - -4.004 - - 9.

Sv =--~=~-=1.29
~ 7.0711

'tthftl+H+ttHt-l+-1J.

:\ llllll",r of tria],;

"llllll",r of tria],;

E
E

8

C
'F.' IX

17
4(;.--- t.'l

..c
~

II

i: l:l

~

:::
-

§
co
a IX

'Fe

·17
·Iti

.- 1:;-

..c ·1/
~ I:li: IIlI
blc

:::

Figure 6.6 shows 95% confidence limits of 200 sampled means of 35 housefly
wing lengths, computed with 1 and Sy rather than with the normal curve and
(Jy. We note that 191 (95.5%) of the 200 confidence intervals cross the para­
metric mean.

We can use the same technique for setting confidence limits to any given
statistic as long as it follows the normal distribution. This will apply in an
approximate way to all the statistics of Box 6.1. Thus, for example, we may set
confidence limits to the coefficient of variation of the aphid femur lengths of
Box 6.2. These are computed as

P{ V - 1'ln-1]sV ..s; Vp..s; V + 1,[n-1jSV} = 1 - rt
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When we change the parametric mean J1 to a sample mean, this expression
becomes

(6.6)

(6.7)

(6.8)

Using the definition of Y;, we can rewrite L" Y? as

which is simply the sum of squares of the variable divided by a constant, the
parametric variance. Another common way of stating this expression is

(n - 1)52

--~.

Here we have replaced the numerator of Expression (6.7) with n - I times the
sample variance, which, of course, yields the sum of squares.

If we were to sample repeatedly n items from a normally distributed popu­
lation, Expression (6.8) computed for each sample would yield a X2 distribution
with n - I degrees of freedom. Notice that, although we have samples of n
items, we have lost a degree of freedom because we are now employing a
sample mean rather than the parametric mean. Figure 6.:-1, a sample distribution
of variances, has a second scale along the abscissa, which is the first scale
multiplied by the constant (n - \)!a 2

• This scale converts the sample variances
S2 of the tirst scale into Expression (6.8). Since the second scale is proportional
to S2, the distribution of the sample vJriance will serve to illustrate a sample
distribution approximating X2

. The distribution is strongly skewed to the right,
as would be expected in a X2 distribution.

Conventional X
2 tables as shown in Table IV give the probability levels

customarily required and degrees of freedom as arguments and list the X2 cor­
responding to the probability and the dt as the functions. Each chi-square in
Table IV is the value of X2 beyond which the area under the X2 distribution
for v degrees of freedom represents the indicated probability. Just as we used
subscripts to indicate the cumulative proportion of the area as well as the de­
grees of freedom represented by a given value of t, we shall subscript X2 as
follows: X;'v) indicates the X2 value to the right of which is found proportion
a of the area under a X2 distribution for \. degrecs of freedom.

Let us learn how to use Table IV. Looking at the distribution of d21' we
note that 90"~ of all values of X/22) would be to the right of 0.211, hut only
5% of all values of X,22 , would be greater than 5.991. It can he shown that the
expected value of X1

2
v) (the mcan ofaX2 distrihution) equals its degrees of freedom

v. Thus the expected value ofax(25 ) distrihution is 5. When we examine 50::
values (the medians) in the X2 table, we notice that they arc generally lower
than the expected value (the means). Thus, for X12"I the 50'.',; point is 4.351. This

FI(;URE 6.7
Frequency curves of X' distrihution for I. 2. 3. and 6 degrees of freedom.
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6.6 The chi-square distribution

Another continuous distribution of great importance in statistics is the distri­
bution of X2 (read chi-square). We need to learn it now in connection with the
distribution and confidence limits of variances.

The chi-square distribution is a probability density function whose values
range from zero to positive infinity. Thus, unlike the normal distributio~ or
t, the function approaches the horiz~ntal axis as~mptotic~ll~ only at2th~ T1?ht­
hand tail of the curve, not at both taIls. The function descnbmg the X dlstnbu­
tion is complicated and will not be given here. As in t, there is not merely
one X2 distribution, but there is one distribution for each number of degrees
of freedom. Therefore, X2 is a function of v, the number of degrees of freedom.
Figure 6.7 shows probability density functions for the X2 distributions for 1, 2,
3, and 6 degrees of freedom. Notice that the curves are strongly skew~d to the
right, L-shaped at first, but more or less approaching symmetry for higher de­
grees of freedom.

We can generate a X2 distribution from a population of standard normal
deviates. You will recall that we standardize a variable Y; by subjecting it
to the operation (y; - J1)!a. Let us symbolize a standardized variable as
y; = (y; - J1)!a. Now imagine repeated samples of n variates Y; from a normal
population with mean J1 and standard deviation a. For each sample, we trans­
form every variate Y; to Y;, as defined above. The quantities L" Y? computed
for each sample will be distributed as a X2 distribution with n degrees offreedom.
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illustrates the asymmetry of the X2 distribution, the mean being to the right of

the median.
Our first application of the X2 distribution will be in the next section. How-

ever, its most extensive use will be in connection with Chapter 13.

•
BOX 6.3
CoofWence limits for (12. Metbod or sIlortest uobi8sed confidence intervals.

Aphid stem mother femur lengths from Box 2.1: n =25; s' =0.1337.

This conlidelKe interval is very WIde, hut we must not forget that the sample
variance is, alter all. based on only" individuals. Note also that the interval

6.7 Confidence limits for variances

We saw in the last section that the ratio (11 - 1)s2/0'2 is distributed as ./ with
n - 1 degrees of freedom. We take advantage of this fact in setting confidence

limits to variances.
First, we can make the following statement about the ratio (11 ~ l)s210'2:

{
2 (11 - 1)S2 • 1 } _

p XO-(,'2»[n- IJ ~ ()2 ~ X(7j21In-IJ - I - rx

This expression is similar to those encountered in Section 6.3 and implies that
the probability P that this ratio will be within the indicated boundary values
of Xfn-lJ is 1 - rx. Simple algebraic manipulation of the quantities in the in­

equality within brackets yields

p{~-- 1)05
2
~ (52 ~ ,(11 =~} = 1 - a (6.9)

X(,jll[n-IJ Xli -·(,ilJ)[n-11

Since (11 - 1)05 1 = Lyl. we can simplify Expression (6.9) to

p{' .;i.~ ~ (52 ~~Ly2 }= 1 - a (6.10)
X(,/llin-Ij X(l-(ajl»(n-I!

This still looks like a formidablc exprcssion, but it simply mcans that if we
divide the sum of squares Ly2 by the two valucs of Xfn _ II that cut off tails cach
amounting to al2 of the area of the dn 1 rdistribution, the two quoticnts will
enclosc the truc valuc of the variance IT

2 with a prohability of P = I - a.

An actual numerical example will make this clear. Suppose we have a sam­
pic of 5 housefly wing lengths with a sample variance of Sl = 13.52. If we wish to
set 95% confidence limits to the parametric variance, we evaluate Expression
(6.10) for the sample variance Sl. We (irst calculate the sum of squares for this

sample: 4 x 13.52 = 54.0~. Then we look up the values for XGo1514\ and X1.'175141·

Since 95'~> confidence limits are required, a in this case is equal to n.05. These Xl
values span between them 95'",; of the area under the X

Z
curve. They correspond

to 11.143 and 0,484, respectively, and the limits in Ex pression (6.10) then become 6.8 Introduction to hypothesis testing

The most fr~411ent application of statistics in biological research is to test
some SCientifIC hypothesis. Statistical methods arc important in biology because
results of expenments arc usually not clear-cut and therefore need statistical
tests to support decisions between alternative hypotheses. A statistical test
exammes a set of sample data and. on the basis of an expected distribution of
the data. leads In a d.ecision on whether to accept the hypothesis underlying
the expected distribution or to reject that hypothesis and accept an alternative

•

L I =(lower limit) = /1$2 =0.5943(0.1337) = 0.079,46

L2 =(upper limit) =1282 = 1.876(0.1337) =0.2508

The 99% confidence limits are

L I =I1S2 = 0.5139(0.1337) =0.068,71

L 2 = /2S2 = 2.351(0.1337) = 0.3143

II = 0.5943 12 = 1.876

and for a confidence coefficient of 0.99 they are

II =0.5139 12 =2.351

J!1e 95% confidence limits for the population variance (12 are given by the equa­
tiOns

The factors from Table VII for v =n - I = 24 dl and confidence coefficient
(1 - IX) =0.95 are

is asymmetrical around 13.52, the sample variance. This is in contrast to the
confidence intervals encountered earlier, which were symmetrical around the
sample statistic.

The method described above is called the equal-tails method, because an
equal amou?t of probability is placed in each tail (for example, 2!%). It can be
shown that III vIew of the skewness of the distribution of variances, this method
does not y~eld thc shortest possible confidence intervals. One may wish the
confidence IIlterval to be "shortest" in the sense that the ratio L z/ L} be as small
~s pOSSIble. Box 6.3 shows how to obtain these shortest unbiased confldence
mt~rvals for. (51 using Table VII, based on the method of Tate and Klett (1959).
ThIS table gIves (n - 1)IX;'n _II' where p is an adjusted value of al2 or 1 -- (aI2)
~eslgned to yield thc shortest unbiased contidence intervals. The computation
IS very SImple.

54.0R
L 2 = OAg4

L2 == 111.74

and

and

54.0R
L 1 = 11.143

or
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one. The nature of the tests varies with the data and the hypothesis, but the
same general philosophy of hypothesis testing is common to all tests and will
be discussed in this section. Study the material below very carefully, because it
is fundamental to an understanding of every subsequent chapter in this book!

We would like to refresh your memory on the sample of 17 animals of
species A, 14 of which were females and 3 of which were males. These data were
examined for their fit to the binomial frequency distribution presented in Sec­
tion 4.2, and their analysis was shown in Table 4.3. We concluded from Table 4.3
that if the sex ratio in the population was 1: 1 (p, = qo = 0.5), the probability
of obtaining a sample with 14 males and 3 females would be 0.005,188, making
it very unlikely that such a result could be obtained by chance alone. We learned
that it is conventional to include all "worse" outcomes-that is, all those that
deviate even more from the outcome expected on the hypothesis p", = qJ = 0.5.
Including all worse outcomes, the probability is 0.006,363, still a very small
value. The above computation is based on the idea of a one-tailed test, in which
we are interested only in departures from the 1: 1 sex ratio that show a pre­
ponderance of females. If we have no preconception about the direction of the
departures from expectation, we must calculate the probability of obtaining a
sample as deviant as 14 females and 3 males in either direction from expectation.
This requires the probability either of obtaining a sample of 3 females and 14
males (and all worse samples) or of obtaining 14 females and 3 males (and all
worse samples). Such a test is two-tailed, and since the distribution is symmet­
rical, we double the previously discussed probability to yield 0.012,726.

What does this probability mean? It is our hypothesis that p, = q; = 0.5.
Let us call this hypothesis H 0' the null hypothesis, which is the hypothesis under
test. It is called the null hypothesis because it assumes that there is no real
difference between the true value of p in the population from which we sampled
and the hypothesized value of p = 0.5. Applied to the present example, the null
hypothesis implies that the only reason our sample does not exhibit a I: I sex
ratio is because of sampling error. If the null hypothesis p, = q, = 0.5 is true,
then approximately 13 samples out of 1000 will be as deviant as or more deviant
than this one in either direction by chance alone. Thus. it is quite possible to have
arrived at a sample of 14 females and 3 males by chance, but it is not very
probable. since so deviant an cvcnt would occur only about 13 out of 1000 times,
or 1.3% of the time. If we actually obtain such a sample, we may make one
of two decisions. We may decide that the null hypothesis is in fact true (that is,
the sex ratio is I: I) and that the sample obtained by us just happened to be one
of those in the tail of the distribution, or we may decide that so deviant a sample
is too improbable an event to justify acceptance of the null hypothesis. We may
therefore decide that the hypothesis that the sex ratio is I: I is not true. Either
of these decisions may be correct, depending upon the truth of the matter. If
in fact the I: I hypothesis is correct, then the first decision (to accept the null
hypothesis) will be correct. If we decide to reject the hypothesis under these
circumstances, we commit an error. The rejection of a true null hypothesis is
called a type I error. On the other hand, if in fact the true sex ratio of the pop-

ulation is other than 1: 1, the first decision (to accept the 1: 1 hypothesis) is an
error, a so-called type II error, which is the acceptance of a false null hypothesis.
Finally, if the 1: 1 hypothesis is not true and we do decide to reject it, then we
again make the correct decision. Thus, there are two kinds of correct decisions:
accepting a true null hypothesis and rejecting a false null hypothesis, and there
are two kinds of errors: type I, rejecting a true null hypothesis, and type II,
accepting a false null hypothesis. These relationships between hypotheses and
decisions can be summarized in the following table:

Statistical decision

NuIl hypothesis

Actual situation Accepted I Rejected

NuIl hypothesis True Correct decision Type I error
False Type II error Correct decision

Before we carry out a test, we have to decide what magnitude of type I
error (rejection of true hypothesis) we are going to allow. Even when we sample
from a population of known parameters, there will always be some samples that
by chance are very deviant. The most deviant of these are likely to mislead us
into believing our hypothesis H 0 to be untrue. If we permit Y?,; of samples to
lead us into a type I error, then we shall reject 5 out of 100 samples from the
population, deciding that these are not samples from the given population. In
the distribution under study, this means that we would reject all samples of 17
animals containing 13 of one sex plus 4 of the other sex. This can be seen by
referring to column (3) of Table 6.3, where the expected frequencies of the various
outcomes on the hypothesis p, = q,s = 0.5 are shown. This table is an extension
of the earlier Table 4.3, which showed only a tail of this distribution. Actually,
you obtain a type I error slightly less than 5% if you sum relative expected
frequencies for both tails starting with the class of 13 of one sex and 4 of the
other. From Table 6.3 it can be seen that the relative expected frequency in the
two tails will be 2 x 0.024.520,9 = 0.049,04UL In a discrete frequency distribu­
tion, such as the binomial, we cannot calculate errors of exactly 57.. as we can
in a continuous frequency distribution, where we can measure ofT exactly 5%
of the area. If we decide on an approximate 1~;, error, we will reject the hypoth­
esis p,,' = q; for all samples of 17 animals having 14 or more of one sex. (From
Table 6.3 we find theL in the tails equals 2 x 0.006,362,9 = 0.012,725,8.) Thus,
the smaller the type I error we are prepared to accept, the more deviant a samplc
has to be for us to reject the null hypothesis Ho.

Your natural inclination might well be to have as little error as possible.
You may decide to work with an extremely small type I error. such as 0.1 % or
even 0.0 1%, accepting the null hypothesis unless the sample is extremely deviant.
The difficulty with such an approach is that, although guarding against a type
I error, you might be falling into a type II error, accepting the null hypothesis



FIGURE 6.8
Expected distributions or outcomes when sampling 17 animals from two hypothctical populations.
(Aj Ho:'p" ~ q; ~ ~. (B) 11,: p', = 2q,; = ~. Dashed lines separate critical regions from acceptance
region of the distribution of part A. Type I error :x e4ua1s approximately (WI.

hypothesis HI: p, = 2qr' which states that the sex ratio is 2: I in favor of females
so that p, = i and q; = !. We now have to calculate expected frequencies for
the binomial distribution (p, + qj = (i +\V 1 to llnd the probabilities of the
various outcomes under the alternative hypothesis. These arc shown graphically
in Figure 6.8B and are tabulated and compared with expected frequencies of the
earlier distribution in Table 6.3.

Suppose we had decided on a type I error of IX~· 0.01 (~ means "approxi­
mately equal to") as shown in Figure 6.8A. At this significance level we would
accept the II 0 for all samples of 17 having 13 or fewer animals of one sex.
Approximately 99:;;; of all samples will fall into this category. However, what
if H 0 is not true and H I is true'! Clearly, from the population represented by
hypothesis Ii t we could also obtain outcomes in which one sex was represented
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TABLE 6.3
Relative expected frequencies for samples of 17 animals
under two hypotheses. Binomial distribution.

(3) (4)
(1) (2) Ho: p," ~ qj = 1 H,:p£ ~ 2q, =~

33 /;<1 };"

17 0 0.0000076 0.0010150
16 1 0.0001297 0.0086272
15 2 0.0010376 0.0345086
14 3 0.0051880 0.0862715
13 4 0.0181580 0.1509752
12 5 0.0472107 0.1962677
11 6 0.0944214 0.1962677
10 7 0.1483765 0.1542104
9 8 0.1854706 0.0963815
8 9 0.1854706 0.0481907
7 10 0.1483765 0.0192763
6 11 0.0944214 0.0061334
5 12 0.0472107 0.0015333
4 13 0.0181580 0.0002949
3 14 0.0051880 0.0000421
2 15 0.0010376 0.0000042
1 16 0.0001297 0.0000002
0 17 0.0000076 0.0000000

---
Total 1.0000002 0.9999999

when in fact it is not true and an alternative hypothesis HI is true. Presently,
we shall show how this comes about.

First, let us learn some more terminology. Type I error is most frequently
expressed as a probability and is symbolized by IX. When a type I error is
expressed as a percentage, it is also known as the sign.ificance level. Thus a type
I error of IX = 0.05 corresponds to a significance level of 5% for a given test.
When we cut ofT on a frequency distribution those areas proportional to IX (the
type I error), the portion of the abscissa under the area that has been cut ofT
is called the rejection region or critical region of a test. The portion of the
abscissa that would lead to acceptance of the null hypothesis is called the
acceptance region. Figure 6.8A is a bar diagram showing the expected distri­
bution of outcomes in the sex ratio example, given H o. The dashed lines separate
rejection regions from the 99% acceptance region.

Now let us take a closer look at the type II error. This is the probability
of accepting the null hypothesis when in fact it is false. If you try to evaluate
the probability of type I[ error, you immediately run into a problem. If the null
hypothesis H 0 is false, some other hypothesis HI must be true. But unless you
can specify H I> you are not in a position to calculate type II error. An example
will make this clear immediately. Suppose in our sex ratio case we have only two
reasonable possibilities: (I) our old hypothesis H 0: p" = q j' or (2) an alternative
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13 or fewer times in samplcs of 17. We have to calculate what proportion of the
curve representing hypothesis H I will overlap the acceptance region of the dis­
tribution representing hypothesis Ho. In this case we find that 0.8695 of the
distribution representing H I overlaps the acceptance region of H 0 (see Figure
6.8B). Thus, if HI is really true (and H 0 correspondingly false), we would errone­
ously accept the null hypothesis 86.95% of the time. This percentage corresponds
to the proportion of samples from HI that fall within the limits of the acceptance
regions of H o. This proportion is called {3, the type II error expressed as a
proportion. In this example {3 is quite large. Clearly, a sample of 17 animals is
unsatisfactory to discriminate between the two hypotheses. Though 99% of the
samples under H 0 would fall in the acceptance region, fully 87% would do so
under H I' A single sample that falls in the acceptance region would not enable
us to reach a decision between the hypotheses with a high degree of reliability.
If the sample had 14 or more females, we would conclude that HI was correct.
If it had 3 or fewer females, we might conclude that neither Honor H I was true.
As H I approached Ho (as in HI: P = 0.55, for example), the two distributions
would ovalap more and more and the magnitude of {3 would increase, making
discrimination between the hypotheses even less likely. Conversely, if HI repre­
sented p, = 0.9, the distributions would be much farther apart and type II error
Ii would be reduced Clearly, then, the magnitude of IJ depends, among other
things, on the parameters of the alternative hypothesis HI and cannot be speci­
fied without knowledge of the latter.

When the alternative hypothesis is fixed, as in the previous example (H I:
p = 2q), the magnitude of the type I errary. we are prepared to tolerate will
determine the magnitude of the type II error Ii. The smaller the rejection region
fJ. in the distribution under I/o, the greater will be the acceptance region I - a
in this distribution. The greater I - 'X. however. the greater will be its overlap
with the distribution representing HI' and hence the greater will be Ii. Convince
yourself of this in Figure 6.X. By moving the dashed lines outward, we are
reducing the critical regions representing type I error ex in diagram A. But as the
dashed lines move outward, more of the distribution of HI in diagram B will
lie in the acceptance region of the null hypothesis. Thus, by decreasing ex, we
arc increasing /i and in a sense defeating our own purposes.

In most applications, scientists would wish to keep both of these errors
small, since they do not wish to reject a null hypothesis when it is true, nor
do they wish to accept it when another hypothesis is correct. We shall see in
the following what steps can be taken to decrease Ii while holding rx constant
at a preset level.

Although signilicancc levels Y. can be varied at will, investigators are fre­
quently limited because, for many tests, cumulative probabilities of the appro­
priate distributions have not been tabulated and so published probability levels
must be used. These are commonly 0.05.0.01. and 0.001. although several others
arc occasionally encountered. When a Ilull hypothesis has been rejected at a
specified levd of ex. we say that the sample is siynijicantly 1!Jf!i'Tt'nt from the
parametric or hypothetical population at probability P <:::: fJ.. Generally. values

of rx greater than 0.05 are not considered to be statistically significant. A
significance level of 5% (P = 0.05) corresponds to one type I error in 20 trials,
a level of 1% (P = 0.01) to one error in 100 trials. Significance levels of I % or
less (P <:::: 0.01) are nearly always adjudged significant; those between 5";; and I~,

may be considered significant at the discretion of the investigator. Since statis­
tical significance has a special technical meaning (H0 rejected at P <:::: rx), we shall
use the adjective "significant" only in this sense; its use in scientific papers and
reports, unless such a technical meaning is clearly implied, should be discour­
aged. For general descriptive purposes synonyms such as important, meaning­
ful, marked, noticeable, and others can serve to underscore differences and
effects.

A brief remark on null hypotheses represented by asymmetrical probability
distributions is in order here. Suppose our null hypothesis in the sex ratio case
had been H0: p, = 1, as discussed above. The distribution of samples of 17
offspring from such a population is shown in Figure 6.8B. It is clearly asymmet­
rical, and for this reason the critical regions have to be defined independently.
For a given two-tailed test we can either double the probability P of a deviation
in the direction of the closer tail and compare 2P with iX, the conventional level
of significance; or we can compare P with a12, half the conventional level of
significance. In this latter case, 0.025 is the maximum value of P conventionally
considered significant.

We shall review what we have learned by means of a second example, this
time involving a continuous frequency distribution-the normally distributed
housefly wing lengths-of parametric mean J1 = 45.5 and variance ()z = 15.21.
Means based on 5 items sampled from these will also be normally distributed.
as was demonstrated in Table 6.1 and Figure 6: 1. Let us assume that someone
presents you with a single sample of 5 housefly wing lengths and you wish to
test whether they could belong to the specified population. Your null hypothesis
will be Ho: Ii = 45.5 or lIo: J1 = Ilo, where Ii is the true mean of the population
from which you have sampled and 110 stands for the hypothetical parametric
mean of 45.5. We shall assume for the moment that we have no evidence that
the variance of our sample is very much greater or smaller than the parametric
variance of the housefly wing lengths. If it were, it would be unreasonable to
assume that our sample comes from the specified population. There is a critical
test of the assumption about the sample variance, which we shall take up later.
The curve at the center of Figure 6.9 represents the expected distribution of
means of samples of 5 housefly wing lengths from the specified population.
Acceptance and rejection regions for a type I error rx = 0.05 are delimited along
the abscissa. The boundaries of the critical regions arc computed as follows
(remember that 1[,.) is equivalent to the normal distribution):

L I = Ilo -- I0051.,.j()Y = 45.5 - (1.96)(1.744) = 42.m;

and

Lz = lio + I0051"'()Y = 45.5 + (1.96)(1.744) = 4X.92
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FIGURE 6.9
Expected distribution of means of samples of 5 housefly wing lengths from normal populations
specified by II as shown above curves and cry = 1.744. Center curve represents null hypothesis.
H 0: J1 = 45.5: curves at sides represent alternative hypotheses, II = 37 or J1 = 54. Vertical lines delimit
5% rejection regions for the null hypothesis (2) 0;; in each tail. shaded).

Thus, we would consider it improbable for means less than 42.08 or greater than
48.92 to have been sampled from this population. For such sample means we
would therefore reject the null hypothesis. The test we are proposing is two-tailed
because we have no a priori assumption about the possible alternatives to our
null hypothesis. If we could assume that the true mean of the population from
which the sample was taken could only be equal to or greater than 45.5, the test
would be one-tailed.

Now let us examine various alternative hypotheses. One alternative hypoth­
esis might be that the true mean of the population from which our sample stems
is 54.0, but that the variance is the same as before. We can express this assump­
tion as HI: II = 54.0 or HI: Jl = Ill' wherqll stands for the alternative parametric
mean 54.0. From Table II ("Areas of the normal curve") and our knowledge of the
variance of the means, we can calculate the proportion of the distribution implied
by H I that would overlap the acceptance region implied by H o. We find that
54.0 is 5.08 measurement units from 48.92. the upper boundary of the acceptance
region of Flo. This corresponds to 5.08/1.744 = 2.91a y units. From Table II we
find that 0.0018 of the area will lie beyond 2.91a at one tail of the curve. Thus,
under this alternative hypothesis, 0.0018 of the distribution of HI will overlap
the acceptance region of H o. This is Ii, the type /I error under this alternative
hypothesis. Actually, this is not entirely correct. Since the left tail of the If I

distribution goes all the way to negative infinity. it will leave the acceptance
region and cross over into the left-hand rejection region of H o. However, this
represents only an infinitesimal amount of the area of HI (the lower critical
boundary of Ho, 42.08. is 6.X3a y units from III = 54'()) and can be ignored.

Our alternative hypothesis H I specified that III is 8.5 units greater than Ilo·

However, as said before, we may have no a priori reason to believe that the true
mean of our sample is either greater or less than 1/-. Therefore, we may simply
assume that it is 8.5 measurement units away from 45.5. In such a case we must
similarly calculate II for the alternative hypothesis that III = 110 8.5. Thus the

alternative hypothesis becomes HI: fJ. = 54.0 or 37.0, or HI: fJ. = fJ.I' where fJ.I
represents either 54.0 or 37.0, the alternative parametric means. Since the distri­
butions are symmetrical, {J is the same for both alternative hypotheses. Type II
error for hypothesis HI is therefore 0.0018, regardless of which of the two alter­
native hypotheses is correct. If HI is really true, 18 out of 10,000 samples will
lead to an incorrect acceptance of H 0, a very low proportion of error. These
relations are shown in Figure 6.9.

You may rightly ask what reason we have to believe that the alternative
parametric value for the mean is 8.5 measurement units to either side of fJ.o =
45.5. It would be quite unusual if we had any justification for such a belief. As
a matter of fact, the true mean may just as well be 7.5 or 6.0 or any number of
units to either side of fJ.o. If we draw curves for HI: fJ. = fJ.o ± 7.5, we find that
{3 has increased considerably, the curves for H 0 and H J now being closer together.
Thus, the magnitude of {3 will depend on how far the alternative parametric
mean is from the parametric mean of the null hypothesis. As the alternative mean
approaches the parametric mean, {3 increases up to a maximum value of 1 - (x,

which is the area of the acceptance region under the null hypothesis. At this maxi­
mum, the two distributions would be superimposed upon each other. Figure 6.10
illustrates the increase in {J as JlI approaches fJ., starting with the test illustrated
in Figure 6.9. To simplify the graph, the alternative distributions are shown for
one tail only. Thus, we clearly see that 13 is not a fixed value but varies with the
nature of the alternative hypothesis.

An important concept in connection with hypothesis testing is the power of
a test. It is 1 - {J, the complement of {J, and is the probability of rejecting the
null hypothesis when in fact it is false and the alternative hypothesis is correct.
Obviously, for any given test we would like the quantity 1 - 13 to be as large as
possible and the quantity fJ as small as possible. Since we generally cannot specify
a given alternative hypothesis. we have to describe j) or I ~ /i for a continuum
of alternative values. When I - fl is graphed in this manner, the result is called
a power curve for the test under consideration. Figure 6.11 shows the power curve
for the housefly wing length example just discussed. This figure can be compared
with Figure 6.10, from which it is directly derived. Figure 6.10 emphasizes the
type II error fl, and Figure 6.11 graphs the complement of this value, I ~ fl. We
note that the power of the test falls off sharply as the alternative hypothesis
approaches the null hypothesis. Common sense confirms these conclusions: we
can make clear and firm decisions about whether our sample comes from a popu­
lation of mean 45.5 or 60.0. The power is essentially I. But if the alternative
hypothesis is that fJ.I = 45.6, differing only by 0.1 from the value assumed under
the null hypothesis, it will be difficult to decide which of these hypotheses is
true, and the power will be very low.

To improve the power of a given test (or decrease Ii) while keeping (X constant
for a stated null hypothesis, we must increase sample size. If instead of sampling
5 wing lengths we had sampled 35, the distribution of means would be much
narrower. Thus, rejection regions for the identical type I error would now com­
mence at 44.21 and 46.79. Although the acceptance and rejection regions have
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FIGURE 6.10
Diagram to illustrate increases in type II error Ii as alternative hypothesis Ii I approaches null
hypothesis llu--that is. 1'1 approaches 11. Shading represents fi· Vertical lines mark ofT 5:: critical
regions (2~ ': in each tail) for the null hypotheSIS. To simplify the graph the alternative distrihutions
are shown for one tail only. Data identical to those in Figure 6.9.

F[(;{lI(F () I I

Power curves for testin~ II,,: I' - 45.5, II,: I' # 45.5 for II 5
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remained the same proportionately, the acceptance region has become much
narrower in absolute value. Previously, we could not, with confidence, reject the
null hypothesis for a sample mean of 48.0. Now, when based on 35 individuals,
a mean as deviant as 48.0 would occur only 15 times out of 100,000 and the
hypothesis would, therefore, be rejected.

What has happened to type II error? Since the distribution curves are not
as wide as before, there is less overlap between them; if the alternative hypoth­
esis H t: 11 = 54.0 or 37.0 is true, the probability that the null hypothesis could
be accepted by mistake (type II error) is infinitesimally small. If we let III
approach 11o, f3 will increase, of course, but it will always be smaller than
the corresponding value for sample size n = 5. This comparison is shown in
Figure 6.11, where the power for the test with II = 35 is much higher than that
for n = 5. If we were to increase our sample size to 100 or 1000, the power
would be still further increased. Thus, we reach an important conclusion: If a
given test is not sensitive enough, we can increase its sensitivity (= power) by
increasing sample size.

There is yet another way of increasing the power of a test. If we cannot
increase sample size, the power may be raised by changing the nature of the test.
Different statistical techniques testing roughly the same hypothesis may differ
substantially both in the actual magnitude and in the slopes of their power
curves. Tests that maintain higher power levels over su bstantial ranges of alter­
native hypotheses are clearly to be preferred. The popularity of the various
nonparametric tests, mentioned in several places in this book, has grown not only
because of their computational simplicity but also because their power curves are
less affected by failure of assumptions than are those of the parametric methods.
However, it is also true that nonparametric tests have lower overall power than
parametric ones, when all the assumptions of the parametric test are met.

Let us briefly look at a one-tailed test. The null hypothesis is Ho: 110 = 45.5,
as before. However, the alternative hypothesis assumes that we have reason to
believe that the parametric mean of the population from which our sample has
been taken cannot possibly be less than Po = 45.5: if it is different from that
value, it can only be greater than 45.5. We might have two grounds for such
a hypothesis. First, we might have some biological reason for such a belief. Our
parametric flies might be a dwarf population, so that any other population from
which our sample could come must be bigger. A second reason might be that
we are interested in only one direction of difference. For example, we may be
testing the effect of a chemical in the larval food intended to increase the size of
the flies in lhe sample. Therefore, we would expect that III .:2: Po, and we would
not be interested in testing for any PI that is less than 110, because such an effect
is the exact opposite of what we expect. Similarly, if we are investigating the effect
of a certain drug as a cure for cancer, we might wish to compare the untreated
population that has a mean fatality rate 0 (from cancer) wilh the treated popula­
tion, whose rate is 0I' Our alternative hypotheses will be f{ I: 0 I < O. That is,
we arc not interested in any (II that is greater than (I, because if our drug will
increase mortality from cancer, it certainly is not much of a prospect for a cure.
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FIGURE 6.12
One-tailed significance test for the distribution of Figure 6.9. Vertical line now cuts off 5% rejection
region from one tail of the distribution (corresponding area of curve has been shaded).

When such a one-tailed test is performed, the rejection region along the
abscissa is under only one tail of the curve representing the null hypothesis.
Thus, for our housefly data (distribution of means of sample size n = 5), the
rejection region will be in one tail of the curve only and for a 5% type I error
will appear as shown in Figure 6.12. We compute the critical boundary as
45.5 + (1.645)(1.744) = 48.37. The 1.645 is to 10\,-,\' which corresponds to the 5%
value for a one-tailed test. Compare this rejection region, which rejects the null
hypothesis for all means greater than 48.37, with the two rejection regions in
Figure 6.10, which reject the null hypothesis for means lower than 42.08 and
greater than 48.92. The alternative hypothesis is considered for one tail of the
distribution only, and the power curve of the test is not symmetrical but is drawn
out with respect to one side of the distribution only.

6.9 Tests of simple hypotheses employing the t distribution

We shall proceed to apply our newly won knowledge of hypothesis testing to
a simple example involving the I distribution.

Government regulations prescribe that the standard dosage in a certain
biological preparation should be 600 activity units per cubic centimeter. We
prepare 10 samples of this preparation and test each for potency. We find that
the mean number of activity units per sample is 592.5 units per cc and the
standard deviation of the samples is 11.2. Docs our sample conform to the
government standard') Stated more preeisely, our null hypothesis is lI o: II = 110

The alternative hypothesis is that the dosage is not equal to 600, or Ill: JI -f. flo·

We proceed to calculate the significance of the deviation Y- I/o expressed in
standard deviation units. The appropriate standard deviation is that of means
(the standard error of the mean), 1101 the standard deviation of items, because
the deviation is that of a sample mean around a parametric mean. We therefore

calculate Sy = s/j,~ = 11.2/j!() = 3.542. We next test the deviation (Y- Jlo)ll·y.

We have seen earlier, in Section 6.4, that a deviation divided by an estimated

*** = P S 0.001

df = n - [ = 9

** = 0.01 ~ p> 0.001

t = ~92.5_= 600 = -7.5 = -2.12
s 3.542 3.542

* = 0.05 :> P > 0.0 I

This indicates that we would expect this deviation to be distributed as a t vari­
ate. Note that in Expression (6.11) we wrote t,. In most textbooks you will find
this ratio simply identified as (, but in fact the ( distribution is a parametric and
theoretical distribution that generally is only approached, but never equaled,
by observed, sampled data. This may seem a minor distinction, but readers
should be quite clear that in any hypothesis testing of samples we are only as­
suming that the distributions of the tested variables follow certain theoretical
probability distributions. To conform with general statistical practice, the t dis­
tribution should really have a Greek letter (such as r), with ( serving as the
sample statistic. Since this would violate long-standing practice, we prefer to
use the subscript s to indicate the sample value.

The actual test is very simple. We calculate Expression (6.11),

standard deviation will be distributed according to the t distribution with n - 1
degrees of freedom. We therefore write

Y-!La
ts =- Sy- (6.11)

and compare it with the expected values for ( at 9 degrees of freedom. Since
the ( distribution is symmetrical, we shall ignore the sign of t, and always look
up its positive value in Table III. The two values on either side of ts are (005[9] =

2.26 and 101019] = un. These arc I values for two-tailed tests, appropriate in
this instance because the alternative hypothesis is that II Ie 600: that is, it can
be smaller or greater. It appears that the significance level of our value of t, is
between 5';;;, and 10;;,; if the null hypothesis is actually true, the probahility of
obtaining a deviation as great as or grealer than 7.5 is somewhere between 0.05
and 0.10. By customary levels of significance, this is insufficient for declaring
the sample mean significantly different from the standard. We consequently
accept the null hypothesis. In conventional language. we would report the re­
sults of the statistical analysis as follows: "The sample mean is not significantly
different from the accepted standard." Such a statement in a scientifie report
should always be hacked up by a probability value, and the proper way of pre­
senting this is to write "0.10> P> 0.05." This means that the probability of
such a deviation is between 0.05 and 0.10. Another way of saying this is that
the value of t, is 1/01 siYl/ij;ml/l (frequently abbreviated as 11.1').

A convention often encountered is the use of asterisks after the computed
value of the significance test, as in t, = 2.86**. The symhols generally represent
the following prohahility ranges:

However, since some authors occasionally imply other ranges hy these aster­
isks, the meaning of the symbols has to be specified in each scientific report.
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or

•

priatc degrees of freedom from I to infinity, An example of such a test is the {
test for the significance of a regre~sion coemcient shown in step 2 of Box 1104.

for a one-tailed test.

3. In the two-tailed test. look up the critical value of t«[vl' where ex is the type I
error agreed upon and v is the degrees of freedom pertinent to the standard
error employed (see Box 6.1). In the one-tailed test look up the critical value
of lZ«[vl for a significance level of ex.

4. Accept or reject the appropriate hypothesis in 2 on the basis of the t. value
in 1 compared with critical values of t in 3.

Ho: St == St,

BOX 6.4
testing the. significance of a. statistic-that .•.,. the signifitaJJetl Ofa deviatiouofJI
sample statistie .from a parametric value. For DOrmllDy distri~.~tatisti~

H o: St::::: St,

Computational steps

1. Compute t. as the following ratio:

St - St"t.==-_.......
SSI

where St is a sample statistic. St, is the parametric value against which the
sample statistic is to be tested, and SSI is its estimated standard error, obtained
from Box 6.1, or elsewhere in this book.

2. The pertinent hypotheses are

Ho: St == St" H1: St "# St"

for a two-tailed lest, and

6.10 Tcstin~ the hypothesis H0: (Jl = (J~

The method of Box 604 can be used only if the statistic is normally distributed.
In the case of the variance, this is not so. As we have seen, in Section 6.6, sums
of squares divided by (Jl follow the X2 distribution. Therefore, for testing the
hypothesis that a sample variance is different from a parametric variance, we
must employ the Xl distribution.

Let us use the biological preparation of the last section as an example.
We were told that the standard deviation was 11.2 based on 10 samples, There­
fore, the variance must have been 125.44. Suppose the government postulates
that the variance of samples from the preparation should be no greater than
100.0. Is our ~amplc variance significantly above 100.0? Remembering from

•It might be argued that in a biological preparation the concern of the tester
should not be whether the sample differs significantly from a standard but
wh~ther it is significantly below the standard. This m;y be one of those' bio­
logical preparations in which an excess of the active component is of no harm
but a shortage would make the preparation ineffective at the conventional
dosage. Then the test becomes one-tailed, performed in exactly the same manner
ex~~p.t that the critical values of { for a one-tailed test are at half the prob­
abIlitIes of the two-tailed test. Thus 2.26, the former 0.05 value, becomes
{O,025[9j, and 1.83, t?e former 0,10 value, becomes {O,05[9]' making our observed
{s, value of 2.12 "sIglllficant at the 5% level" or. more precisely stated, sig­

llIficant at 0.05 -: P> 0.025. (fwe are prepared to accept a 5% significance level,
we would conSider the preparation significantly below the standard.

Y.ou. may be surprised that the same example, employing the same data
and slglllficance tests, should lead to two different conclusions, and you may
beglll to wonder whether some of the thjng~ you hear about statistics and
statlstlclans are not, after all, correct. The explanation lies in the fact that the
two res,ults are ar~swers to different questions. If we test whether our sample
IS slgll1t~cantly dIflerent from the standard in either direction, we must conclude
that It IS not different enough for us to reject the null hypothesis. If, on the
other IHllld, we exclude from consideration the fact that the true sample mean
P could be greater, than the established standard Po, the difference as found by
us IS clearly slgmfIcant. It is obvious from this example that in any statistical
test one must clearly state whether a one-tailed or a two-tailed test has been
performed if the nature of the example i~ such that there could be any doubt
about the matter. We should also point out that such a din'erence in the Dut­
come of the result~ is not necessarily typical. It is only because the outcome in
this case is i~l a borderline area between clear ~ignitieance and nonsignitieanee.
Had the ddlcrenee between sample and standard been 10.5 activity units, the
sample would have been unque~tionably significantly different from the stan­
dard by the one-tailed or the tWD-tailcd le"t.

. The promulgation ofa standard mcan is generally insufJieient for the e~tah-
lishm~nt of a rigid standard for a product. If the variance among the samples
IS suffiCIently large, It will never be possible to establish a significant diflcrence
between the standard and the sample mean. Thi~ is an important point that
should be 4 ulte clear to yUll. Remember that the standard error can be in­
creased in two ways by Iuwering ~arnplc size or by increasing the ~tandard

deViatIOn of the replicates. Buth uf tllL'se are undesirable aspects of any experi­
mental ~etup.

The test descrihed ahove for the biological preparation leads LIS to a general
test for the ~ignifieanee uf any ~tatistie that is, for the signifIcance of a devia­
tion of any statistic from a parametric value, which is outlined in Box 6.4. Such
a test applies whcnever the slatistle~ arc expected to be normally distrihuted,
When the standard error is estimated from the sample, the {distrihution is used.
However, since thenorrnal di,tribution is just a special case 1[.'1 of the I dis­
tnhutlull, mo,t,tatl,tlclans IIllifurl1lly apply the I distribution with the appro-
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Expression (6.8) that (n - 1)S2/(J2 is distributed as X[~ -1]' we proceed as follows.
We first calculate

Exercises

(9)125.44

100

= 11.290

We notice that the probability of getting a X2 as large as 11.290 is therefore
less than 0.50 but higher than 0.10, assuming that the null hypothesis is true.
Thus X 2 is not significant at the 5"~ level, we have no basis for rejecting the
null hypothesis, and we must conclude that the variance of the 10 samples
of the biological preparation may be no greater than the standard permitted by

the government. If we had decided to test whether the variance is different from
the standard, permitting it to deviate in either direction, the hypotheses for this
two-tailed test would have been H o: (}2 = (J(~ and HI: (J2 1= (J~, and a 5'';; type

I error would have yielded the following critical values for the two-tailed test:

The values represent chi-squares at points cutting off 2! ':;, rejection regions
at each tail of the X2

distribution. ;\ value of X 2 < 2.700 or > 19.023 would

have been evidence that the sample variance did not belong to this population.

Our value of X
2

= 11.290 would again have led to an acceptance of the null
hypothesis.

In the nexl ch<lpter we shall sec that there is another significance lest avail­
able 10 lesl the hypotheses about variances of the present section. This is the

mathematically equivalent F test, which is, however, a more general test, allow­

ing us to test the hYPolhesis that two sample variances come from populations
with equal variances.

Since it is possible to test a statistical hypothesis with any size. sample, why
are larger sample sizes preferred? ANS. When the null hypotheSIS IS false, the
probability of a type 11 error decreases as n increases.
Differentiate between type I and type II errors. What do we mean by the power
of a statistical test?
Set 99% confidence limits to the mean, median, coefficient of variation, and vari­
ance for the birth weight data given in Box 3.2. ANS. The lower limits are
109.540,109.060,12.136, and 178.698, respectively.
The 95% confidence limits for J1 as obtained in a given sample were 4.91 and
5.67 g. Is it correct to say that 95 times out of 100 the population mean, /I, falls
inside the interval from 4.91 to 5.67 g') If not, what would the correct state­
ment be?
In a study of mating calls in the tree toad Hyla ewingi, Littlejohn (1965) found
the note duration of the call in a sample of 39 observatIOns from Tasmama to
have a mean of 189 msec and a standard deviation of 32 msec. Set 95'~,; confi­
dence intervals to the mean and to the variance. ANS. The 9S'~~ confidence limits
for the mean are from 178.6 to 199.4. The 957.. shortest unbiased limits for the
variance are from 679.5 to 1646.6.
Set 95% confidence limits to the means listed in Table 6.2. Are these limits all
correct? (That is, do they contain J1?) . .
[n Section 4.3 the coefficient of dispersion was gIVen as an mdex of whether or
not data agreed with a Poisson distribution. Since in a true Poisson distribution,
the mean {I equals the parametric variance (J2, the coeftkient of dispersion is anal­
ogous to Expression (6.8). Using the mite data from Table 4.5, test the hypoth­
esis that the true variance is equal to the sample mean--lll other words, that
we have sampled from a Poisson distribution (in which the coefficient of disper­
sion should equal unity). Note that in these examples the chi-square table IS not
adequatc, so that approximatc critical values must he computed using the mdhod
given with Table IV. In Section 7.3 an alternative signiticancc test t1~at aVOids
this prohlem will be presented. ANS X" - (n - 1) x CD = DOS..'O, XOtl'I)~~1 ~
645708.
Using the method described in Exercise 6.7, test the agreemcnt of the ohserved
distribution with a Poisson distribution by testing the hypothesis that the true
coefficient of dispersion equals unity for the data of Tahle 4.6.
In a study of bill measurements of the dusky flycatcher, Johnson (1966) ~ound

that the bill length for the males had a mean of 8.141 0.011 and a coetllclent
of variation of 4.6r':"•. On the hasis of this information, infer how many specunens
must have been used? ANS. Since V = IO(h/Y and "r 0 ,,/JII, }/I = VS r Y/IOO.
Thus n = 328.
In direct klinokinetic behavior relating to temperatun:, animals turn nHHe often
in the warm end of a gradient and less often in the colder end, the direction of
turning being at random, howevcr. In a computer simulation of such behavior,
the following results were found. The mean position along a temperature gra­
dient was found to be --- t .352. The standard deviation was 12.267, and /1 equaled
500 individuals. The gradient was marked olT in units: I.ero corresponded to the
middle of the gradient, the initial starting point of the animals; minus corre­
sponded to the cold end; and plus corresponded to the warmer end. Test the
hypothesis that direct klinokinetic behavior did not result in a tendency toward
aggregation in either the warmer or colder end; that is, test the hypotheSIS that
II, the mean position along the gradient, was zero.

6.3

6.4

6.9

6.8

6.5

6.10

6.1

6.7

6.6

6.2

X650[9J = 8.343

X(~()25[ql = 19.023

X61019J = 14.684

X(~q75[9J = 2.700

X605[9] = 16.919

Note that we calI the quantity X 2 rather than X2• This is done to emphasize

that we are obtaining a sample statistic that we shalI compare with the para­
metric distribution.

FolIowing the general outline of Box 6.4, we next establish our nulI and
alternative hypotheses, which are H0: (J2 = (J6 and HI: (J2 > (J6; that is, we

are to perform a one-tailed test. The critical value of X2 is found next as X;[\"I'
where 'X is the proportion of the X2 distribution to the right of the critical value,

as described in Section 6.6, and v is the pertinent degrees of freedom. You see

now why we used the symbol 'X for that portion of the area. It corresponds
to the probability of a type I error. For v = 9 degrees of freedom, we find in
Table IV that
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In an experiment comparing yields of three new varieties of corn the following
results were obtained. '

Variety

1 2 3

Y 22.86 43.21 38.56
n 20 20 20

To compare the three varieties the investigator computed a weighted mean of the
three means using the weights 2, -1, -1. Compute the weighted mean and its
95% c?nfidence limit~ assuming that the variance of each value for the weighted
mean IS zero. ANS. Yw = - 36.05, at = 34.458, the 95% confidence limits are
-47.555 to - 24.545, and the weighted mean is significantly different from zero
even at the P < 0.001 level.

CHAPTER 7

Introduction to Analysis

of Variance

We now proceed to a study of the analysis of variance. This method, developed
by R. A. Fishn, is fundamental to much of the application of statistil.:s in biology
and cspecially to experimental design. One usc of the analysis of variance is to
test whether two or more sample means have been obtained from populations
with the same parametric mean. Where only two samples are involved, the I test
can also be used. However, the analysis of variance is a more general test, which
permits testing two samples as well as many, and we are therefore introducing
it at this early stage in order to equip you with this powerful weapon for your
statistical arsenal. We shall discuss the I test for two samples as a special case
in Section RA.

In Section 7.1 we shall approach the subject on familiar ground, the sampling
experiment of the houseny wing lengths. From these samples we shall obtain
two independent estimates of the population variance. We digress in Section 7.2
to introduce yet another continuous distribution, the F distribution. needed for
the significance test in analysis of variance. Section 7.3 is another digression;
here we show how the F distribution can be used to test whether two samples
may reasonably have been drawn from populations with the same variance. We
are now ready for Section 7.4, in which we examine the efkcts of subjecting the
samples to dilTerent treatments. In Section 7.5, we describe the partitioning of
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7.1 The variances of samples and their means

We shall approach analysis of variance through the familiar sampling experi­
ment of housefly wing lengths (Experiment 5.1 and Table 5.1), in which we
combined seven samples of 5 wing lengths to form samples of 35. We have
reproduced one such sample in Table 7.1. The seven samples of 5, here called
groups, are listed vertically in the upper half of the table.

Before we proceed to explain Table 7.1 further, we must become familiar
with added terminology and symbolism for dealing with this kind of problem.
We call our samples yroups; they are sometimes called classes or are known
by yet other terms we shall learn later. In any analysis of variance we shall have
two or more such samples or groups, and we shall use the symbol a for the
number of groups. Thus, in the present example a = 7. Each group or sample
is based on II items, as before; in Table 7.1, II = 5. The total number of items
in the table is II times II, which in this case equals 7 x 5 or 35.

The sums of the items in the respective groups are shown in the row under­
neath the horizontal dividing line. In an anova, summation signs can no longer
be as simple as heretofore. We can slim either the items of one group only or
the items of the entire table. We therefore have to usc superscripts with the
summation symbol. In line with our policy of using the simplest possible nota­
tion, whenever this is not likely to lead to misunderstanding, we shall use L" Y
to indicate the sum of the items of a group and pny to indicate the sum of all
the itcms in the table. The sum of the items of each group is shown in the first
row under the horizontal line. The mean of each group, symholized hy Y, is
in the next row and is computed simply as LnY/II. The remaining two rows in
that portion of Table 7.1 list L n y 2 and L n y2, separately for each group. These
are the familiar quantities, the slim of the squared V's and the sum of squares
of Y.

From the sum of squares for each group we can obtain an estimate of the
population variance of housefly wing length. Thus, in the first group L" y2 =

29.2. Therefore, our estimate of the population variance is

sums of squares and of degrees of freedom, the actual allalysis of variance. The
last two sections (7.6 and 7.7) take up in a more formal way the two scientific
models for which the analysis of variance is appropriate, the so-called fixed
treatment effects model (Model J) and the variance component model (Model II).

Except for Section 7.3, the entire chapter is largely theoretical. We shall
postpone the practical details ofcomputation to Chapter 8. However, a thorough
understanding of the material in Chapter 7 is necessary for working out actual
examples of analysis of variance in Chapter 8.

One final comment. We shall use 1. W. Tukey's acronym "anova" inter­
changeably with "analysis of variance" throughout the text.
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a rather low estimate compared with those obtained in the other samples. Since
we have a sum of squares for each group, we could obtain an estimate of the
population variance from each of these. However, it stands to reason that we
would get a better estimate if we averaged these separate variance estimates in
some way. This is done by computing the weighted average of the variances by
Expression (3.2) in Section 3.1. Actually, in this instance a simple average would
suffice, since all estimates of the variance are based on samples of the same size.
However, we prefer to give the general formula, which works equally well for
this case as well as for instances of unequal sample sizes, where the weighted
average is necessary. In this case each sample variance sf is weighted by its
degrees of freedom, Wi = ni - 1, resulting in a sum of squares (L yf), since
(n i - 1)sf = L y? Thus, the numerator of Expression (3.2) is the sum of the sums
of squares. The denominator is La (Il; - 1) = 7 X 4, the sum of the degrees of
freedom of each group. The average variance, therefore, is

This quantity is an estimate of 15.21. the parametric variance of housefly
wing lengths. This estimate, based on 7 independent estimates of variances of
groups, is calIed the average IJariance within owups or simply variance within
yroups. Note that we use the expression withill groups, although in previous
chapters we used the term variance of groups. The reason we do this is that the
variance estimates used for computing the average variance have so far alI come
from sums of squares measuring the variation within one column. As we shall
see in what follows, one can also compute variances among groups, CUlling
across group boundaries.

To obtain a second estimate of the population variance, we treat the seven
group means 9 as though thcy were a sample l)f seven observations. The resulting
statistics arc shown in the lower right part of Table 7.1, headed "Computation
of sum of squares of means." Then: are seven means in this example; in the
general case there will be a means. We first compute L" 9, the sum of the means.
Note that this is rather sloppy symbolism. To be entirely proper, we should
identify this quantity as L:~~ 9" sU'!pming the means of group 1 through group
a. The next quantity computed is Y, the grand mean of the group means, com­
puted as _Y = L" 91a. The sum of the seven means is L" Y= 317.4, and the grand
mean is Y= 45.34, a fairly close approximation to the parametric mean II = 45.5.
The sum of squares represents the deviations of the group means from the grand
mean, L"(Y -- y)2 For this we fIrst need the quantity L"y2, whieh equals
14,417.24. The customary computational formula for sum of squares applied
to these means is L" y2

- [(La y)2laJ = 25.417. From the sum of squares of the
means we_ ohtain a l'i/rill/1ce til/WilY the means in the conventional way as follows:
L" (Y y)2/(a I). We divide hy a I rather than /1 - 1 because the sum
of squares was hased on II items (me;lns). Thus, variance of the means s~ ~

2 29.2 + 12.0 + 75.2 + 45.2 + 98.8 + 81.2 + 107.2
s = 28

448.8

28
16.029

25.41716 = 4.2362. We learned in Chapter 6, Expression (6.1), that when we
randomly sample from a single population,

([2

([¥ =-
n

and hence

([2 = n([~

Thus, we can estimate a variance of items by multiplying the variance of means
by the sample size on which the means are based (assuming we have sampled
at random from a common population). When we do this for our present ex­
ample, we obtain S2 = 5 x 4.2362 = 21.181. This is a second estimate of the
parametric variance 15.21. It is not as close to the true value as the previous
estimate based on the average variance within groups, but this is to be expected,
since it is based on only 7 "observations." We need a name describing this
variance to distinguish it from the variance of means from which it has been
computed, as well as from the variance within groups with which it will be
compared. We shall call it the variance among groups; it is n times the variance
of means and is an independent estimate of the parametric variance ([2 of the
housefly wing lengths. It may not be clear at this stage why the two estimates
of ([2 that we have obtained, the variance within groups and the variance among
groups, are independent. We ask you to take on faith that they are.

Let us review what we have done so far by expressing it in a more formal
way. Table 7.2 represents a generalized table for data such as the samples of
housefly wing lengths. Each individual wing length is represented by Y, sub­
scripted to indicate the position of the quantity in the data table. The wing length
of the jth fly from the ith sample or group is given by l';j' Thus, you wilI notice
that the first suhscript changes with cach column represl:nting a group in the

TABU: 7.2
Data arranged for simple analysis of varianl'e, single classification, completely
randomized.

woups
l 3 a

---~

'" J YII Yll YJI Y,t };, I

E 2 Yll Y21 YJ2 1";2 }~2
.~ J YI .J Y 2 ., Y" Y" }:d

'"
j Y;j Y2j Y'J Yij ~'J

1/ Yin Y2n Y1n ~·fI l':m
---------------

n n n n n n

Sums IY IYI IY1 IY) Iy, IY"

Means Y Y\ Y2 Y3 Y, }~,
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table, and the second subscript changes with each row representing an individual
item. Using this notation, we can compute the variance of sample 1 as

1 j~n - Z
-- L.. (Ylj - Yd
n - I j= I

The variance within groups, which is the average variance of the samples,
is computed as

1 i=a j=n

-- L L (Yjj - ly
a(n - 1) ;=1 j=1

Note the double summation. It means that we start with the first group, setting
i = I (i being the index of the outer L). We sum the squared deviations of all
items from the mean of the first group, changing index j of the inner L from 1
to 11 in the process. We then return to the outer summation, set i = 2, and sum
the squared deviations for group 2 fromj = I to j = 11. This process is continued
until i, the index of the outer L, is set to a. In other words, we sum all the
squared deviations within one group first and add this sum to similar sums from
all the other groups.

The variance among groups is computed as

n t=:a _ =

~L(l':-Y)z
a - I i= 1

Now that we have two independent estimates of the population variance,
what shall we do with them'? We might wish to tlnd out whether they do in fact
estimate the same parameter. To test this hypothesis, we need a statistical test
that will evaluate the probability that the two sample variances are from the same
population. Such a test employs the F distribution, which is taken up next.

7.2 The F distribution

Let us devise yet another sampling experiment. This is quite a tedious one with­
out t he usc of computers, so we will not ask you to carry it out. Assume that
you arc sampling at random from a normally distributed population, such as the
hOllsefly wing lengths with mean 11 and variance (Jz. The sampling procedure
consists of first sampling III items and calculating their variance sr, followed hy
sampling liz items and calculating their variance ,\~. Sample sizes III and liz may
or may not be equal to each other, but arc tixed for anyone sampling experiment.
Thus, for example, we might always sample R wing lengths for the tirst sample
(11\) and 6 wing lengths for the second sample (tl z). After each pair of values (sf

and s~) has been obtained, we calculate

This will be a ratio ncar I, because these variances arc estimates of the same
quantity. Its ~Ictllal value will depend on the relative magnitudes of variances
.. ~ .,.,.1 .. 2 If ~ ,."t,,.,~I., t"I.,,~ <,,, ~ L,,· ,~f ,.;.l"~" n n '·~ I~ .·".I. .•• 1"j; , jl,,~ r'li;".·

F s oftheir variances, the average of these ratios will in fact approach the quantity
(n2 - 1)/(n2 - 3), which is close to 1.0 when n2 is large.

The distribution of this statistic is called the F distribution, in honor of
R. A. Fisher. This is another distribution described by a complicated mathe­
matical function that need not concern us here. Unlike the t and X2 distributions,
the shape ofthe F distribution is determined by two values for degrees of freedom,
VI and V2 (corresponding to the degrees of freedom of the variance in the
numerator and the variance in the denominator, respectively). Thus, for every
possible combination of values vI' V 2 , each v ranging from I to infinity, there
exists a separate F distribution. Remember that the F distribution is a theoretical
probability distribution, like the t distribution and the X2 distribution. Variance
ratios sf!s~, based on sample variances are sample statistics that mayor may
not follow the F distribution. We have therefore distinguished the sample vari­
ance ratio by calling it F s , conforming to our convention of separate symbols
for sample statistics as distinct from probability distributions (such as t s and
X 2 contrasted with t and X2

).

We have discussed how to generate an F distribution by repeatedly taking
two samples from the same normal distribution. We could also have generated
it by sampling from two separate normal distributions differing in their mean
but identical in their parametric variances; that is, with III # Ilz but (Jr = (J~.

Thus, we obtain an F distribution whether the samples come from the same
normal population or from different ones, so long as their variances are identical.

Figure 7.1 shows several representative F distributions. For very low degrees
of freedom the distribution is L-shaped, but it becomes humped and strongly
skewed to the right as both degrees of freedom increase. Table V in Appendix
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(7.1)

A2 shows the cumulative probability distribution of F for three selected prob­
ability values. The values in the table represent Fa(",. "11' where rJ. is the proportion
of the F distribution to the right of the given F value (in one tail) and \'1' \'Z are
the degrees of freedom pertaining to the variances in the numerator and the
denominator of the ratio, respectively. The table is arranged so that across the
top one reads vl' the degrees of freedom pertaining to the upper (numerator)
variance, and along the left margin one reads Vz, the degrees of freedom per­
taining to the lower (denominator) variance. At each intersection of degree of
freedom values we list three values of F decreasing in magnitude of IX. For
example, an F distribution with \'1 = 6, Vz = 24 is 2.51 at IX = 0.05. By that
we mean that 0.05 of the area under the curve lies to the right of F = 2.51.
Figure 7.2 illustrates this. Only 0.01 of the area under the curve lies to the right
of F = 3.67. Thus, if we have a null hypothesis H0: aT = a~, with the alternative
hypothesis HI: aT > a~, we use a one-tailed F test, as illustrated by Figure 7.2.

We can now test the two variances obtained in the sampling experiment
of Section 7.1 and Table 7.1. The variance among groups based on 7 means was
21.180, and the variance within 7 groups of 5 individuals was 16.029. Our null
hypothesis is that the two variances estimate the same parametric variance; the
alternative hypothesis in an anova is always that the parametric variance esti­
mated by the variance among groups is greater than that estimated by the
variance within groups. The reason for this restrictive alternative hypothesis.
which leads to a onc-tailed test will be explained in Section 7.4. We calculate
the variance ratio F, = sT/s~ = 21.181/16.029 = 1.32. Before we can inspect the

O.~l-

os -

a = (U);;

();', I () I:, 2() 2.:,

F

FIGURE 7.2
Frcquency curvc of the F distribution for (, ,1I~d 24 degrees of freedom. respectively. A onc-tailed

F table, we have to know the appropriate degrees of freedom for this variance
ratio. We shall learn simple formulas for degrees of freedom in an anova later,
but at the moment let us reason it out for ourselves. The upper variance
(among groups) was based on the variance of 7 means; hence it should have
a - I = 6 degrees of freedom. The lower variance was based on an average of
7 variances, each of them based on 5 individuals yielding 4 degrees of freedom
per variance: a(n - I) = 7 x 4 = 28 degrees offreedom. Thus, the upper variance
has 6, the lower variance 28 degrees of freedom. If we check Table V for VI = 6,
Vz = 24, the closest arguments in the table, we find that FO.OS [6.Z4] = 2.51. For
F = 1.32, corresponding to the Fs value actually obtained, IX is clearly > 0.05.
Thus, we may expect more than 5% of all variance ratios of samples based on
6 and 28 degrees of freedom, respectively, to have Fs values greater than 1.32.
We have no evidence to reject the null hypothesis and conclude that the two
sample variances estimate the same parametric variance. This corresponds, of
course, to what we knew anyway from our sampling experiment. Since the seven
samples were taken from the same population, the estimate using the variance
of their means is expected to yield another estimate of the parametric variance
of housefly wing length.

Whenever the alternative hypothesis is that the two parametric variances are
unequal (rather than the restrictive hypothesis HI: aT > a~), the sample variance
sf ean be smaller as well as greater than s;. This leads to a two-tailed test and
in such eases a 5% type I error means th;t rejection regions of 2t% will ~ceur
at each tail of the curve. In such a case it is necessary to obtain F values for
fJ. > 0.5 (that is, in the left half of the F distribution). Since these values are rarely
tabulated, they can be obtained by using the simple relationship

Fal ",." ..] = --~-­
Fl. - 0)("2. \'t1

For example, FO.0515.24J = 2.62. If wc wish to obtain FO.9515.24J (the F value to
the right of which lies 95~;; of the area of the F distribution with 5 and 24 degrees
?ffreedom, respectively), we first have to find F005124.51 = 4.53. Then F09515.241

IS the reciprocal of 4.53, which equals 0.221. Thus 95% of an F distribution with
5 and 24 degrees of freedom lies to the righ t of 0.221.

There is an important relationship between the F distribution and the XZ

distribution. You may remember that the ratio X 2 = I y2/a 2 was distributed as
a X

2
with IJ - I degrees offreedom. If you divide the numerator of this expression

by II - I, you obtain the ratio F., = S2/(fZ, which is a variance ratio with an
expected distribution of F[II_ I .• (. The upper degrees of freedom arc II - I (the
degrees of freedom of the sum of squares or sample variance). The lower degrees
of freedom arc infinite, because only on the basis of an infinite number of items
can we obtain the true, parametric variance of a population. Therefore, by
dividing a value of X 2 by II - I degrees of freedom, we obtain an F, value with
II - I and ex) dr, respectively. In general, Xf\'/v = F,,, .. ,.]. We can convince our­
selves of this by inspecting the F and xZ tables. From the X2 table CTable IV)
we find that X~0511 01 = 18.307. Dividing this value by 10 dr, we obtain 1.8307.
T:"' .L r'. I I ,..~ , •• "
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•
BOX 7.1
Testing the significance ofdift'erences between two varia.nces.

Survival in days of the cockroach Blattella lJaga when kept without food or water.

Thus. the two statistics of significance are closely related and, lacking a / table,
we could make do with an F table alone. using the values of vF[v. xl in place

of Xf'I'
Before we return to analysis of variance. we shall first apply our newly won

knowledge of the F distribution to testing a hypothesis about two sample

variances.

7.3 The hypothesis H 0: (Ji = (J~

A test of the null hypothesis that two normal populations represented by two
samples have the same variance is illustrated in Box 7.1. As will be seen later,
some tests leading to a decision about whether two samples come from popula­
tions with the same mean assume that the population variances are equal. How­
ever, this test is of interest in its own right. We will repeatedly have to test whether
two samples have the same variance. In genetics wc may need to know whether
an offspring generation is more variable for a character than the parent genera­
tion. In systematics we might like to find out whether two local populations are
equally variable. In experimental biology we may wish to demonstrate under
which of two experimental setups the readings will be more variable. In general,
the less variable setup would be preferred; if both setups were equally variable,
the experimenter would pursue the one that was simpler or less costly to
undertake.si = 3.6

s~ = 0.9
Yl "" 8.5 days
Yz =4.8 days

Females
Males

Sour".: Data modified from Willis and Lewis (1957).

The alternative hypothesis is that the two variances are unequal. We have
no reason to suppose that one sex should be more variable than the other.
In view of the alternative hypothesis this is a two-tailed test. Since only
the right tail of the F distribution is tabled extensively in Table V and in
most other tables, we calculate Fs as the ratio of the greater variance over
the lesser one:

F =~1=3'?=400
, s~ 0.9 .

Because the test is two-tailed, we look up the critical value Fa/ 21 ,."V2]' where
t>: is the type I error accepted and VI = n j - 1 and V2 = n2 - 1 are the
degrees offrecdom for the upper and lower variance. respectively. Whether
we look up Fa/2lv ,.v,] or Fa/2lf2.vtl depends on whether sample 1 or sample
2 has the greater variance and has been placed in the numerator.

From Table V we find 1"0.025(9.9] = 4.03 and F O.05[9.9] = 3.18. Be­
cause this is a two-tailed test, we double these probabilities. Thus, the 1"

value of 4.03 represents a probability of t>: = 0.05, since the right-hand tail
area of IX = 0.025 is matched by a similar left-hand area to the left of
FO.97519.9J= 1/1"0.025(9.9] = 0.248. Therefore, assuming the null hypothesis
is true, the probability of observing an 1" value greater than 4.00 and
smaller than 1/4.00 = 0.25 is 0.10 > P > 0.05. Strictly speaking, the two
sample variances are not significantly different-the two sexes are equally
variable in their duration of survival. However, the outcome is close
enough to the 5% significance level to make us suspicious that possibly
the variances are in fact different. It would be desirable to repeat this
experiment with larger sample sizes in the hope that more decisive results
would emerge.

7.4 Heterogeneity among sample means

We shall now modify the data of Table 7.1, discussed in Section 7.1. Suppose
the seven groups of houseflies did not represent random samples from the same
population but resulted from the following experiment. Each sample was reared
in a separate culture jar, and the medium in each of the culture jars was prepared
in a ditTerent way. Some had more water added. others more sugar. yet others
more solid matter. Let us assume that sample 7 represents the standard medium
against which we propose to compare the other samples. The various changes
in the medium affect the sizes of the flies that emerge from it; this in turn atTects
the wing lengths we have heen measuring.

We shall assume the following elTeets resulting from treatment of the
medium:

Medium I decreases average wing length of a sample hy 5 units
2 --decreases average wing length of a sample by 2 units
3--does not change average wing length of a sample
4 increases average wing length of a sample by I unit
5 -increases average wing length of a sample hy I unit
6 increases average wing length of a sample hy 5 units
7--(eontrol) docs not change average wing length of a sample

The cITed of treatment i is usually symbolized as :1 i . (Pleasc note that this use
of:1 is not related to its usc as a symbol for the probahility of a type I errOL)
Thus (Xi assumes the following valucs for the above treatment effects.

:1 1
..- - 5 (X4 = I

(X2 = -2 (Xs = 1

(x.\ = 0 ':1 6 = 5

N - (\
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Note that the (X/s have been defined so that ~a (Xi = 0; that is, the effects cancel
out. This is a convenient property that is generally postulated, but it is unneces­
sary for our argument. We can now modify Table 7.1 by adding the appropriate
values of (Xi to each sample. In sample 1 the value of a l is - 5; therefore, the
first wing length, which was 41 (see Table 7.1), now becomes 36; the second
wing length, formerly 44, becomes 39; and so on. For the second sample a

2
is

- 2, changing the first wing length from 48 to 46. Wherecx, is 0, the wing
lengths do not change; where (J., is positive, they are increased by the magnitude
indicated. The changed values can be inspected in Table 7.3, which is arranged
identically to Table 7.1.

We now repeat our previous computations. We first calculate the sum of
squares of the first sample to find it to be 29.2. If you compare this value
with the sum of squares of the first sample in Table 7.1, you find the two
values to be identical. Similarly, all other values of ~n y2, the sum of squares of
each group, are identical to their previous values. Why is this so? The effect of
adding (J., to each group is simply that of an additive code, since (J.; is constant
for anyone group. From Appendix A1.2 we can see that additive codes do not
affe<.:t sums of squares or variances. Therefore. not only is ea<.:h separate sum of
squares the same as before, but the average variance within groups is still 16.029.
Now let us compute the variance of the means. It is 100.617/6 = 16.770, which
is a value much higher than the variance of means found before, 4.236. When we
multiply by n = 5 to get an estimate of (J2, we ohtain the variance of groups.
which now is 83.848 and is no longer even close to an estimate of ()2. We repeat
the F test with the new variances and find that F, = 83.848/ 16'()29 = 5.23. which
is much greater than the closest critical value of F().()516.2~J = 2.51. In fact, the
observed F, is greater than F()OI16.H\ = 3.67. Clearly, the upper variance. repre­
senting the variance among groups. has beconw significantly larger. The two
variances are most unlikely to represent the same parametric variance.

What has happened? We can easily explain it by means of Tahle 7.4. which
represents Table 7.3 symbolically in the manner that Table 7.2 represented
Table 7. J. We note that each group has a constant lX; added and that this
constant ehanges the sums of the groups by na, and the means of these groups
bya j . [n Section 7.1 we computed the variance within groups as

I ; II j n _

---- I L [( Y;j +- a;) .- ( }; +- lXilr
a(n - I) i-I i-I

lI(n

When we try to repeat this. our formula becomes more complicated. because to
each Y;; and each }; there has now been addedlX j . We therefore write

Then we open the parentheses inside the square brackets, so that the second lX;
changes sign and thea;'s cancel out, leaving the expression exactly as before,
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However. from Table 7.4 we sec that the new grand mean equals

Squaring the expression in the square hradds. we ohtain the terms

I j~(J 1 i (J 1 (J

---- I (a j - a)2 = -- I a2 = - .." L a2
a-I i= I a - I, I I (/ - I

(
I (J) n (J

n sp +--I al = Sl + --- I al

a - I a-I

in cases such as the present one, where the magnitude of the treatment effects
ai is assumed to be independent of the ~ to which they are added, the expected
value of this quantity is zero; hence it does not contribute to the new variance
of means.

The independence of the treatments effects and the sample means is an
important concept that we must understand clearly. If we had not applied dif­
ferent treatments to the medium jars, but simply treated all jars as controls,
we would still have obtained differences among the wing length means. Those
are the differences found in Table 7.1 with random sampling from the same
population. By chance, some of these means are greater, some are smaller. In
our planning of the experiment we had no way of predicting which sample
means would be small and which would be large. Therefore, in planning our
treatments, we had no way of matching up a large treatment effect, such as that
of medium 6, with the mean that by chance would be the greatest, as that for
sample 2. Also, the smallest sample mean (sample 4) is not associated with the
smallest treatment cffect. Only if the magnitude of the treatment effects were
deliberately correlated with the sample means (this would be difficult to do in
the experiment designed here) would the third term in the expression, the co­
variance, have an expected value other than zero.

The second term in the expression for the new variance of means is clearly
added as a result of the treatment effects. It is analogous to a variance, but it
cannot be called a variance, since it is not based on a random variable, but
rather on deliberately chosen treatments largely under our control. By changing
the magnitudc and nature of the treatments, we can more or less alter thc
variancelike quantity at will. We shall therefore call it the added component due
to treatment etTeets. Since the aj's are arranged so that a = 0, we can rewrite
the middle term as

In analysis of variance we multiply the variance of the means by n in order
to estimate the parametric variance of the items. As you know, we call the
quantity so ohtained the variance of groups. When we do this for the case in
which treatment elTects arc present, we obtain

i a _

L [( Y, + IXJ- (Y + IXlf
i-I

i a _

L [f¥;- Y)+(IX,-aW
j.-= I

a

a·

which in turn yields

When we substitute the new values for the group means and the grand mean
the formula appears as

substantiating our earlier observation that the variance within groups docs not
change despite the treatment effects.

The variance of means was previously calculated by the formula

TABLE 7.4
Data of Table 7.3 arranged in the manner of Table 7.2.

a Groups
2 3 a

Vl 1 Y11 +:X l Y21 T:X 2 Y31 + :X 3 1';1 +:Xj 1;,1 +(1"
E 2 Y12 + (11 Y22 + (12 Y32 + (13 1';2 + (1j 1;,2 + CI."
~ 3 Y13 + (11 }~3 + (12 Y33 + :X 3 1';3 + rJ. j }~3 + (1"
:;:

j Ylj -+: :XI YZj -+: (12 Y3j + (13 1';j -+: rJ. j }~j -+: :x"

/I YIn + (11 Y2n + (12 Y3n + (13 1';n + rJ. j }~n + 'l."

n n n n n

Sums IYI+ /lrJ. 1 I Y2 + /lrJ. 2 I Y3 + /lCX 3 I Y; + /I(1j I Ya + IIJ,

Means YI + (11 YI + 1X 2 Y3 + rJ. 3 1; + lX i Ya +1"

I I U.. L (Y,
II - I i I

-:-: 1 i /l 2 j u __ =
Y)2 + I ((Xi - &.)2 + - I (y; - Y)(lX j a)

a- I i I a ... I i~ I

Thus we sec that the estimate of the parametric variance of the population is
increased hy the quantity

The first of these terms we immediately recognize as the previous variance "I

the means, s~. The second is a new quantity, but is familiar hy general appeal
;IIKe; it clearly is a variance or at least a quantity akin to a variance. The third
expression is a new type; it is a so-called covariance, which we have not ),1

cncountcrcd. We shall nol hc concerned with it at this stage except to say th,11

n (J
_.. _-- I a l

a-I

which is II times the added component due to treatment cffects. We found the
variance ratio F, to be significantly greater than could be reconciled with the
null hypothesis. It is now ohvious why this is so. We were testing the variance
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The first lerm is the variance of means s~, as hefore, and the last term is the
covariance between the group means and the random dlCcts A;, lhe expected
value of which is zero (as hcfmej, hecause the random eflects arc independent
of the magnitude of the means. The middle term is a true variance, since A;
is a random variable. We symbolize it by S'~ and call it the added pari£lllCl'

COI11/Wlll'lIl a/1I01l!! 1/l'IillfJS. It would represent the added variance component
among females or alllong medium balches, depending on which of the designs
discussed ahow we were thinking of. The existence of this added variance com­
ponent is demonstrated by the F test. If the groups are random samples, we
may expect F to approximate a2/a 2 .~. I; hut with an added vartance compo­
nent, Ihe expected ratio, again displayed lopsidedly, is

for wing length are distributed in an unknown manner in the population of
houseflies (we might hope that they are normally distributed), and our sample
of seven is a random sample of these factors.

In another example for a Model II anova, suppose that instead of making
up our seven cultures from a single batch of medium, we have prepared seven
batches separately, one right after the other, and are now analyzing the variation
among the batches. We would not be interested in the exact differences from
batch to batch. Even if these were measured, we would not be in a position to
interpret them. Not having deliberately varied batch 3, we have no idea why,
for example, it should produce longer wings than batch 2. We would, however,
be interested in the magnitude of the variance of the added effects. Thus, if we
used seven jars of medium derived from one batch, we could expect the variance
of the jar means to be (52/5, since there were 5 flies per jar. But when based on
different batches of medium, the variance could be expected to be greater, be­
cause all the imponderable accidents of formulation and environmental dif­
ferences during medium preparation that make one batch of medium different
from another would come into play. Interest would focus on the added variance
component arising from differences among batches. Similarly, in the other
example we would be interested in the added variance component arising from
genetic diflcrences among the females.

We shall now take a rapid look at the algebraic formulation of the anova
in the case of Model II. In Table 7.3 the second row at the head of the data
columns shows not only 'X; but also A;, which is the symbol we shall usc for
a random group effect. We usc a capital letter to indicate that the en'ect is a
variable. The algebra of calculating the two estimates of the population vari­
ance is the same as in Model I, except that in place of 'X; we imagine /I; suh­
stituted in Tahlc 7.4. The estimate of the variance among means now represents
the quantity

ratio expecting to find F approximately equal to a 2
/(52 = 1. In fact, however,

we have

2 11 ~ 2a +.--L,Y.
£I-I

F ~ --;;-2-----­
a

It is clear from this formula (deliberately displayed in this lopsided manner)
that the F test is sensitive to the presence of the added component due to treat­
ment effects.

At this point, you have an additional insight into the analysis of variance.
It permits us to test whether there are added treatment effects-that is, whether
a group of means can simply be considered random samples from the same
population, or whether treatments that have affected each group separately
have resulted in shifting these means so much that they can no longer be
considered samples from the same population. If the latter is so, an added com­
ponent duc to treatment effects will be present and may be detected by an F test
in the significance test of the anaJysis of variance. In such a study, we are
generally not interested in the magnitude of

Il a
- -_ ') 'X 2

£I-J'--'

but we are interested in the magnitude of the separate values of 'Xi' In our
example these arc the effects of different formulations of the medium on wing
length. If, instead of housefly wing length, we were measuring blood pressure
in samples of rats and the different groups had been subjected to different drugs
or difrcrent doses of the same drug, the quantities 'X; would represent the ellects
of drugs on the hlood pressure, which is clearly the issue of interest to the
investigator. We may also be interested in studying differences of the type
C( 1 - C(2, leading us to the question of the significance of the differences bet ween
the effects of any two types of medium or any two drugs. But we arc a little
ahead of our story.

When analysis of variance involves treatment effects of the type just studied,
we call it a lVl;nlcl 1 a/lOpa. Later in this chapter (Section 7.6), Model I will
be defined precisely. There is another model, called a Mollelll aIlO[)(/, in which
the added eflects for each group arc not fixed treatments but arc random efleets.
By this we mean that we have not deliherately planned or lixed the tn:atment
for anyone grou p, but that thc act ual efleet s on each grou p arc random and
only partly under our control. Suppose that the seven samples of houseflies in
Table 7.3 represented the offspring of seven randomly selected females from a
population reared on a uniform medium. There would be genetic diflerences
among these females, and their seven hroods would reflect this. The exaet nature
of these ditlCrcnces is unclear and unpredictable. Before actually measuring
them, we have no way of knowing whether brood I will have longer wings than
brood 2, nor have we any way of controlling this experiment so that brood 1
will in fact grow longer wings. So far as we can ascertain, the genetic factors

a

i II

L (f,
I; I a

i -0

L (A,
;,----1 a

L (Y; - Y)(A; - A)
; I



! (variance among groups - variance within groups)
n

Note that O'~, the parametric value of s~, is multiplied by n, since we have to
multiply the variance of means by n to obtain an independent estimate of the
variance of the population. In a Model II anova we are interested not in the
magnitude of any Ai or in differences such as At - A 2 , but in the magnitude
of O'~ and its relative magnitude with respect to 0'2, which is generally expressed
as the percentage 100s~/(s2 + s~). Since the variance among groups estimates
0'2 + nO'~, we can calculate s~ as
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TABLE 7.5
Anova table for data in Table 7.1.

(3) (4)
Sum Mean

(1) (2) of squares square
Source of variation dj SS MS

y- Y Among groups 6 127.086 21.181
y- f Within groups 28 448.800 16.029
y- Y Total 34 575.886 16.938

1 2 2 2J 1 2 2=- [(s + nsA ) - s = -(nsA ) = SA
n n

For the present example, s~ = ~(83.848 - 16.029) = 13.56. This added vari­
ance component among groups is

100 x 13.56 = 1356 = 45.83%
16.029 + 13.56 29.589

of the sum of the variances among and within groups. Model II will be formally
discussed at the end of this chapter (Section 7.7); the methods of estimating
variance components are treated in detail in the next chapter.

7.5 Partitioning the total sum of squares and degrees of freedom

So far we have ignored one other variance that can be computed from the
data in Table 7.1. If we remove the classification into groups, we can consider
the housefly data to be a single sample of an = 35 wing lengths and caleulate
the mean and variance of these items in the conventional manner. The various
quantities necessary for this computation are shown in the last column at the
right in Tables 7.1 and 7.3, headed "Computation of total sum of squares." We
obtain a mean of Y= 45}4 for the sample in Table 7.1, which is, of course,
the same as the quantity Ycomputed previously from the seven group means.
The sum of squares of the 35 items is 575.886, which gives a variance of 16.938
when divided by 34 degrees of freedom. Repeating these computations for the
dat;! in Table 7.3, we obtain Y= 45.34 (the same as in Table 7.1 because
La !Y. j = 0) and S2 = 27.997, which is considerably greater than the correspond­
ing variance from Table 7.1. The total variance computed from all an items is
another estimate of a 2

. It is a good estimate in the first case, but in the second
sample (Table 7.3), where added components due to treatment effects or added
variance components arc present, it is a poor estimate of the population variance.

However, the purpose of calculating the total variance in an anova is not
for using it as yet another estimate of 0'2, but for introducing an important
mathematical relationship between it and the other variances. This is best seen
when we arrange our results in a conventional analysis of variance laMe, as

shown in Table 7.5. Such a table is divided into four columns. The first iden­
tifies the source of variation as among groups, within groups, and total (groups
amalgamated to form a single sample). The column headed df gives the degrees
of freedom by which the sums of squares pertinent to each source of variation
must be divided in order to yield the corresponding variance. The degrees of
freedom for variation among groups is a-I, that for variation within groups
is a (n - 1), and that for the total variation is an - 1. The next two columns
show sums of squares and variances, respectively. Notice that the sums of
squares entered in the anova table are the sum of squares among groups, the
sum of squares within groups, and the sum of squares of the total sample of
an items. You will note that variances are not referred to by that term in anova,
but are generally called mean squares, since, in a Model I anova, they do not
estimate a population variance. These quantities arc not true mean squares,
because the sums of squares are divided by the degrees of freedom rather than
sample size. The sum of squares and mean square arc frequently abbreviated
SS and MS, respectively.

The sums of squares and mean squares in Table 7.5 are the same as those
obtained previously, except for minute rounding errors. Note, however, an
important property of the sums of squares. They have been obtained indepen­
dently of each other, but when we add the SS among groups to the SS within
groups we obtain the total SS. The sums of squares are additive! Another way of
saying this is that we can decompose the total sum of squares into a portion
due to variation among groups and anothcr portion due to variation within
groups. Observe that the degrees of freedom are also additive and that the total
of 34 df can be decomposed into 6 dj among groups and 28 dj within groups.
Thus, if we know any two of the sums of squares (and their appropriate degrees
of freedom), we can compute the third and complete our analysis of variance.
Note that the mean squares are not additive. This is obvious, sincc generally
(a + IJ)/k -+ d) ¥ ale + IJld.

We shall use the computational formula for sum of squares (Expression
(3.8)) to demonstrate why these sums of squares are additive. Although it is an
algebraic derivation, it is placed here rather than in the Appendix because
these formulas will also lead us to some common computational formulas for
analysis of variance. Depending on computational equipment, the formulas we
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have used so far to obtain the sums of squares may not be the most rapid pro­
cedure.

The sum of squares of means in simplified notation is

a (1 n )2 1[a (1 n )J2
=L~LY -~L~LY

1 a(n )2 1 (a n )2
= n2 L L Y - an2 L L Y

Note that the deviation of means from the grand mean is first rearranged to
fit the computational formula (Expression (3.8)), and then each mean is written
in terms of its constituent variates. Collection of denominators outside the sum­
mation signs yields the final desired form. To obtain the sum of squares of
groups, we multiply SSmcans by /1, as before. This yields

1 a(n )2 1 (a n )2
SSgroups = n X SSmeans = ~ L L Y - an LL Y

Next we evaluate the sum of squares within groups:

The total sum of squares represents

Adding the expression for SSgroups to that for SSwithin, we obtain a quantity that
is identical to the one we have just developed as SS(olal' This demonstration
explains why the sums of squares are additive.

We shall not go through any derivation, but simply state that the degrees
of freedom pertaining to the sums of squares are also additive. The total degrees
of freedom are split up into the degrees of freedom corresponding to variation
among groups and those of variation of items within groups.

Before we continue, let us review the meaning of the three mean squares
in the anova. The total MS is a statistic of dispersion of the 35 (an) items around
their mean, the grand mean 45.34. It describes the variance in the entire sample
due to all the sundry causes and estimates (12 when there are no added treatment
effects or variance components among groups. The within-group MS, also
known as the individual or intragroup or error mean square, gives the average
dispersion of the 5 (n) items in each group around the group means. If the a
groups are random samples from a common homogeneous population, the
within-group MS should estimate (12. The MS among groups is based on the
variance of group means, which describes the dispersion of thc 7 (a) group
means around the grand mean. If the groups are random samples from a homo­
geneous population, the expected variance of their mean will be (12/n. Therefore,
in order to have all three variances of the same order of magnitude, we multiply
the variance of means by n to obtain the variance among groups. If there are
no added treatment effects or variance components, the MS among groups is
an estimate of (12. Otherwise, it is an estimate of

or

depending on whether the anova at hand is Model I or II.
The additivity relations we have jusllearned are independent of the presence

of added treatment or random effects. We could show this algebraically, but
it is simpler to inspect Table 7.6, which summarizes the anova of Table 7.3 in
which ~i or Ai is added to each sample. The additivity relation still holds,
although the values for group SS and the tolal SS arc dilfercnt from those of
Table 7.5.

We now copy the formulas for these sums of squares, slightly rearranged
follows:

I " (n )2 a n
SSwi'hin = - ~ I I Y + LL y

2

-- -------~ -_.-

u n I (a n )2LL y
2

- ~~ IL Y

SSgruup,=
I a(n )2-I I Y
n

1 (a" )2
- an L L Y

as TADI.E 7.6
Anova table for data in Table 7.3.

(3) (4)
Sum Mean

(/) (':) {lr s'Iwlres -"'/flare
Source of parial ion dJ SS MS

y- Y Among groups 6 503.086 1U.8411
y-y Within groups 28 448.800 16,!)2l)
y-y Total 34 951.1186 27.997
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Another way of looking at the partitioning of the variation is to study the
deviation from means in a particular case. Referring to Table 7.1, we can look
at the wing length of the first individual in the seventh group, which happens
to be 41. Its deviation from its group mean is

Y7l - Y7 = 41 - 45.4 = -4.4

The deviation of the group mean from the grand mean is

Y7 - Y= 45.4 - 45.34 = 0.06

and the deviation of the individual wing length from the grand mean is

Y7l - Y= 41 - 45.34 = -4.34

Note that these deviations are additive. The deviation ofthe item from the group
mean and that of the group mean from the grand mean add to the total devia­
tion of t,:e itemJro~ the grand=mean. These deviations are stated algebraically
as(Y - Y) + (Y- Y) = (Y - Y). Squaring and summing these deviations for an
items will result in

Before squaring, the deviations were in the relationship a + b = c. After squar­
ing, we would expect them to takc the form a2 + b2 + lab = ('2. What happened
to the cross-product tcrm corresponding to 2ab? This is

an a n

2 I (y-- Y)( Y - Y) = 2 I [( Y - Y) I (Y - Y)]

a covariance-type term that is always zero, sincc In (y - Y) = 0 for each of the
a groups (proof in Appendix A 1.1).

We identify the deviations represented by each level of variation at the left
margins of the tables giving the analysis of variance results (Tables 7.5 and 7.6).
Note that the deviations add up correctly: the deviation among groups plus
the deviation _withLn groups e.9ua1s the t()tal deviation of items in the analysis
ofvariance,(Y-- y)+(y- y)=(Y~ Y).

7.6 Model I anova

An important point to remember is that the basic setup of data, as well as the
actual computation and significance test, in most cases is the same for both
models. The purposes of analysis of variance differ for the two models. So do
some of the supplementary tests and computations following the initial signifi­
cance test.

Let liS now try to resolve the variation found in an analysis of variance
casco This will not only lead us to a more formal interpretati~n of anova but
will also give us a deeper understanding of the nature of variation itself. For

purposes of discussion, we return to the housefly wing lengths of Table 7.3. We
ask the question, What makes any given housefly wing length assume the value
it does? The third wing length of the first sample of flies is recorded as 43 units.
How can we explain such a reading?

If we knew nothing else about this individual housefly, our best guess of
its wing length would be the grand mean of the population, which we know
to be J1. = 45.5. However, we have additional information about this fly. It is a
member of group 1, which has undergone a treatment shifting the mean of the
group downward by 5 units. Therefore, 1X 1 = - 5, and we would expect our
individual Y13 (the third individual ofgroup 1) to measure 45.5 - 5 = 40.5 units.
In fact, however, it is 43 units, which is 2.5 units above this latest expectation.
To what can we ascribe this deviation? It is individual variation of the flies
within a group because of the variance of individuals in the population
«(1"2 = 15.21). All the genetic and environmental effects that make one housefly
different from another housefly come into play to produce this variance.

By means of carefully designed experiments, we might learn something
about the causation of this variance and attribute it to certain specific genetic
or environmental factors. We might also be able to eliminate some of the vari­
ance. For instance, by using only full sibs (brothers and sisters) in anyone
culture jar, we would decrease the genetic variation in individuals, and un­
doubtedly the variance within groups would be smaller. However, it is hopeless
to try to eliminate all variance completely. Even if we could remove all genetic
variance, there would still be environmental variance. And even in the most
improbable case in which we could remove both types of variance, measurement
error would remain, so that we would never obtain exactly the same reading
even on thc same individual fly. The within-groups MS always remains as a
residual, greater or smaller from experiment to experiment--part of the nature
of things. This is why the within-groups variance is also called the error variance
or error mean square. It is not an error in the sense of our making a mistake,
but in the sense of a measure of the variation you have to contend with when
trying to estimate significant differences among the groups. The crror variance
is composed of individual deviations for each individual, symbolized by Eij' the
random component of the jth individual variate in the ith group. In our case,
E 1 3 = 2.5, since the actual observed value is 2.5 units above its expectation
of 40.5.

We shall now stale this relationship more formally. In a Model I analysis
of variance we assume that the differences among group means, if any, are due
to the fixed treatment effects determined by the experimenter. The purpose of
the analysis of variance is to estimate the true differences among thc group
means. Any single variate can be decomposed as follows:

(7.2)

where i = I, ... ,a, .i = 1, ... , n; and Eij represents an independent, normally
distributed variable with mean EU = 0 and variance a; = (T2 Therefore, a given
reading is composed of the grand mean J1. of the population, a fixed deviation
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Y. i of the mean of group i from the grand mean p, and a random deviation Eij

of the jth individual of group i from its expectation, which is (p + Y.;). Remember
that both Y. j and Eij can be positive as well as negative. The expected value (mean)
of the Eij'S is zero, and their variance is the parametric variance of the popula­
tion, (J2. For all the assumptions of the analysis of variance to hold, the dis­
tribution of Eij must be normal.

In a Model I anova we test for differences of the typey. 1 - Y.2 among the
group means by testing for the presence of an added component due to treat­
ments. If we find that such a component is present, we reject the null hypothesis
that the groups come from the same population and accept the alternative
hypothesis that at least some of the group means are different from each other,
which indicates that at least some of the Y.j's are unequal in magnitude. Next,
we generally wish to test whichy.;'s are different from each other. This is done
by significance tests. with alternative hypotheses such as HI :X

1
> X

2
or HI:

1(x 1 +x2 ) > x3 · In words, these test whether the mean of group I is greater
than the mean of group 2, or whether the mean of group 3 is smaller than the
average of the means of groups I and 2.

Some examples of Model I analyses of variance in various biological
disciplines follow. An experiment in which we try the effects of different d~ugs
on batches of animals results in a Modell anova. We arc interested in the results
of the treatments and the differences between them. The treatments arc fixed
and determined by the experimenter. This is true also when we test the effects
of different doses of a given factor- a chemical or the amount of light to which
a plant has been exposed or temperatures at which culture bottles of insects have
been reared. The treatment does not have to be entirely understood and manip­
ulated by the experimenter. So long as it is fixed and repeatable, Model I will
apply.

/[ we wanted to compare the birth weights of the Chinese children in the
hospital in Singapore with weights of Chinese children born in a hospital in
China, our analysis would also he a Model I anova. The treatment elTects tlwn
would he "China versus Singapore," which sums up a whole series of dill'crent
factors, genetic and environmental -some known to LIS but most of them not
understood. However. this is a definite treatment we can describe and also
repeat: we can, if we wish. again sample hirth weights of infants in Singapore
as well as in China.

Another example of Model I anova would he a study of hody weights for
animals of several age groups. The treatments would be the ages, which arc
fixed. If we lind that there arc significant difl'crences in weight among the ages,
we might proceed with the question of whether there is a dill'crence from age 2 to
age 3 or only from age I to age 2.

To a very largl' c,tcn(, Model I anovas are the result of an e,perimcnt and
()f deliheratc manipulation of factors by the experimenter. Howcver. the study
of difkrences such as the comparison of birth weights from two countries. whil~

not an experiment proper, also falls into this category.

7.7 Model II anova

The structure of variation In a Model II anova is quite similar to that In

Model I:

(7.3)

where i = 1, ... , a; j = 1, ... , n; Eij represents an independent, normally dis­
tributed variable with mean Ej · = 0 and variance (J; = (J2; and Ai representsJ _

a normally distributed variable, independent of all E'S, with mean Ai = 0 and
variance (J~. The main distinction is that in place of fixed-treatment effects (x;.

we now consider random effects Ai that differ from group to group. Since the
effects are random, it is uninteresting to estimate the magnitude of these random
effects on a group, or the differences from group to group. But we can estimate
their variance, the added variance component among groups (J~. We test for its
presence and estimate its magnitude s~, as well as its percentage contribution to
the variation in a Model II analysis of variance.

Some examples will illustrate the applications of Model II anava. Suppose
we wish to determine the DNA content of rat liver cells. We take five rats and
make three preparations from each of the five livers obtained. The assay read­
ings will be for a = 5 groups with n = 3 readings per group. The five rats pre­
sumably are sampled at random from the colony available to the experimenter.
They must be different in various ways, genetically and environmentally, but we
have no definite information about the nature of the differences. Thus, if we learn
that rat 2 has slightly more DNA in its liver cells than rat 3, we can do little
with this information, because we are unlikely to have any basis for following
up this problem. We will, however, be interested in estimating the variance of
the three replicates within anyone liver and the variance among the five rats;
that is, does variance (J~ exist among rats in addition to the variance (J2 expected
on the basis of the three replicates'l The variance among the three preparations
presumably arises only from differences in technique and possibly from differ­
ences in DNA content in different parts of the liver (unlikely in a homogenate).
Added variance among rats, if it existed, might he due to differences in ploidy
or related phenomena. The relative amounts of variation among rats and
"within" rats (= among preparations) would guide us in designing further
studies of this sort. If there was little variance among the preparations and
relatively more variation among the rats, we would need fewer preparations and
more rats. On the other hand, if the variance among rats was proportionately
smaller, we would use fewer rats and morc preparations pCI' rat.

In a study of the amount of variation in skin pigment in human populations,
we might wish to study different families within a homogcneous ethnic or racial
group and brothers and sisters within each family. The variance within families
would be the error mean square, and we would test for an added variance
component among families. We would expect an added variance component
(J~ hecause there are genctic differences among families that determinc amount
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Exercises

of skin pigmentation. We would be especially interested in the relative propor­

tions of the two variances (I2 and (I~, because they would provide us with

important genetic information. From our knowledge of genetic theory, we
would expect the variance among families to be greater than the variance among

brothers and sisters within a family.

The above examples illustrate the two types of problems involving Model

II analysis of variance that are most likely to arise in biological work. One is

concerned with the general problem of the design of an experiment and the
magnitude of the experimental error at different levels of replication, such as

error among replicates within rat livers and among rats, error among batches,

experiments, and so forth. The other relates to variation among and within

families, among and within females, among and within populations, and so

forth. Such problems are concerned with the general problem of the relation

between genetic and phenotypic variation.

7.1

7.2

In a study comparing the chemical composition of the urine of chimpanzees
and gorillas (Gartler, Firschein, and Dobzhansky, 1956), the following results
were obtained. For 37 chimpanzees the variance for the amount of glutamic acid
in milligrams per milligram of creatinine was 0.01069. A similar study based on
six gorillas yielded a variance of 0.12442. Is there a significant difference be­
tween the variability in chimpanzees and that in gorillas? ANS. Fs = 11.639,
F0.025[5.36J ~ 2.90.
The following data are from an experiment by Sewall Wright. He crossed Polish
and Flemish giant rabbits and obtained 27 F 1 rabbits. These were inbred and
112 F 2 rabbits were obtained. We have extracted the following data on femur
length of these rabbits.

n Y

7.4

7.5

7.6

ANS. S2 = 3.91, &1 = 0.405, &2 = 1.375, &3 = 0.595, &4 = 1.565, MS among
groups = 124.517, and F, = 31.846 (which is significant beyond the 0.01 level).
For the data in Table 7.3, make tables_to repr~sent partitioning of the value of
each variate into its three components, Y, (Y; - Y), (Y;j - Y;). The first table would
then consist of 35 values, all equal to the grand mean. In the second table all
entries in a given column would be equal to the difference between the mean of
that column and the grand mean. And the last table would consist of the devia­
tions of the individual variates from their column means. These tables represent
estimates of the individual components of Expression (7.3). Compute the mean
and sum of squares for each table.
A gcneticist recorded the following measurements taken on two-week-old mice
of a particular strain. Is there evidence that the variance among mice in different
litters is larger than one would expect on the basis of the variability found within
each litter')

Litters

2 3 4 5 6 7

19.49 22.94 23.06 15.90 16.72 20.00 21.52
20.62 22.15 20.05 21.48 19.22 19.79 20,37
19.51 19.16 21.47 22.48 26.62 21.15 21.93
18.09 20.98 14.90 18.79 20.74 14.88 20.14
22.75 23.13 19.72 19.70 21.82 19.79 22.28

ANS. S2 = 5.987, MSamnng = 4.416, s~ = 0, and F, = 0.7375, which is clearly not
significant at the 5% level.
Show t!Jat it is possible to represent the value of an individual variate as rollows:
Y" = t h -+- ( Y, - Y) -+- (}'ii - Yi ). What docs cal'll of the terms in parentheses
estimate in a Model I anova and in a Model II anova'?

27
112

83.39
80.5

1.65
3.81

Is there a significantly greater amount of variability in femur lengths among the
F 2 than among the F I rabbits? What well-known genetic phcnomenon is illus­
trated by these dat<l?

7.3 For the following data obtained by a physiologist, estimate a 2 (the variance
within groups), (Xi (the fixed treatment effects), the variance among the groups,
and the added component due to treatment L (X2/(a - I), and test the hypothesis
that the last quantity is 7ero.

Treatment

A B C D

n6.12 4.34 5.12 7.28
S2 2.85 6.70 4.06 2.03
11 10 10 10 10
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CHAPTER 8

Single-Classification

Analysis of Variance

We are now ready to study actual cases of analysis of variance in a variety of
applications and designs. The present chapter deals with the simplest kind of
anova, sinyle-c1l1ssifiuJt ion (//wlvsis or ullrillnce. By this we mean an analysis in
which the groups (samples) arc classified by only a single criterion. Either inter­
pretatil)J1S of the seven samples of housdly wing lengths (studied in the last
chapter), diflcrent medium formulations (Model I), or progenies of different fe­
males (Model II) would represent a single criterion for classification. Other
examples would be different temperatures at which groups of animals were
raised or different soils in which samples of plants have been grown.

We shall start in Section X.I by stating the basic computational formulas
for analysis of variance, based on [he topics covered in the previous chapter.
Section X.2 gives an example of the common case with equal sample sizes. We
shall illustrate this case by means of a Model I anova. Since the basic com­
putations for the analysis of variance" are the same in either model. it is not
necessary to repeat the illustration with a Model II anova. The latter model is
featured in Section X.3, which shows the minor computational complications
resulting from unequal sample sizes, since all groups in the anova need not
necessarily have the same sample size. Some computations unique to a Model
II anova an; also shown; these estimate variance components. Formulas be-

come especially simple for the two-sample case, as explained in Section 8.4.
In Model I of this case, the mathematically equivalent t test can be applied
as well.

When a Model I analysis of variance has been found to be significant,
leading to the conclusion that the means are not from the same population,
we will usually wish to test the means in a variety of ways to discover which
pairs of means are different from each other and whether the means can be
divided into groups that are significantly different from each other. To this end,
Section 8.5 deals with so-called planned comparisons designed before the test
is run; and Section 8.6, with unplanned multiple-comparison tests that suggest
themselves to the experimenter as a result of the analysis.

8.1 Computational formulas

We saw in Section 7.5 that the total sum of squares and degrees of freedom
can be additively partitioned into those pertaining to variation among groups
and those to variation within groups. For the analysis of variance proper, we
need only the sum of squares among groups and the sum of squares within
groups. But when the computation is not carried out by computer, it is sim­
pler to calculate the total sum of squares and the sum of squares among groups,
leaving the sum of squares within groups to be obtained by the subtraction
SStotal - SSgroups' However, it is a good idea to compute the individual vari­
ances so we can check for heterogeneity among them (sec Section 10.1). This will
also permit an independent computation of SSwithin as a check. In Section 7.5
we arrived at the following computational formulas for the total and among­
groups sums of squares:

SStot,,1 = f f yZ - ~~ (f f yr
SSgroups = ~ f (f Yy- £lIn ( f f yY

These formulas assume equal sample size n for each group and will be modified
in Section X.3 for unequal sample sizes. However, they suffice in their present
form to illustrate some general points about computational procedures in
analysis of variance.

We note that the second, subtracted term is the same in both sums of
squares. This term can be obtained by summing all the variates in the anova
(this is the grand total), squaring the sum, and dividing the result by the total
number of variates. It is comparable to the second term in the computational
formula for the ordinary sum of squares (Expression (3.8)). This term is often
called the correct ion term (abbreviated CT).

The first term for the total sum of squares is simple. It is the sum of all
squared variates in the anova table. Thus the total slim of squares, which
describes the variation of a single unstructured sample of all items, is simply
the familiar sum-of-squares formula of Expression (3.8).
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The first term of the sum of squares among groups is obtained by squaring
the sum of the items of each group, dividing each square by its sample size,
and summing the quotients from this operation for each group. Since the
sample size of each group is equal in the above formulas, we can first sum all
the squares of the group sums and then divide their sum by the constant n.

From the formula for the sum of squares among groups emerges an impor­
tant computational rule of analysis of variance: To .find the sum of squares
amollg allY set of groups, square the sum of each group alld divide by the sample
size of the group; sum the quotiellts of these operations and subtract from the sum
a correctioll term. To .filld this correctioll term, sum all the items ill the set, square
the sum, alld divide it by the Ilumber of items 011 which this sum is based.

8.2 Equal n

We shall illustrate a single-classification anova with equal sample sizes by a
Model I example. The computation up to and including the first test of signifi­
cance is identical for both models. Thus, the computation of Box 8.1 could also
serve for a Model II anova with equal sample sizes.

The data arc from an experiment in plant physiology. They are the lengths
in coded units of pea sections grown in tissue culture with auxin present. The
purpose of the experiment was to test the effects of the addition of various
sugars on growth as measured by length. Four experimental groups, represent­
ing three different sugars and one mixture of sugars, were used, plus one control
without sugar. Ten observations (replicates) were made for each treatment. The
term "treatment" already impt?es a Model I anova. It is obvious that the five--groups do not represent random samples from all possible experimental condi-
tions but were deliberately designed to ~t~le ef!~~!~.QL<:_~tainsugars 0.n..J.b,e
growth rate. We arc interested in the effect of the sugars on length. and our null
hypothesis will be that there is no added component due to treatment effects
among the five groups; that is, t~~pop.!!laJion n1ean..~ a.~e ~1l.~Y!!1~l!~~.~~e.9ual.

The computation is illustrated in Box 8.1. After quantities I through 7 have
been calculated, they are entered into an analysis-of-variance table, as shown
in the box. General formulas for such a table arc shown first; these arc followed
by a table filled in for the specific example. We note 4 degrees of freedom among
groups, there being five treatments, and 45 d{ within groups, representing 5
times (10 - I) degrees of freedom. We find that the mean square among groups
is considerably greater than the error mean square, giving rise to a suspicion
that an added component due to treatment effects is present. If the M Sgroups is
equal to or less than the MSwithin, we do not bother going on with the analysis,
for we would not have evidence for the presence of an added component. You
may wonder how it could be possible for the MSgroups to be less than the
M Swithin' You must remember that these two are independent estimates. If there
is no added component due to treatment or variance component among groups.
the estimate of the variance among groups is as likely to be less as it is to be
greater than the variance within groups.

Expressions for the expected values of the mean squares are also shown
in the first anova table of Box 8.1. They are the expressions you learned in the
previous chapter for a Model I anova.

•
BOX 8.1
Single-classificadon anova with equal salUIJle sizes.

The effect of the> addition of difl'erent sugars on length, in ocular units
(xOJI4 =: nun), ofpea sections grown in tissue culture with a.uxin present: n =: 10
(replications pet group). This is a Model I anova.

Treatments (a = 5)

J% Glucose
2% 2% + 2%

Observations, Glucose Fructose J% Fructose Sucrose
i.e.., replications Control added added adJled added

1 75 57 58 58 62
2 67 58 61 59 66
3 70 60 56 58 65
4 75 59 58 61 63
5 65 62 57 57 64
6 71 60 56 56 62
7 67 60 61 58 65
8 67 57 60 57 65
9 76 59 57 57 62

10 68 61 58 59 67

"Lr 701 593 582 580 641
y 70.1 59.3 58,2 58.0 64.1

Source: Data by W. Purves.

Preliminary computations
a "

1. Orand total =LLY = 701 + 593 +.,' + 641 = 3097

2. Sum of the squared observations
a "=LLy2

=: 752 + 672 + ... + 682 + 572 + .. , + 672
=: 193,151

3. Sum of the squared group totals divided by n

I a (" )2=;; L LY "" Jt(701 2 + 5932 + ... + 641 2
)

=Jt(l,929,055) = 192,905.50

4. Grand total squared and divided by total sample size =: correction term

CT == -!... (tt y )2 = (3097)2 = 9,591,409 =: 191,828.18
an 5 x 10 50
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-

Substituting the computed values into the above table we obtain the fol·
lowing: ,

ADOya table

• = O.Ot < P ;s; 0.05.
**=P:!OO.oJ.

These convenlions will be followed throughoul the text and will no longer be explained in subsequent
boxes and tahles.

8.3 Unequal n

This time we shall use a Model II analysis of variance for an example. Remember
that up to and including the F test for significance, the computations are exactly
the same whether the anova is based on Model I or Model II. We shall point
out thc stage in the computations at which there would be a divergence of
operations depending on the model.

The example is shown in Table 8.1. It concerns a series of morphological
measurements of the width of the scutum (dorsal shield) of samples of tick
larvae obtained from four different host individuals of the cottontail rabbit.
These four hosts were obtained at random from one locality. We know nothing
about their origins or their genetic constitution. They represent a random
sample of the population of host individuals from the given locality. We would
not be in a position to interpret differences between larvae from different hosts.
since we know nothing of the origins of the individual rabbits. Population
biologists arc nevertheless intcrestcd in such analyses because they provide an
answer to the following qucstion: Arc Ihe varianccs of mcans of larval charactcrs
among hosts greater than cxpectcd on the basis of variances of the characters
within hosts'l We can calculate the average variance of width of larval scutum
on a host. This will be our "crror" tcrm in the analysis of variancc. Wc then
tcst thc obscrved mcan square among groups and scc if it contains an added
component of variance. What would such an added componcnt of variance
reprcsent? The mcan square within host individuals (that is. of larvac on any
onc host) rcprescnts gcnetic difTcrcnces among larvac and difTercnccs in cnviron­
mcntal cxperiences of these larvae. Added variance among hosts demonstrates
significant dilTercntiation among thc larvae possibly due to dilTcrellccs among
th,~ hnl.'il,.' . .fT,'lt.,·,inn tl..u- l'lr\/'IP It ·.len. n'l':l" hp ..hult. tl"'\ nJ·n/ ... ti,~ ,1ifl'f"'"'"l1J''JO''' 'Ul"lnno

It may seem that we are carrying an unnecessary number of digits in the
computations in Box 8.1. This is often necessary to ensure that the error sum
of squares, quantity 7, has sufficient accuracy.

Since V1 is relatively large, the critical values of F have been computed by
harmonic interpolation in Table V (see footnote to Table III for harmonic
interpolation). The critical values have been given here only to present a com­
plete record of the analysis. Ordinarily. when confronted with this example, you
would not bother working out these values of F. Comparison of the observed
variance ratio F s = 49.33 with FO.01 [4.40] = 3.83, the conservative critical value
(the next tabled F with fewer degrees of freedom), would convince you that the
null hypothesis should be rejected. The probability that the five groups differ as
much as they do by chance is almost infinitesimally small. Clearly, the sugars
produce an added treatment effect, apparently inhibiting growth and conse­
quently reducing the length of the pea sections.

At this stage we are not in a position to say whether each treatment is
different from every other treatment, or whether the sugars are different from the
control but not different from each other. Such tests are necessary to complete
a Model I analysis, but we defer their discussion until Sections 8.5 and 8.6.

5.46

MS

269.33

SS

1077.32

245.50

1322.82

FO•01 (4.4S) = 3.77

4

df

45
49

Source of variation

FO.OS(4.4S1 = 2.58

¥ - Y Among groups
(among treatments)

y - Y Within groups
(error, replicates)

y - ¥ Total

Source of variation 4f
Expected

SS MS F. MS

¥- Y Among groups
6 MSJtoupa n "a-I 6 (12 +--L 1X

2

(a -1) MSwlthin a-I

y- ¥ Within groups a(n - 1) 7
7

(11-

--- a(n - 1)
y- ¥ Total an-I 5

Conclusions. There is a highly significant (P « 0.01) added component due to
treatment effects in the mean square among groups (treatments). The different
sugar treatm~nts clearly have a significant effect on growth of the pea sections.

~ee SectIOns 8.5 and 8.6 for the completion of a Model I analysis of variance:
that IS, the method for determining which means are significantly different from
each other.

a n

5.SStotal""L L y2 - CT
""quantity2 - qua.ntity4..,193,151-191,828.1~

6. SSJtou!" .., ~ t (t fr-CT

.., quantity 3 - quantity 4 .., 192,905.50 - 191,828.18= 1077..32

7. SSwidtin .., SS_I - SS..ou!"
.., qua.ntity 5 - quantity6.., 1322.82 - 1017.32 = 24..5.50

The anova table is constructed as follows.

BOX 8.1
Continued
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Anova table

Source: Dala hy P. A. Thomas.

Conclusion. There is a significant (P < 0.01) added variance component among
hosts for width of scutum in larval ticks.

TABLE 8.1
Data and anova table for a single classification anova with unequal sample sizes. Width of scutum
(dorsal shield) of larvae of the tick Haemaphysalis leporispalustris in samples from 4 cottontail
rabbits. Measurements in microns. This is a Model II anova.

among them. A possible reason for looking at the means would be at the begin­
ning of the analysis. One might wish to look at the group means to spot outliers,
which might represent readings that for a variety of reasons could be in error.

The computation follows the outline furnished in Box 8.1, except that the
symbol L n now needs to be written L n

" since sample sizes differ for each group.
Steps 1, 2, and 4 through 7 are carried out as before. Only step 3 needs to be
modified appreciably. It is:

3. Sum of the squared group totals, each divided by its sample size,

~ f (f Y)' ~ (2978)' + (3544)' + ... + (2168)' = 4789091
ni 8 10 6' ,

The critical 5% and 1% values of F are shown below the anova table in
Table 8.1 (2.89 and 4.44, respectively). You should confirm them for yourself
in Table V. Note that the argument Vz = 33 is not given. You therefore have
to interpolate between arguments representing 30 to 40 degrees of freedom,
respectively. The values shown were computed using harmonic interpolation.
However, again, it was not necessary to carry out such an interpolation. The
conservative value of F, Fa[J.Joj, is 2.92 and 4.51, for Ci = 0.05 and CJ. = 0.01,
respectively. The observed value F, is 5.26, considerably above the interpolated
as well as the conservative value of FOOl' We therefore reject the null hypothesis
(H0: (J~ = 0) that there is no added variance component among groups and that
the two mean squares estimate the same variance, allowing a type I error of less
than 1%. We accept, instead, the alternative hypothesis of the cxistence of an
added variance component (J~.

What is the biological meaning of this conclusion? For some reason, the
ticks on ditferent host individuals ditTer more from each other than do individual
ticks on anyone host. This may be due to some modifying influence of individ­
ual hosts on the ticks (biochemical difTerences in blood, dilTcrences in the skin,
differences in the environment of the host individual---all of them rather un­
likely in this case), or it may be due to genetic dilferences among the ticks.
Possibly the ticks on each host represent a sibship (that is, arc descendants of a
single pair of parents) and the difTerences in the ticks among host individuals
represent genetic dilTerences among families; or perhaps selection has acted dif­
fercntly on the tick populations on each host, or the hosts have migrated to the
collection locality from difTerent geographic areas in which the ticks differ in
width of scutum. Of these various possibilities, genetic ditTerences among sih­
ships seem most reasonable, in view of the biology of the organism.

The computations up to this point would have been identical in a Model I
anova. If this had been Model I, the conclusion would have been that there
is a significant treatment elTect rather than an added variance component. Now,
however, we must complete the computations appropriate to a Model II anova.
These will include the estimation of the added variance component and the
calculation of percentage variation at the two levels.

4

376
344
342
372
374
360

2168

6

784,536

233.Q7

df SS MS F,

3 1808.7 602.6 5.26**

33 3778.0 114.5
- -----

36 5586.7

FO.01 [3.331 = 4.44F0.05[3.331 = 2.89

y - Y Among groups (among hosts)
Y - Y Within groups (error; among

larvae on a host)

y - Y Total

Source of variation

Hosts (a = 4)

2 3

380 350 354
376 356 360
360 358 362
368 376 352
372 338 366
366 342 372
374 366 362
382 350 344

344 342
364 358

351
348
348

n, ------IY 2978 3544 4619

nj 8 10 13
n,

IY z 1,108,940 1,257,272 1,642,121

SZ 54.21 142.04 79.56

the larvae, should each host carry a family of ticks, or at least a population
whose individuals are more related to each other than they are to tick larvae
on other host individuals.

The emphasis in this example is on the magnitudes of the variances. In view
of the random choice of hosts this is a clear case of a Model II anova. Because
this is a Model II anova, the means for each host have been omitted from
Table 8.1. We arc not interested in the individual means or possible differences
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Since sample size n j differs among groups in this example, we cannot write
(J2 + n(J~ for the expected M Sgroups' It is obvious that no single value of n would
be appropriate in the formula. We therefore use an average n; this, however,
is not simply ;1, the arithmetic mean of the n;'s, but is

(8.1 )

which is an average usually close to but always less than n, unless sample sizes
are equal, in which case no = n. In this example,

Since the Model II expected MSgroups is (T2 + /1(J7t and the expected MSwithin is
(J2, it is obvious how the variance component among groups (J~ and the error
variance (J2 are obtained. Of course, the values that we obtain are sample esti­
mates and therefore are written as.\7t and S2. The added variance component s7t

is estimated as (MSgroup, - MSwilhin)!11. Whenever sample sizes are unequal, the
denominator becomes 11 0 , In this example. (602.7 - 114.5)/9.009 = 54.190. We
are frequently not so much interested in the aetual values of these variance com­
ponents as in their relative magnitudes. For this purpose we sum the compo­
nents and express each as a percentage of the resulting sum. Thus S2 + S71 =

114.5 + 54.190= 168.690. amI .\2 and s~ are 67.9"~. and 32.1 '7., of this sum, re­
spectively; relatively more variation occurs within groups (larvae on a hosl)
than among groups (larvae on different hosts).

8.4 Two groups

;\ frequent test in ,;Ialistics is to estahlish the siYI/i/icallce of /he dif/i'/'el/cc

he/weel/ /wo meal1s. This can easily he done hy means of an al1alysis of rariallce

Jill' /wo YI'I!lIfJS. Box S.2 shows this procedure for a Model I anova. the common
case.

The example in Box S.2 concerns the onset of reproductive maturity in
water fleas. f)afl/lIIia IOl1yis/Jil/a. This is measured as the average age (in days)
at heginning of reproduclinn. J:ach variate in the tahle is in fact an average.
and a possihle flaw in the analysis might he that the averages are not hased
on equal sample si/es. Ilowever. we arc not given this information and have
10 proceed on the assumption that each reading in the tahle is an equally
reliahle variate. The two series represent difTerent genetic crosses. and the seven
replicates in each series are clones derived from the same genetic cross. This
example is clearly a Ml)licll anova. since the question to he answered is whether
series I differs from series II In average age at the heginning of reproduction.
Inspection of the data shows that the l11ean age at beginning of reproduction

•
BOX 8.2
Testing the clilference in means between two groups.

Average age (in days) at beginning of reproduction in Daphnia longispina(ea.ch
variate is a mean based on approximately similar numbers of females). Two series
derived .fromdillerent genetic crosses and containing seven clones each are
compared; n = 7 clones per series. This is a Model I anova.

Series (a = 2)

I II

7.2 8.8
7.1 7.5
9.1 7.7
7.2 7.6
7.3 7.4
7.2 6.7
7.5 7.2

n

IY 52.6 52.9

Y 7.5143 7.5571
n

Iy2 398.28 402.23
S2 0.5047 0.4095

Source: Data by Ordway, from Banta (1939).

Single classification anova with two groups with equal sample sizes

Anova table

Source of variation df 55 M5 Fs

y- Y Between groups (series) 0.00643 0.00643 0.0141
y- Y Within groups (error;

clones within series) 12 5.48571 0.45714
y- Y Total 13 5.49214

FO.OS (I.12] = 4.75

Conclusions. Since Fs « FO.OSlI.121' the null hypothesis is accepted. The means
of the two series are not significantly different; that is, the two series do not differ
in average age at beginning of reproduction.

A t test of the hypothesis that two sample means come from a population with
equal p; also confidence limits of the difference between two means

This test assumes that the variances in the populations from which the two
samples were taken are identical. If in doubt about this hypothesis, test by method
of Box 7.1, Section 7.3.
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BOX 8.2
Continued

The appropriate forrnula for t. is one of the following:

Expression (8.2), when sample sizes are unequal and n l or n2 or both sample
sizes are small « 30): df =: nl + n2 - 2

Expression (8.3), when sample sizes are identical (regardless of size): df =:

2(n - 1)

Expression (8.4), when n l and n2 are unequal but both are large (> 30): df =
nl + n2 - 2

For the present data, since sample sizes are equaL we choose Expression (83):

t = (YI - V2 ) - (Ill - 1l2)

• I
_ (S2 + S2)n I 2

We are testing the null hypothesis that til - tlz = O. Therefore we replace this
quantity by zero in this example. Then

t = 7.5143 - 7.5571 = -0.0428 =: -0.0428 = -0.1184
s .J(0.5047 + 0.4095)/7 .J0.9142/7 0.3614

The degrees of freedom for this example are 2(n - 1) = 2 x 6 = 12. The criti­
cal value of (0.05[12) = 2.179. Since the absolute value of our observed t. is less than
the critical t value, the means are found to be not significantly different, which is
the same result as was obtained by the anova.

Confidence limits of the difference between two means

L I = (VI - V2 ) - t~(.rSYI-Y2

L 2 = (VI - V2) + t~['JSi't-Y'

In this case VI - V2 = -0.0428, to.OSJl21 = 2.179, and sY,_y, = 0.3614, as com­
puted earlier for the denominator of the t test. Therefore

L I = -0.0428 - (2.179)(0.3614) = -0.8303

L 2 = -0.0428 + (2.179)(0.3614) = 0.7447

The 95% confidence limits contain the zero point (no difference), as was to be
expected, since the difference VI - V2 was found to be not significant.

•

is very similar for the two series. It would surprise us, therefore. to find that
thcy arc significantly dilTerent. However, we shall carry out a test anyway. As
you realize hy now. one cannot tell from the magnitude of a difference whether
it is significant. This depends on the magnitude of the error mean square, rep­
resenting the variance within series.

The computations for the analysis of variance are not shown. They would
he the same as in Hox ~.1. With equal sample sizes and only (wo groups, there

is one further computational shortcut. Quantity 6, SSgroupS' can be directly com­
puted by the following simple formula:

(f YI - f y2)2 (52.6 _ 52.9)2
SSgroups = 2n = -~1-4-- = 0.00643

There is only 1 degree of freedom between the two groups. The critical value of
F0.05[1,12] is given underneath the anova table, but it is really not necessary to
consult it. Inspection of the mean squares in the anova shows that MS
• groups

IS much smaller than MSwilhin; therefore the value of F s is far below unity,
and there cannot possibly be an added component due to treatment effects
between the series. In cases where MSgroups ~ MSwithin, we do not usually bother
to calculate F" because the analysis of variance could not possibly be sig­
nificant.

There is another method of solving a Model I two-sample analysis of vari­
ance. This is a t test of the differences between two means. This t test is the
traditional method of solving such a problem; it may already be familiar to you
from previous acquaintance with statistical work. It has no real advantage in
either ease of computation or understanding, and as you will see, it is mathe­
matically equivalent to the anova in Box 8.2. It is presented here mainly for
the sake of completeness. It would seem too much of a break with tradition
not to have the t test in a biostatistics text.

In Section 6.4 we learned about the t distribution and saw that a t dis­
tribution of n - I degree of freedom could be obtained from a distribution of
the term (Y; - p)/Sy" where sr, has n - I degrees of freedom and Y is normally
distributed. The numerator of this term represents a deviation of a sample mean
from a parametric mean, and the denominator represents a standard error for
such a deviation. We now learn that the expression

(~ - 1;) - (PI - 112)
l = (8.2), Je'll =nll)Sl !2(~2-; ~~~J('~~,;~_2)

is also distributed as I. Expression (8.2) looks complicated, but it really has
the same structure as the simpler term for t. The numerator is a deviation,
this time, not between a single sample mean and the parametric mean, but
between a single difference between two sample means, }"t and V

2
, and the

true difference between the means of the populations represented by these
means. In a test of this sort our null hypothesis is that the two samples come
from the same population; that is, they must have the same parametric mean.
Thus, the difference III -- 112 is assumed to be zero. We therefore test the devia­
tion of the difference VI -- V2 from zero. The denominator of Expression (8.2)
is a standard error, the standard error of the difference between two means
Sy, - 1',' The left portion of the expression, which is in square brackets, is a
weighted average of the variances of the two samples, s~ and s;. comnllled
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(8.4)

the square of the normal deviate as v ---+ 00. We also know (from Section 7.2)
that xfVtl/vl = F[Vl.oo)' Therefore, when VI = 1 and V2 = C£1, Xf!] = F[l.oo) = Ifoo)
(this can be demonstrated from Tables IV, V, and III, respectively):

The ( test for differences between two means is useful when we wish to set
confidence limits to such a difference. Box 8.2 shows how to calculate 95%
confidence limits to the difference between the series means in the Daphnia
example. The appropriate standard error and degrees of freedom depend on
whether Expression (8.2), (8.3), or (8.4) is chosen for Is' It does not surprise us
to find that the confidence limits of the difference in this case enclose the value
of zero, ranging from - 0.8303 to +0.7447. This must be so when a difference
is found to be not significantly different from zero. We can interpret this by
saying that we cannot exclude zero as the true value of the difference between
the means of the two series.

Another instance when you might prefer to compute the ( test for differences
between two means rather than use analysis of variance is when you are lacking
the original variates and have only published means and standard errors avail­
able for the statistical test. Such an example is furnished in Exercise 8.4.

1505[>0) = 3.8416

X6.05f 1] = 3.841

FO.05 [I.x) = 3.84

(0.05(enJ = 1.960

8.5 Comparisons among means: Planned comparisons

We have seen that after the initial significance test, a Model 11 analysis of
variance is completed by estimation of thc added variance componcnts. We
usually complete a Model I anova of morc than two groups by examining the
data in greater detail, testing which means are dilTerent from which other ones
or which groups of means are diflcrent from other such groups or from single
means. Let us look again at the Model I anovas treated so far in this chapter.
We can dispose right away of the two-sample case in Box 8.2, the average age
of water llcas at beginning of reproduction. As you will recall, there was no
significant diflcrence in age between the two genetic series. BUI even if there
had been such a dilTcrence, no further tests are possihle. However, the data on
length of pea sections given in Box 8.1 show a significant difTerence among the
five treatments (based on 4 degrees of freedom). Although we know that the
means are not all equal, we do not know which ones difTer from which other
ones. This leads us to the subject of tests among pairs and groups of means.
Thus, for example, we might test the control against the 4 experimental treat­
ments representing added sugars. The question to be tested would be, Docs the
addition of sugars have an dTect on length of pea sections? We might also test
for difl'erences among the sugar treatments. A reasonable test might be pure
sugars (glucose, fructose, and sucrose) versus the mixed sugar treatment (1 I;'

(8.3)

which is what is applied in the present example in Box 8.2. When the sample
sizes are unequal but rather large, so that the differences between n· and /1 ~ I
are relatively trivial, Expression (8.2) reduces to the simpler form I I

in the manner of Section 7.1. The right term of the standard error is the com­
putationally easier form of (lInd + (lln2), which is the factor by which the
average variance within groups must be multiplied in order to convert it into
a variance of the difference of means. The analogy with the mUltiplication of
a sample variance S2 by lin to transform it into a variance of a mean sf should
be obvious.

The test as outlined here assumes equal variances in the two populations
sampled. This is also an assumption of the analyses of variance carried out so
far, although we have not stressed this. With only two variances, equality may
be tested by the procedure in Box 7.1.

When sample sizes are equal in a two-sample test, Expression (8.2) simplifies
to the expression

(VI ~ V2) - (PI - 112)

1,= ~ 2
~L + S2

n2 n1

The simplification of Expression (8.2) to Exprcssions (8.3) and (8.4) is shown in
Appendix A 1.3. The pertinent degrees of freedom for Expressions (8.2) and (8.4)
are /1 1 + /1 2 - 2, and for Expression (8.3) elf is 2(/1 - I).

The test of significance for differences between means using the I test is
shown in Box 8.2. This is a two-tailed test because our alternative hypothesis
is /II: III oF Ill' The results of this test arc identical to those of the anova in the
same box: the two means are not significantly difTerent. We can demonstrate
this mathematical equivalence by squaring the valuc for t,. The result should
bc identical 10 the F, value of the corresponding analysis of variance. Since
t, = - 0.1184 in Box 8.2, t~ = 0.0140. Within rounding error, this is equal to
the F, obtained in the anova (F, = 0.0141). Why is this so? We learned that
1\\[ = (V - IL)/Si' where I' is the degrees of freedom of the variance of the mean
s;; therefore 1[1"1 = (V - fl)2/.~;. However, this expression can be regarded as a
variance ratio. The denominator is clearly a variance with \' degrees of freedom.
Thl.: numerator is also a variance. It is a single deviation squared, which
represents a sum of squares possessing 1 rather than zero degrees of freedom
(since it is a deviation from the true mean II rather than a sample mean). A
sum of squares based on I degree of freedom is at the same time a variance.
Thus, 1

1
is a variance ratio, since t [1" 1 = fll."J' as we have seen. In Appendix

A1.4 we demonstrate algebraically that the I; and the F, value obtained in
Box X.2 are identical quantities. Since I approaches the normal distribution as
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In this case thc correction term is the same as for the anova, because it involves
all the groups of the study. The result is a sum of squares for the comparison

TAII!.E H.2
Means, I:roup sums, and sample sizes from the data in Box H.t. l.cngth of pca scctions grown in
tissuc culture (in ocular units).

I';, !l1l/clls,'
.?";, :!"7, +

,,, '

-
( "lIllrol !l1l/cllse li·udose r:, Fl/ctll"e SLiCftl,";l' L

Y 70.1 5')) 58.2 58.0 64.1 (61.94 = Y)
n

2:> 701 593 582 580 641 3097

n 10 10 10 10 10 50

heights. If we wish to know whether these are significantly different from each
other, we cannot use the ordinary probability distribution on which the analysis
of variance rests, but we have to use special tests of significance. These un­
planned tests will be discussed in the next section. The present section concerns
itself with the carrying out of those comparisions planned before the execution

of the experiment.
The general rule for making a planned comparison is extremely simple; it

is related to the rule for obtaining the sum of squares for any set of groups
(discussed at the end of Section 8.1). To compare k groups of any size I1 j , take
the sum of each group, square it, divide the result by the sample size 11j, and
sum the k quotients so obtained. From the sum of these quotients, subtract a
correction term, which you determine by taking the grand sum of all the groups
in this comparison, squaring it, and dividing the result by the number of items
in the grand sum. If the comparison includes all the groups in the anova, the
correction term will be the main CT of the study. If, however, the comparison
includes only some of the groups of the anova, the CT will be different, being

restricted only to these groups.
These rules can best be learned by means of an example. Table 8.2 lists the

means, group sums, and sample sizes of the experiment with the pea sections
from Box 8.1. You will recall that there were highly significant differences among
the groups. We now wish to test whether the mean of the control differs from
that of the four treatments representing addition of sugar. There will thus be two
groups, one the control group and the other the "sugars" groups, the latter with
a sum of 2396 and a sample size of 40. We therefore compute

SS (control versus sugars)

(701 -+- 593 -+- 582 -+- 580 -+- 641)2

50

(701)2 (593 + 582 -+- 580 -+- 641)2=- - -+--- .. -._._----_.~---.
10 40

(701)2 (n90)2 (3097)2
=~Ii) -+- -4()- -50- = 832.32

An important point about such tests is that they are designed and chosen
independently of the results of the experiment. They should be planned before
the experiment has been carried out and the results obtained. Such comparisons
are called planned or a priori comparisons. Such tests are applied regardless of
the results of the preliminary overall anova. By contrast, after the experiment
has been carried out, we might wish to compare certain means that we notice
to be markedly different. For instance, sucrose, with a mean of 64.1, appears
to have had less of a growth-inhibiting effect than fructose, with a mean of 58.2.
We might therefore wish to test whether there is in fact a significant difference
between the effects of fructose and sucrose. Such comparisons, which suggest
themselves as a result of the completed experiment, are called unplanned or a
posteriori comparisons. These tests are performed only if the preliminary overall
anova is significant. They include tests of the comparisons between all possible
pairs of means. When there are a means, there can, of course, be a(a - 1)/2
possible comparisons between pairs of means. The reason we make this distinc­
tion betwecn a priori and a posteriori comparisons is that the tests of signifi­
cance appropriate for the two comparisons are different. A simple example will
show why this is so.

Let us assume wc have sampled from an approximately normal population
of heights on men. We have computed their mean and standard deviation. If
we sample two men at a time from this population, we can predict the dif­
ference bctwccn thcm on the basis of ordinary statistical theory. Some men will
be very similar, others relatively very different. Their differences will be distrib­
uted normally with a mean of 0 and an expected variance of 2/1 2

, for reasons
that will be Icarned in Section 12.2. Thus, if we obtain a large difference between
two randomly sampled men, it will have to be a sufficient number of standard
deviations greater than zero for us to reject our null hypothesis that the two
men come from thc specified population. If, on the other hand, we were to look
at the heights of the men before sampling them and then take pairs of men
who seemed to be very different from each othcr, it is obvious that we would
repeatedly obtain dilTerences within pairs of men that werc several standard
deviations apart. Such diffcrenccs would bc outlicrs in the cxpected frequency
distributon of diflcrences, and time and again wc would reject our null hy­
pothesis when in fact it was true. The men would be sampled from the same
population, but because they were not being sampled at random but being
inspected before being sampled, the probability distribution on which our
hypothesis ksting rested would no longer be valid. It is obvious that the tails
in a large sample from a normal distribution will be anywhere from 5 to 7
standard deviations apart. If we deliberately take individuals from each tail and
compare them, they will appear to bc highly significantly different from each
other, according to the methods described in the present section, even though
thcy belong to the same population.

When we compare means diffcring greatly from each other as the result of
some treatmcnt in the analysis of variance, we are doing exactly the same thing
as taking the tallest and the sllOrtesl mcn from the frequency distribution of
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Our a priori tests might have been quite different, depending entirely on our
initial hypotheses. Thus, we could have tested control versus sugars initially,
followed by disaccharides (sucrose) versus monosaccharides (glucose, fructose,
glucose + fructose), followed by mixed versus pure monosaccharides and finally
by glucose versus fructose.

The pattern and number of planned tests are determined by one's hypoth­
eses about the data. However, there are certain restrictions. It would clearly
be a misuse of statistical methods to decide a priori that one wished to com­
pare every mean against every other mean (a(a - J)/2 comparisons). For a

groups, the sum of the degrees of freedom of the separate planned tests should
not exceed a - I. In addition, it is desirable to structure the tests in such a
way that each one tests an independent relationship among the means (as was
done in the example above). For example, we would prefer not to test if means
1, 2, and 3 differed if we had already found that mean 1 dilTered from mean 3,
since significance of the latter suggests significance of the former.

Since these tests are independent, the three sums of squares we have so far
obtained, based on J, I, and 2 df, respectively, together add up to the sum of
squares among treatments of the original analysis of variance based on 4 de­
grees of freedom. Thus:

(593 + 582 + 580 + 641)2
- .------------ - - -~----

40
(580)2 (593 + 582 + 641f

= _._.-- + ----_. --_._-
10 30

= (580)2 + ~L~2 _(239~~ = 48.13
10 30 40

between these two groups. Since a comparison between two groups has only 1
degree of freedom, the sum of squares is at the same time a mean square. This
mean square is tested over the error mean square of the anova to give the

following comparison:

F = MS (control versus sugars) = !,2.32 = 152.44

s MSwithin 5.46

F O. OS [1.4Sl = 4.05, F O.01 [1.451 = 7.23

This comparison is highly significant, showing that the additions of sugars have

significantly retarded the growth of the pea sections.
Next we test whether the mixture of sugars is significantly different from

the pure sugars. Using the same technique, we calculate

SS (mixed sugars versus pure sugars)

SS (among pure sugars) 196.~7
MS (among pure sugars)c~ ~- .--"d(--- ~ C~ , = 9~.433

Here the CT is different, since it is based on the sum of the sugars only. The

appropriate test statistic is

F = J\::f~(mixcd sugars versus p~~e sugars) ~ 48.13 ~ 8.82

.\ MSwilhin 5.46

This is significant in view of the critical values of F'II ASj given in the preceding

paragraph.
A final test is among the three sugars. This mean square has 2 degrees

of freedom, since it is based on three means. Thus we compute

(59W (5l'\2)2 (641)2 (1816)2
SS (among pure sugars) = --i()- + -(() +\(j-- - 30 196.87

df
55 (control versus sugars) 832.32 I
5S (mixed versus pure sugars)~.= 48.13 I
5S (among pure sugars) 196.87 2
._--- ---_._------"._--- -..------~

5S (among treatments) = 1077.32 4

This agalll illustrates the elegance Ill' analysis or variance. The treatment sums
~)f squares can be decomposed into separate parts that are sums of slJuares
111 their llwn right, with degrees of freedom pertaining to them. One sum Ill'
squares measures thc differcnce bctween the controls and the sugars, the second
tha~ hetween the mixed sugars and the pure sugars, and the third the remaining
vanatlOn among the three sugars. We can present all Ill' these results as an
anova table, as shown in Table 8.3.

. MS (among pure sugars)
f = .. ---- -------

., AISwilhill

98.433

5.46
18.03

HilL!: !I.J
Anova fabk fwm Box !I.I, with tn'lIInwn! slim of sqllares del'omposed into
plannl'd l"IlIllparisons.

This F, is highly significant, since even FOOI12.40J = 5.1~.
We conclude that the addition of the three sugars retards growth in the pea

sections. that mixed sugars allcct the sections difTerently from pure sugars. and
that the pure sugars are significantly ditTcrent among themselves, probably be­
cause the sucrose has a far higher mean. We cannot test the suerllse against
the other two, because that would be an unplanned test, which suggests itself
til us after we have IOllked at the results. To carry out such a test. we need the

tlll'lhods Ill' the next section.

,';Ullr('t'l!(llllrialillll til SS AlS F.
_._.-- ._._-_._--

Treatments 4 1077.32 26933 4933**
Conlrol vs. sugars I 1132.32 113:'32 152.44**
Mixed vs. pu re sugars 1 41113 411_13 11)(2**
Among l1ure sugars 2 196.87 91143 111.03**

Within 45 245.50 5.46
Total

-

49 1322.82
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When the planned comparisons are not independent, and when the number
of comparisons planned is less than the total number of comparisons possible
between all pairs of means, which is ala - 1)/2, we carry out the tests as just
shown but we adjust the critical values of the type I error (x. In comparisons
that arc not independent, if the outcome of a single comparison is significant,
the outcomes of subsequent comparisons are more likely to be significant as
well, so that decisions based on conventional levels of significance might be in
doubt. For this reason, we employ a conservative approach, lowering the type
I error of the statistic of significance for each comparison so that the proba­
bility of making any type 1 error at all in the entire series of tests does not
exceed a predetermined value '1. This value is called the experiment wise error
rale. Assuming that the investigator plans a number of comparisons, adding
up to k degrees of freedom, the appropriate critical values will be obtained if
the probability (x' is used for anyone comparison, where

, '1
X=

k

The Bonferroni method generally will not employ the standard, tabled
arguments of (X for the F distribution. Thus, if we were to plan tests involving
altogether 6 degrees of freedom, the value of ,/ would be 0.0083. Exact tables
for Bonferroni critical values are available for the special case of single degree
of freedom tests. Alternatively, we can compute the desired critical value by
means of a computer program. A conservative alternative is to use the next
smaller tabled value of (x. For details, consult Sokal and Rohlf (1981), section 9.6.

The Bonferroni method (or a more recent refinement, the Dunn-Sidak
method) should also be employed when you are reporting confidence limits for
more than one group mean resulting from an analysis of variance. Thus, if you
wanted to publish the means and I - (X confidence limits of all five treatments
in the pea section example, you would not set confidence limits to each mean
as though it were an independent sample, but you would employ la'lv]' where
v is the degrees of freedom of the entire study and (x' is the adjusted type I error
explained earlier. Details of such a procedure can be learned in Sokal and
Rohlf (1981), Section 14.10.

Since M SgroupslM Swithin = SSgrollPslL(a -- I) M SwilhinJ, we can rewrite Expression
(X.5) as

The approach using this relation is called the BOI1/errol1i method; it assures us
of an experimentwise error rate <::: 'l..

Applying this approach to the pea secti,H1 data, as discussed above, let us
assume that the investigator has good reason to test the following comparisons
between and among treatments. given here in abbreviated form: (e) versus (G,
F, S, Ci + F): (G, 1< S) versus (G + F): and (G) versus (F) versus (S): as well
as (G, F) versus (G + F) The 5 degrees of freedom in these tests require that
each individual test be adjusted to a significance level of

8.6 Comparisons among means: Unplanned comparisons

A single-classification anova is said to be significant if

MSgrollps > F
M Swithin ~ ,I" I. "(Il I)J

(8.5)

'l. 0.05
'1' = ,= 0 0 I

f., 5'
(X.6)

for an cxpnimentwise critical Cj ~ 005 Thus, thc critical value for the F, ratios
of these comparisons is FO.0111..+'J or FOIIl12.'+'iI' as appropriate. The first three
tests are Glrrled out as shown abovc. The last test is clll1lpuled in a similar
manner:

In spite of the change in critIcal valuc, the conclusions concerning the
first three tests arc unchanged. The 1;lst test, the average of glucose and fructose
versus a mixture of the two, is not Significant, since F, = tJ~ O.6X7. Adjust­
ing the critical value is a conscrvativc procedure: individual comparisons using
this approaL'll arc less likely to he significant.

(117W (580)2 (175W+ -- ----- = 17')
20 10 30 _. -

For example, in Box X.!' where the anova is significant, SSgrolll" = 1077.32. Sub­
stituting into Expression (X.6), we obtain

IJ, ~, 0.05forlO77.32 > (5 - J)(5.46)(2.5X) ~ 56.35

It is therefore possible to compute a critical SS valuc for a test of significance
of an anova. Thus, another way of calculating overall significance would be to
sec whether the SSgrollps is greater than this critical SS. It is of interest to inves­
tigate why the SSg",ups is as large as it is and to test for the significance of
the various contributions made to this ,)'S by difTerences among the sample
means. This was discussed in the previous section, where separate sums of
squares were computed based on comparisons among means planned before
the data were examined. A comparison was called significant if its f, ratio was
> F'lk 1."(1l 1 11' where k is the numher of means being compared. We can now
also state this in terms of sums of squares: An SS is significant if it is greater

than (k I) M Swithin F,'lk I, "(Il Ill'

The above tests were a priori comparisons. One procedure for testing a
posteriori comparisons would be to set k = a in this last formula, no matter

(593 + 5X2 + 5XO)2

30

(593 + 5X2)2 (5XW
20 -j 10(

average Of. glucose and)
SS fructose vs. glucose

and fructose mixed
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how many means we compare; thus the critical value of the SS will be larger
than in the previous method, making it more difficult to demonstrate the sig­
nificance of a sample SS. Setting k = a allows for the fact that we choose for
testing those differences between group means that appear to be contributing
substantially to the significance of the overall anova.

For an example, let us return to the effects of sugars on growth in pea
sections (Box 8.1). We write down the means in ascending order of magnitude:
58.0 (glucose + fructose), 58.2 (fructose), 59.3 (glucose), 64.1 (sucrose), 70.1
(control). We notice that the first three treatments have quite similar means and
suspect that they do not differ significantly among themselves and hence do not
contribute substantially to the significance of the SSgroups'

To test this, we compute the 55 among these three means by the usual
formula:

(59W + (582)2 + (580)2 (593 + 582 + 580f
S5 = ~-_._. - -----..--.-------------.

10 3(10)

c, 102,677.3 - 102,667.5 = 9.8

a, and if there are many means in the anova, this actual error rate a' may be
one-tenth, one one-hundredth, or even one one-thousandth of the experiment­
wise a (Gabriel, 1964). For this reason, the unplanned tests discussed above
and the overall anova are not very sensitive to differences between individual
means or differences within small subsets. Obviously, not many differences are
going to be considered significant if a' is minute. This is the price we pay for
not planning our comparisons before we examine the data: if we were to make
planned tests, the error rate of each would be greater, hence less conservative.

The SS-STP procedure is only one of numerous techniques for multiple
unplanned comparisons. It is the most conservative, since it allows a large
number of possible comparisons. Differences shown to be significant by this
method can be reliably reported as significant differences. However, more sen­
sitive and powerful comparisons exist when the number of possible comparisons
is circumscribed by the user. This is a complex subject, to which a more complete
introduction is given in Sakal and Rohlf (1981), Section 9.7.

The differences among these means are not significant, because this 55 is less
than the critical SS (56.35) calculated above.

The sucrose mean looks suspiciously different from the means of the other
sugars. To test this we compute

(641)2 (593 + 582 + 580)2
SS = --- + .

10 30

(641 + 593 + 582 + 580)2

10 + 30

8.1 The following is an example with easy numbers to help you become familiar
with the analysis of variance. A plant ecologist wishes to test the hypothesis
that the height of plant species X depends on the type of soil it grows in. He has
measured the height of three plants in each of four plots representing different
soil types, all four plots being contained in an area of two miles square. His
results are tabulated below. (Height is given III centimeters.) Does your anal­
ysis support this hypothesis? ANS. Yes, since F, = 6.951 is larger than
Fo OJ[J.HI ~ 4'(l7.

= 41,08~U + 102,667.5·- 143,520.4 = 235.2

which is greater than the critical SS. We conclude, therefore, that sucrose re­
tards growth significantly less than the other sugars tested. We may continue
in this fashion, testing all the differences that look suspicious or even testing
all possible sets of means, considering them 2, 3, 4, and 5 at a time. This latter
approach may require a computer if there arc more than 5 means to be com­
pared, since there arc very many possible tests that could be made. This
procedure was proposed by Gabriel (1964), who called it a sum o!si/llarcs simuJ­

((II/COliS (CS( procedurc (SS-S1'P).
In the .)'S-.)'TP and in the original anova, the chance of making any type 1

error at all is a, the probability selected for the critical F value from Table V.
By "making any type 1error at all" we mean making such an error in the overall
test of significance of the anova and in any of the subsidiary comparisons among
means or sets of means needed to complete the analysis of the experiment. This
probability a therefore is an ("flaimclI(wisc error rate. Note that though the
probability of any error at all is a, the probability of error for any particular
test of sOllle subset, such as a test of the difference among three or between two
means, will always be less thana. Thus, for the test of eaeh subset one is rcally
using a significance level a', which Illay be much less than the experimentwise

l!.2

Ohscrvati(Jn /.,ocolilie.'>
number :! ,; <I

--_..~----_.

I 15 25 17 10
2 9 21 D 13
3 14 19 20 16

The following are measurements (in coded micrometer units) of the thorax length
of the aphid Pemphiylls POPIl!itl'l/IlSl'erslIs. The aphids were collected in 2X galls
on the cottonwood POpll/liS deltoidcs. Four alate (winged) aphids were randomly
selected from each gall and measured. The alate aphids of each gall arc isogenic
(identical twins), being descended parthenogenetically from one stem mother.
Thus. any variance within galls ean be due to environment only. Variance be­
tween galls may be due to differences in genotype and also to environmental
dillerences bctwcen galls. If this character, thorax Icngth, is aflected by genetic
variation. significant intergall variance must be present. The converse is not nec­
essarily true: significant variance between galls need not indicate genetic varia­
tion; it could as well be due to environmental differences between galls (data by
SoLd. llJ52). Analyze the varIance of thorax length. Is there signilicant IIltergall
variance present" (Jive estimates of the added component of intergall variance.
if present. What percentage of the variance is controlled by intragall and what
percentage by intergall factors') Discuss your results.



Are the two means significantly differen!')
S.5 P. E. 1-1 unter (1959, detailed data unpublished) selected two strains of D. l1le/wl(}­

Ylls/er, one for short larval period (SL) and one for long larval period (1.1.). A
nonselected control strain (CS) was also maintained. At ~eneration 42 these data
were obtained for the larval period (measured in hours~ Analyze and interpret.

Note that part of the computation has already been performed for you. Perform
unplanned tests among the three means (short vs. long larval periods and each
against the control). Set 95~;, confidence limits to the observed difTerences of
means for which these comparisons arc made. ANS. M St5L ,d.L) = 2076.6697.
These data are measurements of live randolJl s;lIJ1ples of domestic pigeons col­
lected during January, February, and March in Chicagll in 195:',. The variabk
is the length from the anterior end of the nariat opening to the tip of the bony
beak and is recorded in millimeters. Data from Olson and Miller (1 1)'18).

Strain
SL CS LL

----------

ni 80 69 33
ni 3 n,Iy 8070 7291 3640 I I y2 = 1,994,650

Samples
.2 3 4 5

----

'104 5.2 5.5 5.1 5.1
5.3 5.1 4.7 4.6 55
5.2 4.7 4.X '104 '1.t)
4.5 5.0 4.9 5.5 (d
5.0 5.9 5.9 5.2 5.2
SA 5.3 5.2 5.0 5.0
3.X (d) 4.8 4.8 5. 1)

5.9 5.2 4.9 5.1 5.ll
5.4 6.6 604 4.4 4.9
5.1 5.6 5.1 6.5 53
5.4 5.1 5.1 4.X 53
4.1 57 4.5 4. 1) 5.1
5.2 5.1 5..1 6.0 4.9
4.X 4.7 4X 4.X 5.X
4.6 (,5 5.3 5.7 5.D
5.7 51 SA 5.5 5.('
5.9 54 4.9 5.X (,.,
5.X 5'X 4.7 5.6 5.1
50 5.X 4.8 5.5 4.X
5.0 5.9 5.0 5.0 4.9

A". lhn f; ,," ,..",,,,1 ... l~, ~ ........ , .. ".,." ,. '.' ')
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Sf

0.9
1.4

24.8
19.7

n

5
3

24 hours after
methoxychlor injection

Control

EXERCISES

K6

Birth weiyht Birth order
(Ii>: 0:) 1 8

:In .,:7
3:8 3: 15 2
4:0 4:7 3
4:X 4: 15 7 4
5:0 5:7 I I I 5
5:8 5: 15 267 19
(d) 6:7 457 52
6:X 6: 15 4X5 55
7:0 7:7 363 6\
7:8 7: 15 162 48
8:0 X:7 64 39
X:8 X: 15 (I 19
9:0 9:7 5 4
9:X 9: 15

10:0 10:7
10:8 10: 15

1932 307

Millis and Seng (1954) published a study on the relation of birth order to the
birth weights of infants. The data below on first-born and eighth-born infants are
extracted from a table of birth weights of male infants of Chinese third-class
patients at the Kandang Kerbau Maternity Hospital in Singapore in 1950 and
1951.

Which birth order appears to be accompanied by heavier infants') Is this differ­
ence significant? Can you conclude that birth order causes difTerences in birth
weight') (Computational note: The variable should be coded as simply as pos­
sible.) Reanalyze, using the ( test, and verify that /; = F,. ANS. I, = 11.016 and
F, = 121.352

llA The following cytochrome I1xidase assessments of male Per;/i/ww/ll roaches in
cuhic millimeters pCI' ten mlllllles per milligram were taken from a larger study
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Gall no. Gall no.

I. 6.1, 6.0, 5.7, 6.0 15. 6.3, 6.5, 6.1, 6.3
2. 6.2, 5.1, 6.!. 5.3 16. 5.9, 6.1, 6.1, 6.0
3. 6.2, 6.2, 5.3, 6.3 17. 5.8, 6.0, 5.9, 5.7
4. 5.1, 6.0, 5.8, 5.9 18. 6.5, 6.3, 6.5, 7.0
5. 4.4, 4.9, 4.7, 4.8 19. 5.9, 5.2, 5.7, 5.7
6. 5.7, 5.1, 5.8, 5.5 20. 5.2, 5.3, 5.4, 5.3
7. 6.3, 6.6, 6.4. 6.3 21. 5.4, 5.5, 5.2, 6.3
8. 4.5, 4.5, 4.0, 3.7 22. 4.3, 4.7, 4.5, 4.4
9. 6.3, 6.2, 5.9, 6.2 23. 6.0, 5.8, 5.7, 5.9

10. 5.4, 5.3, 5.0, 5.3 24. 5.5, 6.1, 5.5, 6.1
I!. 5.9, 5.8, 6.3, 5.7 25. 4.0, 4.2, 4.3, 4.4
12. 5.9, 5.9, 5.5, 5.5 26. 5.8, 5.6, 5.6, 6.1
13. 5.8, 5.9, 5.4, 5.5 27 4.3, 4.0, 4.4, 4.6
14. 5.6, 6.4, 6.4, 6.1 28. 6.1, 6.0, 5.6, 6.5

8.3



184

8.7

CHAPTER 8 / SINGLE-CLASSIFICATION ANALYSIS OF VARIANCE

The following data were taken from a study of blood protein variations in deer
(S:0wan and Johnston, 1962). The variable is the mobility of serum protein frac­
tIOn II expressed as 10- 5 cm2/volt-seconds.

Sy

CHAPTER 9

n = 12 for each mean. Perform an analysis of variance and a multiple-comparison
test, ~si~g the sums of squares STP procedure. ANS. MSwithin = 0.0416; maximal
nonsIgnIficant sets (at P = 0.05) are samples 1, 3, 5 and 2, 4 (numbered in the
order given).
For the data from Exercise 7.3 use the Bonferroni method to test for differences
between the following 5 pairs of treatment means:

8.8

Sitka
California blacktail
Vancouver Island blacktail
Mule deer
Whitetail

2.8
2.5
2.9
2.5
2.8

0.07
0.05
0.05
0.05
0.07

Two- Way Analysis

of Variance

A,B
A,C
A,O
A, (B + C + 0)/3
B, (C + 0)/2

From the single-classification anova of Chapter 8 we progress to the two-way
anova of the present chapter by a single logical step. Individual items may be
grouped into classes representing the different possible combinations of two
treatments or factors. Thus, the housefly wing lengths studied in earlier chapters,
which yielded samples representing different medium formulations, might also
be divided into males and females. Suppose we wanted to know not only whether
medium 1 induced a different wing length than medium 2 but also whether
male houseflies differed in wing length from females. Obviously, each combi­
nation of factors should be represented by a sample of flies. Thus, for seven
media and two sexes we need at least 7 x 2 = 14 samples. Similarly, the ex­
periment testing five sugar treatments on pea sections (Box 8.1) might have
been carried out at three different temperatures. This would have resulted in a
two-way analysis or variance of the effects of sugars as well as of temperatures.

It is the assumption of this two-way method of anova that a given temper­
ature and a given sugar each contribute a certain amount to the growth of a pea
section, and that these two contributions add their effects without influencing
each other. In Section 9.1 we shall see how departures from the assumption
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are measured; we shall also consider the expression for decomposing variates
in a two-way anova.

The two factors in the present design may represent either Model I or
Model II effects or one of each, in which case we talk of a mixed model.

The computation of a two-way anova for replicated subclasses (more than
one variate per subclass or factor combination) is shown in Section 9.1, which
also contains a discussion of the meaning of interaction as used in statistics.
Significance testing in a two-way anova is the subject of Section 9.2. This is
followed by Section 9.3, on two-way anova without replication, or with only a
single variate per subclass. The well-known method of paired comparisons is a
special case of a two-way anova without replication.

We will now proceed to illustrate the computation of a two-way anova.
You will obtain closer insight into the structure of this design as we explain
the computations.

9.1 Two-way anova with replication

We illustrate the computation of a two-way anova in a study of oxygen con­
sumption by two species of limpets at three concentrations of seawater. Eight
replicate readings were obtained for each comhination of species and seawater
concentration. We have continued to call the number of columns a, and are
calling the number of rows h. The sample size for each cell (row and column
comhination) of the tahle is II. The cells arc also called subgroups or subclasses.

The data arc featured in Box 9.1. The computational steps labeled Pre­
fill/illafV (,oll/[JlI(aliol!S provide an eflicient procedure for the analysis of variance.
but we shall undertake several digressions to ensure that the concepts under­
lying this design arc appreciated by the reader. We commence hy considering
the six suhclasses as though they were six groups in a single-classification anova.
Each subgroup or suhclass represents eight oxygen consumption readings. If
we had no further c1assihcation of these six suhgroups hy species or salinity.
such an anova would (cst whether then: was any variation among the six sub­
groups over and aoove the variance within the suogroups. Hut since we have the
suhdivision hy species and salinity. our only purpose here is to compute some
'luantities necessary for the further analysis. Steps I through 3 in Box 9.1 cor­
respond to the identical steps in Box X.I, although the symholism has changed
slightly, since in place of a groups we now have ah suhgroups. To complete
the anova, we need a correction term, which is labeled step 6 in Box 9.1. From
these quantities we ohtain SS,,,,,,,, and S,)''';lllIn in steps 7, 8. and 12. correspond­
ing to steps 5,6, and 7 in the layout of Hox X.!. The results of this preliminary
;lflOva arc rcatured in Taole 9.1.

The computation is continued by finding the sums of squares for rows and
columns of the tahle. This is done by the general formula stated at the end of
Section X.I. Thus, for columns, we square the column sums, sum the resulting
squares, and divide the result oy 24, the number of items per row. This is step
4 in Box l).1. ;\ .,ill1ilar quantity" computed for rows (step 5). hom these



BOX 9.1
Continued

Preliminary computations
• b n

1. Grand total = LLL Y = 461.74

a b n

2. Sum of the squared observations =LI I y2 = (7.16)2 + ... + (12.30)2 = 5065.1530

3. Sum of the squared subgroup (cell) totals, divided by the sample size of the subgroups

• b (n )2
H ; Y ~ (8449)' +; +(9t~jl'+<C66J.6Jt7

a (b n )2
I LI Y 24500)2 + (21674 ·.2.4. Sum of the squared column totals divided by the sample size of a column = b =( . (3 ..' • )=4458.3844

n x8)

00
00

5. Sum of the squared row totals divided by the sample size of a row
±(ffYY

an

(461.74)2 =4441.7464
(2 x 3 x 8)

= (143.92)2 + (~~~8~;2 + (196.00)2 = 4623.0674

6. Grand total squared and divided by the total sample size =correction term CT

(• b. )2
LLL Y _ (quantity 1)2

abn - abn

a b •

7. SStotal = I L I y2 - CT = quantity 2 - quantity 6 = 5065.1530 - 4441.7464 = 623.4066

abe r
8. SSsubgr = I I L y _ CT = quantity 3 _ quantity 6 = 4663.6317 - 4441.7464 = 221.8853

n

nc· r
9. SSA (SS of columns) = I I

b
: y - CT = quantity 4 - quantity 6 = 4458.3844 - 4441.7464 = 16.6380

be'r
10. SSB (SS of rows) = L I I y _ CT = quantity 5 - quantity 6 = 4623.0674 - 4441.7464 =181.3210

an

11. 55..1 xB (interaction 5S) = SSsUbgr - 55..1 - SSB = quantity 8 - quantity 9 - quantity 10
= 221.8853 - 16.6380 - 181.3210 = 23.9263

12. 5Swithin (within subgroups; error SS) = SStotaI - SSsubgr = quantity 7 - quantity 8
= 623.4066 - 221.8853 = 401.5213

As a check on your computations, ascertain that the following relations hold for some of the above quantities: 2 ~ 3 ~ 4 ~ 6;
3~5~6.

Explicit formulas for these sums of squares suitable for computer programs are as follows:

9a. SSA = nb f (1'..1 - y)2
b _

lOa. SSB = na I (1'B- 1')2
a b _

118. SSAB = nIL (1' - 1'..1 - 1'B + 1')2
a b _

128. SSwithin = nIL (1' - 1')2 -00
\D



BOX 9.1
Continued

Such formulas may furnish more exact solutions in computer algorithms (Wilkinson and Dallal, 1977), although they are far more
tedious to compute on a pocket or tabletop calculator that is not able to store the n data values.

'D
o

Now fill in the anova table.

Source ofvariation
df 55 MS

fA - Y A (columns) a-I 9 9
(a - 1)

YB - Y B (rows) b - 1 10 10

fb - 1)
Y-YA-Ya+Y A x B (interaction) (a - IJ(b - 1) 11 11

~._.

(a - l)(b - 1)
y- Y Within subgroups ab(n - 1) 12 12

ab(n - 1)y- Y Total ~-- 7

Expected MS (Modlrll)

([2 + nh1:
4

-.-- (X2
a-I

_2 na b
0- + -.---- '" fJ2b-l £."

a2 + __.. /1 4b

(a - l)(b - 1) L(ap)2

(T2

Since the present example is a Model I anova for both factors, the expected MS above are correct. Below are the corresPQndingexpressions for other models.

Source of rorial iOI1

A

B
AxB

Within subgroups

Anova table

Model II

(J2 + /l(J~B + Ilb(J~

(J2 -+- 1l(J~B + 1l1l(J~

(J2 + n(J~B

(J2

Mixed model
1,4 fixed. 8 random)

nh 4

(J2 + 1l(J~B +--L C(2
Q - 1

a 2 + IlQai

(J2 + na~B

(12

Source of variatioll

A (columns; species)
B (rows: salinities)
A x B (interaction)
Within subgroups (error)

Total

FO.05 [1.42] = 4.07

ill ss MS F,

16.6380 16.638 1.740 ns
2 181.3210 90.660 9.483**
2 23.9263 11.963 1.251 ns

42 401.5213 9.560
-
47 623.4066

--
FO.05[2.42] = 3.22 FO.0 l[2.42] = 5.15

Since this is a Model I anava, all mean squares are tested over the error MS. For a discussion of significance tests, see Section
9.2.

Conclusions. -Oxygen consumption does not differ significantly between the two species of limpets but differs with the
At 500,;; seawater, the O 2 consumption is increased. Salinity appears to affect the two species equally, for there is insufficient eVh.i:-:,
of a species x salinity interaction.

•
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TABLE 9.1
Preliminary anma of subgroups in two-way anova. Data from Box 9.1.

Source of variation df 5S MS

y- Y Among subgroups 5 ab - I 221.8853 44.377**
y- Y Within subgroups 42 ab(n - 1) 401.5213 9.560

y- Y Total -------
623.406647 abn -

Total SS = 77,570.2"

How S.'" = 181.:;210

Column ,'IS = l(j.{):~80

Interaction ,'IS = 2:i.!l21):~

L Error 88 = ..01..;21:1 I
FIGURE 9.1
Diagrammatic representation orthe partitioning of the total sums ofsquares in a two-way orthogonal
anova. The areas or the subdivisions are not shown proportional to the magnitudes or the sums

of squares.

TABI.E 9.2
An artificial example to illustrate the meaning of interaction. The readings
for 75";, and 507.. seawater concentrations of Acmaea digitalis in Box 9.1
have been interchanged. Only subgroup and marginal totals are given

below.

surprising, since we are using the same data. All that we have done is to inter­
change the contents of the lower two cells in the right-hand column of the
table. When we partition the subgroup 55, we do find some differences. We
note that the .'IS between species (between columns) is unchanged. Since the
change we made was within one column, the total for that column was not
altered and consequently the column .'IS did not change. However, the sums

143.92
161.73
156.09

461.74

MS

16.638 tl.\

5.t 78 /IS

97.445**
9.560

59.43
9l!.61
5H.70

216.74

5S

A diqitalis

16.63l!0
10.3566

194.8907
401.5213

623.4066

Sp"ci"s

dj
~~~-----

I
2
2

42

47

l!4.49
63.12
9739

24500

A. scahra

Species
Salinities
Sp x Sal
Error

Tolal

!OW:.
75":.
50'::,

L

Source 01 l'tIr;a/;o/l

Completed anova

Scawater
n}fJC'etJlrafilm

quotients we subtract the correction term. computed as quantity 6. These sub­
tractions are carried out as steps 9 and 10, respectively. Since the rows and
columns are based on equal sample sizes, we do not have to obtain a separate
quotient for the square of each row or column sum but carry out a single divi­
sion after accumulating the squares of the sums.

Let us return for a moment to the preliminary analysis of variance in
Table 9.1, which divided the total sum of squares into two parts: the sum of
squares among the six subgroups; and that within the subgroups, the error sum
of squares. The new sums of squares pertaining to row and column effects clearly
are not part of the error, but must contribute to the differences that comprise
the sum of squares among the four subgroups. We therefore subtract row and
column SS from the subgroup SS. The latter is 221.8853. The row SS is 181.3210,
and the column SS is 16.6380. Together they add up to 197.9590, almost but
not quite the value of the subgroup sum of squares. The difference represents
a third sum of squares, called the interactio/l slim 01" squares. whose value in
this case is n.9263.

We shall discuss the meaning of this new sum of squares presently. At the
moment let us say only that it is almost always present (but not necessarily
significant) and generally that it need not be independently computed but may
be obtained as illustrated above by the subtraction of the row SS and the col­
umn SS from the subgroup SS. This procedure is shown graphically in Figure
9.1, which illustrales the decomposition of the total sum of squares into the sub­
group SS and error SS. The fonner is subdivided into the row SS, column .'IS,
and interaction .'IS. The relative magnitudes of these sums of squares will differ
from experiment to experiment. In Figure 9.1 they are not shown proportional
to their actual values in the limpet experiment; otherwise the area representing
the row .'IS would have to be about II times that allotted 10 the column .'IS.

Before we can intelligently test for significance in this anova we must under­
stand the meaning of il1teractiol1. We can best explain interaction in a two-way
anova by means of an artificial illustration based on the limpet data we have
just studied. If we interchange the readings for 7S"{, and 50'':: for A. diuitalis
only, we obtain the data table shown in Table 9.2. Only the sums of the sub­
groups, rows. and columns arc shown. We complete the analysis of variance
in the manner presented above and note the results at the foot of Table 9.2.
The total and error .'IS arc the s;lIne as before (Table 9.1). This should not be
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rAlIl.E 9.3
Comparison of means of the data in Box 9.1 and Table 9.2.

of the second and third. rows have been altered appreciably as a result of the
lllterchange o.f th.e readlllgs for 75% and 50% salinity in A. digitalis. The sum
for 75% sahmty. IS .now very close to that for 50";; salinity, and the difference
b~tween t?e salll1~t1es, previously quite marked, is now no longer so. By con­
trast, the lllteractlOn 55, obtallled by subtracting the sums of squares of rows
and columns fro~ the subgroup 55, is now a large quantity. Remember that
the subgroup 55 IS the same in the two examples. In the first example we sub­
tracted ~ums o~ squares due t~ the effects of both species and salinities, leaving
only a ~lI1Y reSidual r~presentmg the ll1teraction. In the second example these
two malll effects (specIes and salinities) account only for little of the subgroup
sum o~ squares, lea.vingthe interaction sum of squares as a substantial residual.
What IS the essential dIfference between these two examples?

. In Table 9.3 we have shown the subgroup and marginal means for the
ongll1al data f.rom Table 9.1 and for the altered data of Table 9.2. The original
results are qUIte cl~ar: at 75% salinity, oxygen consumption is lower than at
the other two Sahl1ltles, and this is true for both species. We note further that
A. scabra consumes more oxygen than A. digitalis at two of the salinities. Thus
our sta~ements about differences due to species or to salinity can be made
largely llldependent of each other. However, if we had to interpret the artificial
data (lower half of Table 9.3), we would note that although A. scabra still con­
sumes more oxygen than A. digiralis (since column sums have not changed), this
dIfference depends greatly on the salinity. At IOO'~~ and 50~7a, A. scabra con­
:um.es,conSiderably more oxygen than A. digitalis, but at 75'':{, this relationship
IS reversed. Thus, we are no longer able to make an unequivocal statement
abol~t.the amount of oxygen taken up hy the two species. We have to qualify
our statement by the seawater concentratIon at which they are kept. At 100u~.

lOW:. \0.56 7.43 9.00
75",; 7.X'l 7.34 7.61
50":, 12.17 12.13 1225

Mean 10.21 903 'l.62
~--------_.~~.

Artificilll dll(1I f;-ol/l 'Illh/.· ')Y

lOW" Ill.56 7.43 'l.00
75":, 7.X9 12.33 1011
50",: 12.17 7.34 9.7(,

Mean 10.21
---

903 9.62

CHAPTER 9 / TWO-WAY ANALYSIS Of VARIANCE

d 50
0- y- y- but at 7Sa: Y < Y., '. If we examine thean /0 ~ sea bra > digitali:-;- - ·0, sea bra dl~plah~ .

effects of salinity in the artitlcial example, we notice a mild increase III oxygen
consumption at 75(J~. !10w.ever, again we have to qualify this ~tatet~ent ~~ the
species of the consummg lImpet seabra consumes least at 75 '0, while digItalis

consumes most at this concentration.
This dependence of the effect of one factor on the level of another factor

is called interaction. It is a common and fundamental scientific idea. It indicates
that the effects of the two factors are not simply additive but that any given
combination of levels of factors, such as salinity combined with anyone species,
contributes a positive or negative increment to the level of expression of the
variable. In common biological terminology a large positive increment of thiS
sort is called synergism. When drugs act synergistically, the result of the inter­
action of the two drugs may be above and beyond the sum of the separate effects
of each drug. When levels of two factors in combination inhibit each. other's
effects, we call it interference. (Note that "levels" in an ova is customanly used
in a loose sense to include not only continuous factors, such as the salinity III

the present example, but also qualitative factors, such as t~e two species of
limpets.) Synergism and interference will both tend to magmfy thc mtcractlon

55.
Testing for interaction is an important procedure in analysis of variance.

If the artificial data of Tahle 9.2 were real, it would be of little value to state
that 75"':. salinity led to slightly greater consumption of oxygen. This statement
would cover up thc important differences in the data, which are that .\(·ubru
consumes least at this concentration, while digitalis consumes most.

We are now able to write an expression symbolizing the decomposition of
a single variatc in a two-way analysis of variance in the manner of Expres­
sion (7.2) for single-classification anova. The expression bclow assumes that
both factors represent fixed treatment effects, Modd I. ThiS would seem rea­
sonahle, since speCies as well as salinity are lixed trealments. Variate Yiik IS
the kth item in the subgroup representing the ith group of trealment A and

the jth group of treatment B. It is decomposed as follows:

l;,k = II + exi + Iii + (exll)ii + Eiik (9.\)

where II equals the parametric mean of the population, Ct. i is the fixed trcat­
ment dTect I'llI' the ith gnHlp of treatment A, Iii is the tlxed treatment dkct
of the jth group of treatment B, (Ct.II)ij is the inleraction dTect in the subgroup
representing the ith group of factor A and the jth grllup of faclor 13, and Eiik

is the error term llf the kth item in subgroup ij. We make the usual assumptIon
that Eijk is nllrmally distributed with a mean of 0 and a variance of (II. If one
or both of the factors represent Model II elTects, we replace the ex i and/or Iii In

the formula by /1 i and/or Hi'
In previous chapters we have seen that each sum of squares represents a

sum of squared deviations. What actual deviations does an interaction SS repre­
sent? We can see this easily hy referring back to the_anovas of Table 9.1. The
variatloll among subgroups is represented by (Y - y'j, where Y stands for the

9.1 / TWO-WAY ANOVA WITH RI:I'L1lAIION

Mel/llA. <li'li/uli.,

Sp"ci"s

---...~------------

A. sl'Uhra

O/,I1/IlIll} ,hl/fl Il'lIm Ho\ \1./

Seawater
c01ln.:trl rat i011
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subgroup mean, and Y for the grand mean. When we subtract the deviations
due to rows (R - Y) and those due to columns (C - Y) from those due to sub­
groups, we obtain

IY - Y) - IR - Y) - (C -- Y) = Y - Y- R + Y- C + Y
=Y-R-C+Y

This somewhat involved expression is the deviation due to interaction. When
we evaluate one such expression for each subgroup. square it, sum the squares,
and multiply the sum by n, we obtain the interaction 55. This partition of the
deviations also holds for their sq uares. This is so because the sums of the prod­
ucts of the separate terms cancel out.

A simple method for revealing the nature of the interaction present in the
data is to inspect the means of the original data table. We can do this in Table
9.3. The original data, showing no interaction, yield the following pattern of
relative magnitudes:

Scahra Dioilaiis

100%
v v

75'7.,
/\ /\

SOU;,

The relative magnitudes of the means in the lower part of Table 9.3 can be sum­
marized as follows:

Scahru Dil/ilali.\

100%
V /\

75""
/\ V

50";,

When the pattern of signs cxpressing relativc magnitudcs is not uniform as in
this latter tahle, interaction is indicated. As long as the pattern of means is
consistent, as in the former table, interaction may not he present. However,
interaction is often present without change in the directio/l of the differences;
sometimes only the relative magnitudes are allccted. In any case, the statistical
test needs to he performed to h:st whet her thc deviations are larger than can
he ex pected from chance alone.

In sUlllmary. when the effect of two treatments applied together cannot he
predicted from the average responses of the separate factors. statisticians call
this phenomenon interaction and test its significance by means of an intcraction

mean square. This is a very common phenomenon. If we say that the effect or
density on the fecundity or weight of a beetle depends on its genotype. we
imply that a genotype x density interaction is present. If the success of several
alternative surgical procedures depends on the nature of the postoperative
treatment, we speak of a procedure x treatment interaction. Or if the effect of
temperature on a metabolic process is independent of the effect of oxygen
concentration, we say that temperature x oxygen interaction is absent.

Significance testing in a two-way anova will be deferred until the next
section. However, we should point out that the computational steps 4 and 9
of Box 9.1 could have been shortened by employing the simplified formula for
a sum of squares between two groups, illustrated in Section RA. In an analysis
with only two rows and two columns the interaction 55 can be computed
directly as

(Sum of onc_~iag~~al-=-~':Imof~0_~~~_diag~nal)2

abn

9.2 Two-way anova: Significance testing

Before we can test hypotheses about the sources of variation isolated in Box 9.1,
we must become familiar with the expected mean squares for this design. In
the anova tahle of Box 9.1 we first show the expected-mean squares for Model
I, both species differences and seawater concentrations being fixed treatment
effects. The terms should be familiar in the context of your experience in the
previous chapter. The quantities La et2, LbfJ2, and Lab (etfJ)2 represent added
components due to treatment for columns, rows, and interaction, respectively.
Note that the within-subgroups or error MS again estimates the parametric
variance of the items, (f2.

The most important fact to remember ahout a Model I anova is that the
mean square at each levcl of variation carries only the added clIcet due to that
level of trcatmcnt. Except for the parametric variance of thc itcms. it docs not
contain any term from a lower line. Thus. the expected MS of factor A contains
only the parametric variance of the items plus the added term due to factor A,

but does not also include interaction effects. In Model I, the significance test
is therefore simple and straightforward. Any source of variation is tested by the
variance ratio of the appropriate mean square over the error MS Thus, for the
appropriate tests wc cmploy variance ratios A/Error, B/Error and (A x B)/
Error, where each holdface term signifies a mean square. Thus A = 1\1 SA.

Error = MSwithin'
When we do this in the example of Box 9.1, we find only factor H, salinity.

significant. Neither factor A nor the interaction is significant. We conclude that
the differences in oxygen consumption are induced by varying salinities (02

consumption responds in a V-shaped manner), and there does not appear to be
sufficient evidence for species differences in oxygen consumption. The tabulation
of the relative magnitudes of the means in the previous section shows that the
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pattern of signs in the two lines is identical. However, this may be misleading,
since the mean of A. scabra is far higher at 100% seawater than at 75%, but that
of A. digitalis is only very slightly higher. Although the oxygen consumption
curves of the two species when graphed appear far from parallel (see Figure
9.2), this suggestion of a species x salinity interaction cannot be shown to be
significant when compared with the within-subgroups variance. Finding a signi­
fkant difference among salinities does not conclude the analysis. The data sug­
gest that at 75% salinity there is a real reduction in oxygen consumption.
Whether this is really so could be tested by the methods of Section 8.6.

When we analyze the results of the artificial example in Table 9.2, we find
only the interaction MS significant. Thus, we would conclude that the response
to salinity differs in the two species. This is brought out by inspection of the
data, which show that at 75% salinity A. scahra consumes least oxygen and
A. digitalis consumes most.

In the last (artificial) example the mean squares of the two factors (main
effects) are not significant, in any case However, many statisticians would not
even test them once they found the interaction mean square to be significant,
since in such a case an overall statement for each factor would have little mean­
ing. A simple statement of response to salinity would be unclear. The presence
of interaction makes us qualify our statements: 'The pattern of response to
changes in salinity differed in the two species." We would consequently have
to describe separate. nonparallel response curves for the two species. Occa­
sionally, it becomes important to test for overall significance in a Model I
anova in spite of the presence of interaction. We may wish to demonstrate
the significance of the effect of a drug, regardless of its significant interaction
with age of the patient. To support this contcntion, we might wish to test the
mean square among drug concentrations (over the error MS), regardless of
whether the interaction MS is significant.
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rrC;URE 9.2
Oxygen consumption hy two species of
limpets at three salinities. Data from Box 9.1.

Box 9.1 also lists expected mean squares for a Model II anova and a mixed­
model two-way anova. Here, variance components for columns (factor A). for
rows (factor B), and for interaction make their appearance, and they are desig­
nated (T~, (T~, and (j~B' respectively. In the Model II anova note that the two
main effects contain the variance component of the interaction as well as their
own variance component. In a Model II anova we first test (A x B)jError. If
the interaction is significant, we continue testing Aj(A x B) and Bj(A x B). But
when A x B is not significant, some authors suggest computation of a pooled
error M S = (SS A x B + SSwithin)/(df~ x B + dfwithin) to test the significance of the
main effects. The conservative position is to continue to test the main effects
over the interaction M S, and we shall follow this procedure in this book. Only
one type of mixed model is shown in Box 9.1, in which factor A is assumed
to be fixed and factor B to be random. If the situation is reversed, the expected
mean squares change accordingly. In the mixed model, it is the mean square
representing the fixed treatment that carries with it the variance component of
the interaction, while the mean square representing the random factor contains
only the error variance and its own variance component and docs not include
the interaction component. We therefore test the MS of the random main effect
over the error, but test the fixed treatment AfS over the interaction.

9.3 Two-way anova without replication

In many experiments there will be no replication for each combination of factors
represented by a cell in the data table. In such cases we cannot easily talk of
"subgroups," since each cell contains a single reading only. Frequently it may
be too dillicult or too expensive to obtain more than one reading per cell.
or the measurements may be known to be so repeatable that there is little
point in estimating their error. As we shall sec in the following, a two-way anova
without replication can be properly applied only with certain assumptions.
For some models and tcsts in anova we must assume that there is no interaction
present.

Our illustration for this design is from a study in mctabolic physiology.
In Hox 9.2 we show levels of a chemical, S-PLP, in the blood serum of eight
students before, immediately after. and 12 hours after the administration of an
alcohol dose. blCh student has been mcasured only once at each time. What
is the appropriate model for this anova"

Clearly, the times arc Model I. The eight individuals, however, are not likely
to he of specific interest. It IS improbable that an investigator would try (0 ask
why student 4 has an S-PLP level so much higher than that of student l We
would draw more meaningful conclusions from this problem if we considered
the eight individuals to be r,lIldomly sampled. We could then estimate thc varia­
tion among individuals with respect to the effect of alcohol over time.

The computations arc shown in Box 9.2. They arc the same as those in Hox
9.1 except that the expressions to be evaluated are considerably simpler. Since
11 = I, much of the summation can be omitted. The subgroup sum of squares
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BOX 9.2
Two-way anova without replication.

Serum-pyridoxal-t-phosphate (S-PLP) content (ng per ml of serum) of blood serum before and after ingestion of alcohol in eight sub­
jects. This is a mixed-model anova.

Factor A: Time
(a = 3)

Factor B: Before
Individuals alcohol Immediatel.!' 12 hours

(b = 8) ingestion alter ingestion later 2:-
1 20.00 12.34 17.45 49.79
2 17.62 16.72 18.25 52.59
3 11.77 9.84 11.45 33.06
4 30.78 20.25 28.70 79.73
5 11.25 9.70 12.50 33.45
6 19.17 15.67 20.04 54.88
7 9.33 8.06 10.00 27.39
8 32.96 19.10 30.45 82.51

I
--

152.88 111.68 148.84 413.40

Source: Data from Leinerl et aL 11983).

The eight sets of three readings are treated as replications (blocks) in this analysis. Time is a fixed treatment effect. while differ­
ences between individuals are considered to be random effects. Hence, this is a mixed-model anova.

Preliminary computations

° b
1. Grand total = I I Y = 413.40

° b
2. Sum of the squared observations = I I y 2 = (20.00)2 + ... + (30.45)2 = 8349.4138

a (b )2
. . . I I Y (152.88)2 + (111.68)2 + (148.84)2

3. Sum of squared column totals dIVIded by sample SIze of a column = . = _ = 7249.7578

b (0 )2
. . . I I y (49.79)2 + ... + (82.51)2

4. Sum of squared row totals dIVIded by sample SIze of a row = a = 3 = 8127.8059

(

a b )2IIY
5. Grand total squared and divided by the total sample size = correction term CT = ab

= (quantity W = (413.40)2 = 7120.8150
ab 24

° b
6. SStotat = I I y 2

- CT= quantity 2 - quantity 5 = 8349.4138 - 7120.8150 = 1228.5988

° (b )2I IY
7. SSA (SS of columns) = b - CT= quantity 3 - quantity 5 = 7249.7578 - 7120.8150 = 128.9428

b (0 )2I IY
8. SSB (SS of rows) = - CT= quantity 4 - quantity 5 = 8127.8059 - 7120.8150 = 1006.9909

a

9. SSmor (remainder; discrepance) = SS.o.al - SSA - SSB = quantity 6 - quantity 7 - quantity 8

= 1228.5988 - 128.9428 - 1006.9909 =92.6651

N

8

N
o-



202 9.3 / TWO-WAY ANOYA WITHOUT REPLICATION 203

Subgroup SS = 122~.59~~

Row SS = ](J06.9909

Column SS = 12~.9421-i

Interaction SS = 92.6651 = remainder

,-----------,
L Err~SS =~ -.J

Total SS = 1221-1.51)1-\1-1

FIGURE 9.3
Diagrammatic representation of the partitioning of the total sums of squares in a two-way ortho­
gonal anova without replication. The areas of the subdivisions are not shown proportional to the
magnitudes of the sums of squares.

in this example is the same as the total sum of squares. If this is not immediately
apparent, consult Figure 9.3, which, when compared with Figure 9.1, illustrates
that the error sum of squares based on variation within subgroups is missing
in this example. Thus, after we subtract the sum of squares for columns (factor
A) and for rows (factor B) from the total 55, we arc left with only a single sum
of squares, which is the equivalent of the previous interaction 55 but which is
now the only source for an error term in the anova. This S5 is known as the
remainder 5S or the discrepance.

If you refer to the expected mean squares for the two-way anova in Box 9.1,
you will discover why we made the statement earlier that for some models and
tests in a two-way anova without replication we must assume that the inter­
action is not significant. If interaction is present, only a Model II anova can
be entirely tested, while in a mixed model only the fixed level can be tested
over the remainder mean square. But In a pure Model I anova, or for the
random factor in a mixed model, it would be improper to test the main effects
over the remainder unless we could reliably assume that no added effect due
to interaction is present. General inspection of the data in Box 9.2 convinces
us that the trends with time for anyone individual arc faithfully reproduced
for the other individuals. Thus, interaction IS unlikely to be present. If, for
example, some individuals had not responded with a lowering of their S-PLP
levels after ingestion of alcohol, interaction would have been apparent, and the
test of the mean square among individuals carried out in Box 9.2 would not
have been legitimate.

Since we assume no interaction, the row and column mean squares are
tested over the error MS. The results are not surprising; casual inspection of
the data would have predicted our findings. Differences with time are highly
significant, yielding an F, value of9.741. The added variance among individuals
is also highly significant, assuming there is no interaction.

A common application of two-way anova without replication is the repeated
Il'slin!/ oft!/(' sanil' illlJil'idl/als. By this we mean that the same group of individuals

11:>-,

+
1:>-,...

I
11:>-, 1;"-': II;"

I I I
I~ :>-, ;..

0-
.§
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is tested repeatedly over a period of time. The individuals are one factor (usually
considered as random and serving as replication), and the time dimension is
the second factor. a fixed treatment effect. For example, we might measure
growth of a structure in ten individuals at regular intervals. When we test for
the presence of an added variance component (due to the random factor), we
again must assume that there is no interaction between time and the individuals;
that is. the responses of the several individuals are parallel through time. An­
other use of this design is found in various physiological and psychological
experiments in which we test the same group of individuals for the appearance
of some response after treatment. Examples include increasing immunity after
antigen inoculations, altered responses after conditioning, and measures of
learning after a number of trials. Thus, we may study the speed with which ten
rats, repeatedly tested on the same maze, reach the end point. The fixed­
treatment effect would be the successive trials to which the rats have been
subjected. The second factor, the ten rats, is random. presumably representing
a random sample of rats from the laboratory population.

One special case, common enough to merit separate discussion, is repeated
testing of the same individuals in which only two treatments (a = 2) are giv­
en. This case is also known as paired comparisons, because each observation
for one treatment is paired with one for the other treatment. This pair is com­
posed of the same individuals tested twice or of two individuals with com­
mon experiences, so that we can legitimately arrange the data as a two-way
anova.

Let us elaborate on this point. Suppose we test the muscle tone of a group
of Illdi viduals, subject them to severe physical exercise, and measure their muscle
tone once more. Since the same group of individuals will have been tested twice,
we can arrange our muscle tone readings in pairs, each pair representing readings
on one individual (before and after exercise). Such data are appropriately treated
oya two-way anova without replication. which in this case would oe a paired­
comparisons test because there are only two treatment classes. This "before and
after treatment" comparison is a very frequent design leading to paired com­
parisons. Another design simply measures two stages in the development of a
group of organisms, time being the treatment intervening between the lwo
stages. The example in Box 9.3 is of this nature. It measures lower face width
in a group of girls at age live and in the same group of girls when they are six
years old. The paired comparison is for each individual girl, between her face
width when she is live years old and her face width at six years.

Paired comparisons often result from dividing an organism or other in­
dividual unit so that half receives treatment I and the other half treatment 2.
which may be the control. Thus. if we wish to test the strength of two antigens
or aller'gens we might inject one into each arm of a single individual and mea­
su re the diamCler of the red area produced. It would not be wise, from the
point of view of experimental design. to test antigen I on individual I and
antigen 2 on individual 2. These individuals may be differentially susceptible
to these antigens. and we may learn little about the relative potency of the

•
BOX 9.3
Paired comparisoDs (ranclomized blocks with II = 2).

Lower face width (skeletal bigonial diameter in em) for 15 North white
girls measured when 5 and again when 6 years old.

(4)
(1) (2) (3) D = Yiz -1';1

Individuals 5-year.olds 6-year-olds 1: (differenc(!)

1 7.33 7.53 14.86 0.20
2 7.49 7.70 15.19 .21
3 7.27 7.46 14.73 .19
4 7.93 8.21 16.14 .28
5 7.56 7.81 15.37 .25
6 7.81 8.01 15.82 .20
7 7.46 7.72 15.18 .26
8 6.94 7.13 14.07 .19
9 7.49 7.68 15.17 .19

10 7.44 7.66 15.10 .22
11 7.95 8.11 16.06 .16
12 7.47 7.66 15.13 .19
13 7.()4 7.20 14.24 .16
14 7.10 7.25 14.35 .15
15 7.64 7.79 15.43 .15

LY 111.92 114.92 226.84 3.00

Ly2 836.3300 881.8304 3435.6992 0.6216

Source: From a larger study by Newman and Meredith (1956).

Two-way anova without replication

Ano"8 table

Source of
variation dJ 5S MS F, Expected MS

Ages (columns;
2 2 b L 2factor A) 0.3000 0.3000 388.89.... (J +(JA8+-- IX

a-I
Individuals
(rows; factor B) 14 2.6367 0.188,34 (244.14).... (J2

+ at1~

Remainder 14 O.ot08 0.000,771,43 (J2 + (J~8

Total 29 2.9475

FO.OIII.141 = 8.86 FO.OII12.12) = 4.16 (Conservative tabled value)

Conclusions.-The variance ratio for ages is highly significant. We conclude
that faces of 6-year-old girls are wider than those of 5-year-olds. If we are willing
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BOX 9.3
Continued

to assume that the interaction a~B is zero, we may test for an added variance
component among individual girls and would find it significant.

The t test for paired comparisons

fj - (Ill - J.t2)t.==---=-_:.-.:::..
Sii

where fj is the mean difference between the paired observations.

- I:D 3.00
D=T=15=O.20

and Sjj = SD/Jb is the standard error of i5 calculated from the observed differences
in column (4):

0.6216 - (3.002/15) =JO.0216
14 14

= -!O.001,542,86 == 0.039,279,2

and thus

Sp 0.039,279,2
Sjj = Jb = Jl5 = 0.010,141,9

We assume that the true difference between the means of the two groups, J1 - J1 ,
equals zero: 1 2

i5 - 0 0.20 - 0
t., =-;;;- = 0.010,141,9 = 19.7203 with b 1 = 14 df.

This yields P« 0.01. Also t; = 388.89, which equals the previous F•.

•

antigens, since this would be confounded by the diflerential responses of the
subjects. A much better design would be first to inject antigen I into the left arm
and antigen 2 into the right ann of a group of II individuals and then to analyze
the data as a two-way anova without replication, with /l rows (individuals) and
2 columns (treatments). It is probably immaterial whether an antigen is injected
into the right or left arm, but if we were designing such an experiment and
knew little about the reaction of humans to antigens, we might, as a precaution,
randomly allocate antigen I to the left or right arm for different subjects, antigen
2 being injected into the opposite arm. A similar example is the testing of certain
plant viruses by rubbing a concentration of the virus over the surface of a leaf
and counting the resulting lesions. Since different leaves arc susceptible in dif­
ferent degrees, a conventional way of measuring the strength of the virus is to

wipe it over the half of the leaf on one side of the midrib, rubbing the other
half of the leaf with a control or standard solution.

Another design leading to paired comparisons is to apply the treatment to
two individuals sharing a common experience, be this genetic or environmental.
Thus, a drug or a psychological test might be given to groups of twins or sibs,
one of each pair receiving the treatment, the other one not.

Finally, the paired-comparis0ns technique may be used when the two in­
dividuals to be compared share a single experimental unit and are thus subjected
to common environmental experiences. If we have a set of rat cages, each of
which holds two rats, and we are trying to compare the effect of a hormone
injection with a control, we might inject one of each pair of rats with the
hormone and use its cage mate as a control. This would yield a 2 x n anova
for n cages.

One reason for featuring the paired-comparisons test separately is that it
alone among the two-way anovas without replication has an equivalent, alter­
native method of analysis-- the t test for paired comparisons, which is the
traditional method of analyzing it.

The paired-comparisons case shown in Box 9.3 analyzes face widths of five­
and six-year-old girls, as already mentioned. The question being asked is
whether the faces of six-year-old girls are significantly wider than those of five­
year-old girls. The data are shown in columns (I) and (2) for 15 individual girls.
Column (3) features the row slims that are necessary for the analysis of varial1\x.
The computations for the two-way anova without replication are the same as
those already shown for Box 9.2 and thus are not shown in detail. Thc anova
table shows that there is a highly significant difference in face width bet ween
the two age groups. If interaction is assumed to be zero, therc is a large added
variance component among the individual girls, undoubtedly representing
genetic as well as environmental differences.

The other method of analyzing paired-comparisons designs is the well­
known t test f(Jr paired comparisons. It is quite simple to apply and is illustrated
in the second half of Box 9.3. It tests whether the mean of sample diflerences
between pairs of rcadings in the two columns is significantly diflerent from a
hypothetical mean, which the null hypothesis puts at zero. The standard error
over which this is tested is the standard error of the mean difference. The dif­
ference column has to be calculated and is shown in column (4) of the data
table in Box 9.3. The computations arc quite straightforward, and the conclu­
sions arc the same as for the two-way anova. This is another instance in which
we obtain the value of "-, when we square the value of [,.

Although the paired-comparisons t test is the traditional method of solving
this type of problcm, we preler the two-way anova. Its computation is no llIore

time-consuming and has the advantage of providing a measure of the variance
component among the rows (blocks). This is useful knowledge, because if there
is no significant added variance component among blocks, one might simplify
the analysis and design of future, similar studies by employing single classifi­
cation anova.
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Exercises

9.1 Swanson, Latshaw, and Tague (1921) determined soil pH electrometrically for
various soil samples from Kansas. An extract of their data (acid soils) is
shown below. Do subsoils differ in pH from surface soils (assume that there is
no interaction between localities and depth for pH reading)?

9.3 Blakeslee (1921) studied length-width ratios of second seedling leaves of two
types of Jimson weed called globe (G) and nominal (N). Three seeds of each
type were planted in 16 pots. Is there sufficient evidence to conclude that globe
and nominal differ in length-width ratio?

Ayshire CmllllJillll Guerusey f{ (,[s! eill- Friesiml Jersey
MllWre ]-\T Mawre ]-y,. Ma!lIre :!-\T Ma!lIn' .!-\,r [\lallll"<' ]-IT

._-~-_..-

3.74 4.44 3.92 4.29 4.54 530 340 379 4.80 5.75
401 4.37 4.95 5.24 518 450 3.55 3.66 6.45 5.14
3.77 4.25 4.47 4.43 5.75 4.59 3.X3 3.58 5.18 5.25
3.78 3.71 4.28 4.00 5.04 504 .'.95 338 4.49 476
4.10 4.08 4.07 4.62 4.64 4.83 4.43 3.71 5.24 5.18
4.06 3.90 4.10 4.29 4.79 455 3.70 3.94 5.70 4.22
4.27 4.41 4.38 4.85 4.72 4.97 .nO 3.59 5.41 5.98
394 4.11 3.98 4.66 388 5.38 393 3.55 4.77 485
4.11 4.37 4.46 4.40 5.28 5.39 3.58 355 5.18 6.55
4.25 353 5.05 4.33 4.66 5.97 3.54 H3 52, 5.72

--Iy 40.03 41.17 43.66 4.5.11 4848 50.52 37.21 36.18 52.45 5HO

Y 4.003 4.117 43(,(, 4511 4.848 5.052 3721 J(,18 .524.5 5340 9.5

"h"L: y2 = 2059.6109

9.2

County Soil type Surface pH Subsoil pH

Finney Richfleld silt loam 6.57 8.34
Montgomery Summit silty clay loam 6.77 6.13
Doniphan Brown silt loam 6.53 6.32
Jewell Jewell silt loam 6.71 8.30
Jewell Colby silt loam 6.72 8.44
Shawnee Crawford silty clay loam 6.01 6.80
Cherokee Oswego silty clay loam 4.99 4.42
Greenwood Summit silty clay loam 5.49 7.90
Montgomery Cherokee silt loam 5.56 5.20
Montgomery Oswego silt loam 5.32 5.32
Cherokee Bates silt loam 5.92 5.21
Cherokee Cherokee silt loam 6.55 5.66
Cherokee Neosho silt loam 6.53 5.66

ANS. MS between surface and subsoils = 0.6246, MSmidual = 0.6985, Fs = 0.849
which is clearly not signiflcant at the 5% level.
The following data were extracted from a Canadian record book of purebred
dairy cattle. Random samples of 10 mature (flve-year-old and older) and 10
two-year-old cows were taken from each of five breeds (honor roll, 305-day
class). The average butterfat percentages of these cows were recorded. This
gave us a total of 100 butterfat percentages, broken down into flve breeds
and into two age classes. The 100 butterfat percentages are given below.
Analyze and discuss your results. You will note that the tedious part of
the calculation has been done for you.

9.4

Pot Types
idelllificatio/l

/lumher G N
._----~----------

16533 1.67 1.53 1.61 2.18 2.23 2.32
16534 1.68 1.70 1.49 2.00 2.12 218
16550 I.3S 1.76 1.52 2.41 2.11 2.60
16668 1.66 1.48 1.69 1.93 2.00 2.00
16767 1.38 1.61 1.64 2.32 2.23 1.90
16768 1.70 1.71 1.71 2.48 2.11 2.00
16770 1.58 1.59 1.38 2.00 2.IS 2.16
16771 1.49 1.52 1.68 1.94 213 2.29
16773 I.4S 1.44 1.58 1.93 1.95 2.10
16775 1.2S 145 1.50 1.77 2.OJ 2.0S
16776 1.55 1.45 1.44 206 1.85 1.92
16777 1.29 1.57 1.44 2.00 1.94 I.S0
16780 1.36 1.22 1.41 1.87 1.87 2.26
16781 1.47 143 1.(, I 2.24 2.00 2.23
16787 1.52 1.56 1.56 1.79 208 U\9
16789 1.37 1.38 1.40 1.85 2.10 200

ANS. MSwithin = 0.0177, MS/xl' = 0.0203, 114'<';"1'0' = 7.3206 (I', c= 360.62**),
MS p"" = 0.0598 (F, = 3.378**). The eneet of pots is considered to he a Model"
(iletor, and types, a Model I factor.
The following data were extracted from a more entcnsive study hy SoLd and
Karten (1964): The data n:present mean dry weights (in mg) of three genotypes
of heetles, .' rthu//II/ll c(/sl(/I/I'/II/l, reared at a density of ~O heetles per gram of
flour. The four Seril'S of experiments represent replications.

(Ienul JPc.\

.\"Til's t+ +h hh

0.958 0.986 0.92.5
2 0.971 1.051 0.9.52
3 0.927 (UN 1 0829
4 0.97/ 1.010 0955

Test whether the genotypes differ in mean dry weight.
The mean length of developmental period (in days) for three strains (If house­
!lies at SLYen densities is given. (Data by Sulliva;l and Sobl, 19()3.) Do these
flies diller in development period with density and among strains') You may
assume absence 01 stram ;< density interaction.
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Siraills
~-~------~--

Del1Sil r
per container OL BELL bwb

60 9.6 9.3 9.3
SO 10.6 9.1 9.2

160 9.8 9.3 9.5
320 10.7 9.1 10.0
640 11.1 11.1 10.4

1280 10.9 11.8 IO.S
2560 12.8 10.6 10.7

ANS..MS,"'idual = 0.3426, MS'tcains = 1.3943 (F, = 4.070*), MSdcnsity = 2.0905
(F, = 61019**)

The following data are extracted from those of French (1976), who carried out
a study of energy utilization in the pocket mouse PeroYllathlls [ollyimemhris
during hibernation at different temperatures. Is there evidence that the amount
of food available affects the amount of energy consumed at different tempera­
tures during hibernation'?

CHAPTER 10

Assumptions of

Analysis of Variance
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We shall now examine the underlying assumptions of the analysis of variance,
methods for testing whether these assumptions are valid, the consequences for
an anova if the assumptions are violated, and steps to be taken if the assump­
tions cannot be met. We should stress that before you carry out any anova
on an actual research problem, you should assure yourself that the assump­
tions listed in this chapter seem reasonable. If they arc not, you should carry
out one of several possible alternative steps to remedy the situation.

In Section 10.1 we briefly list the various assumptions of analysis of vari­
ance. We describe procedures for testing some of them and briefly state the
consequences if the assumptions do not hold, and we give instructions on how
to proceed if they do not. The assumptions include random sampling, inde­
pendence, homogeneity of variances, normality, and additivity.

In many cases, departure from the assumptions of analysis of variance
can be rectified by transforming the original data by using a new scale. The
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rationale behind this is given in Section 10.2, together with some of the common
transformations.

When transformations are unable to make the data conform to the assump­
tions of analysis of variance, we must use other techniques of analysis, analogous
to the intended anova. These are the nonparametric or distribution-free tech­
niques, which are sometimes used by preference even when the parametric
method (anova in this case) can be legitimately employed. Researchers often
like to use the nonparametric methods because the assumptions underlying
them are generally simple and because they lend themselves to rapid compu­
tation on a small calculator. However, when the assumptions of anova are
met, these methods are less efficient than anova. Section 10.3 examines three
nonparametric methods in lieu of anova for two-sample cases only.

10.1 The assumptions of anova

Randomness. All anovas require that sampling of individuals be at random.
Thus, in a study of the effects of three doses of a drug (plus a control) on five
rats each, the five rats allocated to each treatment must be selected at random.
If the five rats employed as controls are either the youngest or the smallest
or the heaviest rats while those allocated to some other treatment are selected
in some other way, it is clear that the results arc not apt to yield an unbiased
estimate of the true treatment effects. Nonrandomness of sample selection may
well be reflected in lack of independence of the items, in heterogeneity of vari­
ances, or in non normal distribution --all discussed in this section. Adequate
safeguards to ensure random sampling during the design of an experiment. or
during sampling from natural populations, are essential.

Indepe/ldence. An assumption stated in cach explicit expression for the ex­
pected value of a variate (for example, Expression (7.2) was Y;j = II + Ct.; + E;)
is that the error term EiJ is a random normal variable. In addition, for com­
pleteness we should also add the ,tatement that it is assumed that the E's
an: independently and identically (a.s explained below under "Homogencity of
variances") distributed.

Thus, if you arranged the variates within anyone group in some logical
order independent of their magnitude (such as the order in which the measure­
ments were ohtained), you would expect the E,;'S to succeed each other in a
random sequence. Consequently, you would assume a long sequence of large
positive values followed by an equally long sequence of negative values to be
quite unlikely. You would also not expect positive and negative values to alter­
nate with regularity.

How could departures from independence arise'! An ohviolls example would
be an experiment in which the experimental units were plots of ground laid out
in a lick\. In such a case it is oft<.:n found that adjacent plots of ground givc
rather similar yields. It would thus be important not to group all the plots
containing the same treatment into an adjacent series of plots but rather to
r;1l1domize the a1I0ca (ion of (rca t lTI<.:nts among the exp<:rimental plots. The phys-

ical process of randomly allocating the treatments to the experimental plots

ensures that the E'S will be independent.
Lack of independence of the E'S can result from correlation in time rather

than space. In an experiment we might measure the effect of a treatment by
recording weights of ten individuals. Our balance may suffer from a malad­
justment that results in giving successive underestimates, compensated for by
several overestimates. Conversely, compensation by the operator of the balance
may result in regularly alternating over- and underestimates of the true weight.
Here again, randomization may overcome the problem of nonindependence of
errors. For example, we may determine the sequence in which individuals of
the various groups are weighed according to some random procedure.

There is no simple adjustment or transformation to overcome the lack of
independence of errors. The basic design of the experiment or the way in w.hi.ch
it is performed must be changed. If the E'S are not independent, the validIty
of the usual F test of significance can be seriously impaired.

Homogeneity of variances. In Section 8.4 and Box 8.2, in which we de­
scribed the t test for the difference between two means, you were told that
the statistical test was valid only if we could assume that the variances of the
two samples were equal. Although we have not stressed it so far, this assump­
tion that the E ·'s have identical variances also underlies the equivalent anovav .
test for two samples~and in fact any type of anova. Equality ol variances III

a set of samples is an important precondition for several statistical tests. Syn­
onyms for this condition are homogeneity of variances and homoscedasticity.
This latter term is coined from Greek roots meaning equal scatter; the converse
condition (inequality of variances among samples) is called heteroscedasticity.
Because we assume that ea\:h sample variance is an estimate of the same para­
metric error variance, the assumption of homogeneity of variances makes in­

tuitive sense.
We have already seen how to test whether two samples arc homoscedastic

prior to a t test of the differences between two means (or the mathematically
equivalent two-sample analysis of variance): we usc an F test for the hypotheses
H n: aT = a~ and HI: aT 1= a~, as illustrated in Section 7.3 and Box 7.1. For
more than two samples there is a "quick and dirty" method, preferred by many
because of its simplicity. This is the F ma , test. This test relics on the tabled
cumulative probability distribution of a statistic that is the variance ratio of the
largest to the smallest of several sample variances. This distrihution is shown in
Table Vl. Let us assume that we have six anthropological samples of 10 bone
lengths each, for which we wish to carry out an anova. The varia~ces of t~e

six samples range from 1.2 to lOX We compute the maximum vanance ratio
,.2 /,,2. = LO.K = 9.0 and compare it with F. [ J' critical values of whKh are
,llllax .lnllll 1,2 m.iX 7. cr:. v

found in Table VI. For a = 6 and \' = II -- 1 = 9, F nli" is 7.80 and 12.1 at the
5'~~ and I":, levels, respectively. We conclude that the variances of the six sam­

ples arc significantly heterogeneous.
What may cause such heterogeneity? In this case, we suspect that some of

the populations are inherently more variable than others. Some races or species
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TAIlU HI.I
lIIuslrat;on of additin' and muhiplil'alive l'lfl>l·tS.

2 3 4 AdditivL: cllccls
/1, - I I 2 3 Mulliplicalivc dkclS

0 0.30 OAX Log of Illultlplicatlve dkcts

6 7 g Additive dlCcts
/1 2 = 5 5 10 15 MultipliC:tlivL: dkcls

0.70 100 I.J8 Log of Illultiplicative eflccls

or an independent estimate of the error mean square from previous comparable
experiments.

Interaction can be due to a variety of causes. Most frequently it means
that a given treatment combination, such as level 2 of factor A when com­
bined with level 3 of factor B, makes a variate deviate from the expected value.
Such a deviation is regarded as an inherent property of the natural system
under study, as in examples of synergism or interference. Similar effects occur
when a given replicate is quite aberrant, as may happen if an exceptional plot
is included in an agricultural experiment, if a diseased individual is included in
a physiological experiment, or ifby mistake an individual from a different species
is included in a biometric study. Finally, an interaction term will result if the
effects of the two factors A and B on the response variable Yare multiplicative
rather than additive. An example will make this clear.

In Table 10.1 we show the additive and multiplicative treatment effects
in a hypothetical two-way anova. Let us assume that the expected population
mean f1 is zero. Thcn the mean of thc sample subjected to treatment I of fac­
tor A and treatment 1 of factor B should be 2, by the conventional additive
model. This is so because each factor at level I contributes unity to the mean.
Similarly, the expected subgroup mean subjected to level 3 for factor A and
level 2 for factor B is 8, the respective contributions to the mean being 3 and 5.
However, if the process is multiplicativc rather than additivc, as occurs in a
variety of physicochemical and biological phenomena, the expected values will
be quite different. For treatment AlB 1, the expected value equals I, which is
the product of 1 and 1. For treatment A 3 B2 , the expected value is 15, the prod­
uct of 3 and 5. If we were to analyze multiplicative data of this sort by a
conventional anova, we would find Ihal thc interaction sum of squares would
be greatly augmented because of the nonadditivity of the treatment etTects. In
this case, there is a simple remedy. Ry transforming the variable into logarithms
(Table 10.1), we arc able to restore the additivity of the data. The third itcm
in each cell gives the logarithm of lhe expected value, assuming multiplicative

are relatively uniform for one character, while others are quite variable for the
same character. In an anova representing the results of an experiment, it may
well be that one sample has been obtained under less standardized conditions
than the others and hence has a greater variance. There are also many cases
in which the heterogeneity of variances is a function of an improper choice of
measurement scale. With some measurement scales, variances vary as functions
of means. Thus, differences among means bring about heterogeneous variances.
For example, in variables following the Poisson distribution the variance is in
fact equal to the mean, and populations with greater means will therefore have
greater variances. Such departures from the assumption of homoscedasticity
can often be easily corrected by a suitable transformation, as discussed later in
this chapter.

A rapid first inspection for heteroscedasticity is to check for correlation
between the means and variances or between the means and the ranges of the
samples. If the variances increase with the means (as in a Poisson distribution),
the ratios s21Y or slY = V will be approximately constant for the samples.
If means and variances are independent, these ratios will vary widely.

The consequences of moderate heterogeneity of variances are not too seri­
ous for the overall test of significance, but single degree of freedom compari­
sons may be far from accurate.

If transformation cannot cope with heteroscedasticity, nonparametric
methods (Section 10.3) may have to be resorted to.

Normality. We have assumed that the error terms Eij of the variates in each
sample will be independent, that the variances of the error terms of the several
samples will be equaL and, finally, that the error terms will be normally dis­
tributed. If there is serious question about the normality of the data, a graphic
test, as illustrated in Section 5.5, might be applied to each sample separately.

The consequences of nonnormality of error are not too serious. Only very
skewed distribution would have a marked effect on the significance level of
the F test or on the efficiency of the design. The best way to correct for lack
of normality is to carry out a transformation that will make the data normally
distributed, as explained in the next section. If no simple transformation is satis­
factory, a nonparametric test, as carried out in Section 10.3, should he sub­
stituted for the analysis of variancc.

Additivitv. In two-way anova without replication it is necessary to assume
that interaction is not present if one is to make tests of the main effects in a
Model I anova. This assumption of no interaction in a two-way anova is some­
times also referred to as the assumption of additivity of the main effects. By this
we mean that any single observed variate can be decomposed into additive
components representing the treatment effects of a particular row and column
as well as a random term special to it. If interaction is actually present, then
the r test will be very inefTicient. and possibly misleading if the effect of the
interaction is very large. A check of this assumption requires either more than
a single observation per cell (so that an error mean square can be computed)

faclor H Cl, - I

factor A
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relations. Notice that the increments are strictly additive again (SS A x B = 0).
As a matter of fact, on a logarithmic scale we could simply write (Xl = 0,
(X2 = 0.30, (X3 = 0.48, f3l = 0, f32 = 0.70. Here is a good illustration of how trans­
formation of scale, discussed in detail in Section 10.2, helps us meet the assump­
tions of analysis of variance.

10.2 Transformations

If the evidence indicates that the assumptions for an analysis of variance or for
a t test cannot be maintained, two courses of action are open to us. We may
carry out a different test not requiring the rejected assumptions, such as one
of the distribution-free tests in lieu of anova, discussed in the next section. A
second approach would be to transform the variable to be analyzed in such a
manner that the resulting transformed variates meet the assumptions of the
analysis.

, Let us look at a simple example of what transformation will do. A single
vanate of the SImplest kind of anova (completely randomized, single-classifica­
tion, Modell) decomposes as follows: r;j = J.1 + (Xj + Eij' In this model the com­
ponents are additive, with the error term Eij normally distributed. However,
~e might encounter a situation in which the components were multiplicative
III effect, so that Y;j = i1C1fij. which is the product of the three terms. In such
a case the assumptions of normality and of homoscedasticity would break
down. In anyone anova, the parametric mean /1 is constant but the treatment
effect Ct. j differs from group to group. Clearly, the scatter among the variates
Y;j would double in a group in which Ct. j is twice as great as in another. As­
sume that /1 = I. the smallest Eij = I, and the greatest, 3; then if Ct.

j
= 1, the range

of the Y's wilI be 3 - I = 2. However. when Ct. j = 4, the corresponding range
will be four lImes as wide. from 4 x 1 = 4 to 4 x 3 = 12, a range of 8. Such
data wilI be heteroscedastie. We can correct this situation simply by transform­
IIlg our modcl into logarithms. We would therefore obtain log Y;. = log Jl +
logcx i + log Eij. which is additive and homoscedastic. The entire)analysis of
variance would then be carried out on the transformed variates.

At this point many of you will feel more or less uncomfortable about what
we have done. Transformation seems too much like "data grinding." When you
learn that often a statistical test may be made significant aftcr transformation
of a set of data, though it would not be so without such a transformation
you may feel even more suspicious. What is the justification for transformin~
the data') It takes some getting used to the idea, but there is really no scien­
tific necessity to employ the common linear or arithmetic scale to which wc
are accustomed. You arc probably aware that teaching of the "new math" in
clementary schools has done much to dispel the naive notion that the decimal
system of numbers is the only "natural" one. In a similar way, with some ex­
perience in science and in the handling of statistical data, you will appreciate
the fact that the linear scale. so familiar to all of us from our earliest expc-

rience, occupies a similar position with relation to other scales of meaS\lIVlIll'l\ 1

as does the decimal system of numbers with respect to the binary and \)\1;11

numbering systems and others. If a system is multiplicative on a linear scale.
it may be much more convenient to think of it as an additive system on a
logarithmic scale. Another frequent transformation is the square root of a vari­
able. The square root of the surface area of an organism is often a more
appropriate measure of the fundamental biological variable subjected to phys­
iological and evolutionary forces than is the area. This is reflected in the normal
distribution of the square root of the variable as compared to the skewed dis­
tribution of areas. In many cases experience has taught us to express experi­
mental variables not in linear scale but as logarithms, square roots, reciprocals,
or angles. Thus, pH values are logarithms and dilution series in microbiological
titrations are expressed as reciprocals. As soon as you are ready to accept the
idea that the scale of measurement is arbitrary, you simply have to look at the
distributions of transformed variates to decide which transformation most
closely satisfies the assumptions of the analysis of variance before carrying out
an anova.

A fortunate fact about transformations is that very often several departures
from the assumptions of anova arc simultaneously cured by the same trans­
formation to a new scale. Thus, simply by making the data homoscedastic, we
also make them approach normality and ensure additivity of the treatment
effects.

When a transformation is applied, tests of significance arc performed on
the transformed data, but estimates of means are usually given in the familiar
untransformed scale. Since the transformations discussed in this chapter are
nonlinear, confidence limits computed in the transformed scale and changed
back to the original scale would be asymmetrical. Stating the standard error
in the original scale would therefore be misleading. In reporting results of re­
search with variables that require transformation, furnish means in the back­
transformed scale followed by their (asymmetrical) confidence limits rathcr than
by their standard errors.

An easy way to flnd out whether a given transformation will yield a dis­
tribution satisfying the assumptions of anova is to plot the cumulative distribu­
tions of the several samples on probability paper. By changing the scale of the
second coordinate axis from linear to logarithmic, square root, or any other one,
we can sec whether a previously curved line. indicating skewness, straightens
out to indicate normality (you may wish to refresh your memory on these
graphic techniques studied in Section 5.5). We can look up upper class limits
on transformed scales or employ a variety of available probability graph papers
whose second axis is in logarithmic, angular, or other scale. Thus, we not only
test whether the data become more normal through transformation, but we can
also get an estimate of the standard deviation under transformation as mea­
sured by the slope of the fitted line. The assumption of homoscedasticity implies
that the slopes for the several samples should be the same. If the slopes arc vcry
heterogeneous, homosccdasticity has not been achieved. Alternatively. we can



examine goodness of fit tests for normality (see Chapter 13) for the samples
under various transformations. That transformation yielding the best fit over
all samples will be chosen for the anova. It is important that the transformation
not be selected on the basis of giving the best anova results, since such a proce­
dure would distort the significance level.

The logarithmic transformation. The most common transformation applied
is conversion of all variates into logarithms, usually common logarithms. When­
ever the mean is positively correlated with the variance (greater means are ac­
companied by greater variances). the logarithmic transformation is quite likely
to remedy the situation and make the variance independent of the mean. Fre­
quency distributions skewed to the right are often made more symmetrical by
transformation to a logarithmic scale. We saw in the previous section and in
Table 10.1 that logarithmic transformation is also called for when effects are
multiplicative.

The square root transfimnatioll. We shall use a square root transformation
as a detailed illustration of transformation of scale. When the data are counts,
as of insects on a leaf or blood cells in a hemacytometer, we frequently find
the square root transformation of value. You will remember that such distri­
butions are likely to be Poisson-distributed rather than normally distributed
and that in a Poisson distribution the variance is the same as the mean. There­
fore, the mean and variance cannot be independent but will vary identically.
Transforming the variates to square roots will generally make the variances
independent of the means. When the counts include zero values, it has been
found desirahle to code all variates by adding 0.5. The transformation then is
Jy +~.

Table 10.2 shows an application of the square root transformation. The
sample with the greater mean has a significantly greater variance prior to trans­
formation. After transformation the variances are not significantly different. For
reporting means the transformed means arc squared again and confidence limits
arc reported in lieu of standard errors.

The arcsine trans!imnillioll. This transformation (also known as the alJ!lu!ar
tralls!ill'mal ion) is especially appropriate to percentages and proportions. You
may remember from Section 4.2 that the standard deviation of a binomial
distribution is (J = jP;/!/". Since II = p. II = I p, and k is constant for anyone
pmblem, it is clear that in a hinomial distrihution the variance would he a func­
tion of the mean. The arcsine transformation preserves the independence of
the two.

The transformation finds II = arcsin ,ip, where p is a proportion. The term
"arcsin" is synonymous with inverse sine or sin I, which stands for "the angle
whose sine is" the given quantity. Thus. if we compute or look lip arcsin
J0.431 = 0.6565, we find 41.03 . the angle whose sine is 0.6565. The arcsine trans­
formation stretches out hoth tails of a distribution of percentages or propor­
tions and compresses the middle. When the percentages in the original data fall
hetween 30":. and 70",:, it is gl:nerally Ilot necessary to apply the arcsine trans­
formation.

TABLE 10.2 .
An application of the square root transformation. The data represent the number o~ adult DrosophIla
emerging from single-pair cultures for two different medium formulatIOns (medIum A contamed

DDT).

Back-lransfiJrmed (squared) means
Medium A

9.324

t2.6X I

Medium IJ

10.937

3307 - 2.145 J()Y~44

= 3.053

3.561

Transrormed

. -'J"I 0.2634 _ .l' .=-- =--_. - 1.255 11.~
, -'Jr, 0.2099

f

3.307
0.2099

2
1
2
3
1
I
1
I
I
2

IS

11.133
9.410

(4)
Medium B

1.299
0.2634

1.933
1.495

1.297 - 2.145 ~;34

1.015

/.2 = Jy + loo,-'jr 1.583

Back-tTilnsfiJrmed (squared) confidence limits

f.i 1.030

f.i 2.507

95% confidence limits

L, = Jy - loo,-',;r

Tests or equality or variances

Untransformed

, s~ 9.410 9 ** r.. 190f = - =.. = 6.2 4 CO.02'[I4.141 = ~. ", si 1.495

UnlransfiJrmed variahIe

Square root transfiJrmation

(1) (2)
Number of Square root of (3)

flies emerging number offlies Medium A

y if f

0 0.00 1

1 1.00 5

2 1.41 6

3 1.73
4 2.00 3

5 2.24
6 2.45
7 2.65
8 2.83
9 3.00

10 3.16
II 3.32
12 3.46
13 3.61
14 3.74
15 3.87
16 4.00

15
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to.3 Nonparametric methods in lieu of anova •

0.8
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u. •g: 0.4 • •••;.J ••

0.3

2. For each observation in one sample (it is convenient to use the smaller sample),
count the number of observations in the other sample which are lower in value
(below it in this graph). Count 1for each tied observ~tio~. For example, there
are Hobservations in class I below the first obs~rvatl.on In class III. T~e h~f
is introduced because of the variate in class I tied WIth the lowe~t vanate In

class III. There are 2! observations below the tied second and third obs~rva­

tions in class III. There are 3 observations below the fourth and fifth var~ates

in class III, 4 observations below the sixth variate, and 6 and 7 observatIOns,
respectively, below the seventh and eight variates in class III. The sum of these
counts C = 291. The Mann-Whitney statistic U. is the greater of the two
quantities C and (ntn2 - C), in this case 291 and [(29 x 8) - 29!] = 202!.

BOX 10.1
MaJlll-Wbitney U test for two samples, ranked oIlse"ations, not paired.

A measure of heart function (left ventricle ejection fraction) measured in two
samples of patients admitted to the hospital under sU8~ici~n of hea;rt attac~ ~e
patients were classified on the basis of physical exammatlODS dunng admission
into different so-called Killip classes of ventricular dysfunction. We compare the
left ventricle ejection fraction for patients classified as Killip classes I an~ III. The
higher Killip class signifies patients.wi~ more severe symptons. The findmgs were
already graphed in the source publicanon, and step 11llu~trates that only a ~aph
of the data is required for the Mann-Whitney U test. DesIgnate th~ sample sm of
the larger sample as n1 and that of the smaller s~ple as n2' In thIS cll;Se, ~t = ~9,

n2 = 8. When the two samples are of equal size It does not matter which IS deSig­
nated as nl'

I. Graph the two samples as shown below. Indicate the ties by placing dots at the
same level.

Killip class

·•..·

III

0.28 + O.OS
11=8

·••
0.49 + 0.13

II == 290.1

0.2

If none of the above transformations manage to make our data meet the as­
sumptions of analysis of variance, we may resort to an analogous nonpara­
metric method. These techniques are also called distributionjree methods, since
they are not dependent on a given distribution (such as the normal in anova),
but usually will work for a wide range of different distributions. They are called
nonparametric methods because their null hypothesis is not concerned with spe­
cific parameters (such as the mean in analysis of variance) but only with the
distribution of the variates. In recent years, nonparametric analysis of vari­
ance has become quite popular because it is simple to compute and permits
freedom from worry about the distributional assumptions of an anova. Yet we
should point out that in cases where those assumptions hold entirely or even
approximately, the analysis of variance is generally the more efficient statis­
tical test for detecting departures from the null hypothesis.

We shall discuss only nonparametric tests for two samples in this section.
For a design that would give rise to a t test or anova with two classes, we
employ the nonparametric Mann-Whitney U test (Box 10.1). The null hypothesis
is that the two samples come from populations having the same distribution.
The data in Box 10.1 are measurements of heart (vcntricular) function in two
groups of patients that have been allocated to their rcspective groups on the
basis of other criteria of ventricular dysfunction. The Mann-Whitney U test
as illustrated in Box 10.1 is a semigraphical test and is quite simple to apply.
It will be especially convenient when the data arc already graphed and there
are not too many items in each sample.

Notc that this mcthod docs not really require that each individual observa­
tion represent a precise measurement. So long as you can order the observa­
tions. you are able to perform these tests. Thus, for example. suppose you
placed some meat out in the open and studied the arrival times of individuals
of (W\) species of blowllies. You could record exactly the time of arrival of
each individual fly, starling from a point zero in lime when lhe meal was scI
out. On the other hand. you might SImply ranK arrival times of the two species.
noting that individual I of species B came first. 2 individuals from species .4
nex\. then .\ individuals of B. followed by the simultaneous arrival of one of
each of the two species (a tic). and so forth. While such ranked or ordered
data could not be analyzed by the parametric methods studied earlier, the
techniques of Box 10.1 arc entIrely applicable.

The method of calculating the sample statistic U, for the Mann-Whitney
test is straightforward. as shown in Rox 10.1. It is desirahle to obtain an intuitive
understanding of the ratiDnak hehind this test. In the Mann-Whitney test we
can conceivl: of two I:xlreme situali\lns: in one case the Iwo sampks overlap
and coincide entirely: in the other they are quite separate. In the latter case. if
WI: takl: the sample with the lowcr-valul:d variates. there will he no points of thl:
contrasting sampk helow it: that is, we can go through every ohservation in the
lower-valued sample without having any items of the higher-valued one below



222 CIIAPTER 10 / ASSUMPTIONS OF ANALYSIS OF VARIANCE 10.3 / NONPARAMFTRIC METHODS IN Ilrli or ANOVA 223

Box 1M
Continued

Testing the significance of U.

No tied variates in samples (or variates tied within samples only). When nl ~ 20,
compare U. with critical value forUa{nl",,1 in Table Xl, The null hypothesis is
rejected if the observed value is too large.

In cases where nl :> 20, calculate the following quantity

Us - I'I t n2/2
t. =--;:======

ntn2(nl + 1'12 + 1)

12

which is approximately normally distributed. The denominator 12 is a constant.
Look up the significance of t. in Table III against critical values of tal"') for a one­
tailed or two-tailed test as required by the hypothesis. In our case this would yield

it. Conversely, all the points of the lower-valued sample would be below every
point of the higher-valued onc if we started out with the latter. Our total count
would therefore be the total count of onc sample multiplied by every observation
in the second sample, which yields 111112' Thus, since we are told to take the
greater of the two values, the sum of the counts C or 11,11 2 - C, our result in
this case would be 11 111 2 , On the other hand, if the two samples coincided com­
pletely, then for each point in one sample we would have those points below it
plus a half point for the tied value representing that observation in the second
sample which is at exactly the same level as the observation under consideration.
A little experimentation will show this value to be [11(11 - 1)/2] + (11/2) = 11

2
/2.

Clearly, the range of possible U values must be between this and 11,11 2 , and the
critical value must be somewhere within this range.

Our conclusion as a result of the tests in Box 10.1 is that the two admission
classes characterized by physical examination differ in their ventricular dysfunc­
tion as measured by left ventricular ejection fraction. The sample characterized
as more severely ill has a lower ejection fraction than the sample charactcri/cd
,. 1._ :11

100
105
107
107
108
111
116
120
121
123

Sample B
Y

104
109
112
114
116
118
118
119
121
123
125
126
126
128
128
128

Sample A
Y

BOX 10.2
Kolmogorov~Smirnov two-sample test, testing dift'erences in distributions of two
samples of continuous observations. (Both nt and n2 ~ 25.)

Two samples of nymphs of the chigger Trombicula lipovskyi. Variate measured is
length of cheliceral base stated as micrometer units. The sample sizes are n1 = 16,
11 2 = 10.

•

Computational steps

1. Form cumulative frequencies F of the items in samples I and 2. Thus in col­
umn (2) we note that there are 3 measurements in sample A at or below t12.5
micrometer units. By contrast there are 6 such measurements in sample B
(column (3».

2. Compute relative cumulative frequencies by dividing frequencies in columns (2)
and (3) by I'll and 1'12 , respectively, and enter in columns (4) and (5).

Source' Data by D. A. Crossley

The Mann-Whitney U test is based on ranks, and it measures differences in
location. A nonparametric test that tests differences between two distributions
is the Kolmogorov-Smirnoz: two-sample test. Its null hypothesis is identity in dis­
tribution for the two samples, and thus the test is sensitive to differences in
location, dispersion, skewness, and so forth. This test is quite simple to carry out.
It is based on the unsigned differences between the relative cumulative frequency
distributions of the two samples. Expected critical values can be looked up in a
table or evaluated approximately. Comparison between observed and expected
values leads to decisions whether the maximum difference between the two

cumulative frequency distributions is significant.
Box 10.2 shows the application of the method to samples in which both

n
t

and n
2

:s;; 25. The example in this box features morphological measurements

•

86.5
r;;;:;-;;;-;;:; = 3.I 91

"1734.667
t. =

202.5 - (29)(8)/2

(29)(8)(29 + 8 + 1)
12

A further complication arises from observations tied between the two groups.
Our example is a case in point. There is no exact test. For sample sizes n t < 20,
use Table XI, which will then be conservative. Larger sample sizes require a more
elaborate formula. But it takes a substantial number of ties to affect the outcome
of the test appreciably. Corrections for ties increase the t. value slightly; hence
the uncorrected formula is more conservative. We may conclude that the two
samples with a t. value of 3.191 by the uncorrected formula are significantly dif­
ferent at P < 0.01.
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BoxUU
Conti~

3. Comput~ d, .the absolute value of the difference between the relative cumulative
frequenCles In columns (4) and (5), and enter in column (6).

4. Locate the largest unsigned difference D. It is 0.475.

S. Multiply D by n t n2' We obtain (16)(10)(0.475) = 76.

6. Compare nt n2 D with its critical value in Table XU}. where we obtain a value
of 84 for P = 0.05. We a~cept t~e null hypoth~is that the two samples have
bee~ taken f~om populatIons Wlth the same dlStribution. The Kolmogorov­
S~l1rnov test IS less powerful than the Mann-Whitney U test shown in Box 10.1
WIth respect to the alternati~e hypothesis of the latter, i.e., differences in location.
Howeve:, ~olt?0gorov-~nurnov tests differences in both shape and location
of the dlstnbutlons and IS thus a more comprehensive test.

(1) (2) (3) (4) (5) (6)

Sample A Sample B F, Fz d=/F j
Fz

/y F1 F2 n j nz nj nz

100 1 0.100 0.100
101 0 1 0 0.100 0.100
102 0 1 0 0.100 0.100
103 0 1 0 0.100 0.100
104 I 1 0.062 0.100 0.Q38
105 I 2 0.062 0.200 0.138
106 1 2 0.062 0.200 0.138
107 1 4 0.062 0.400 0.338
108 1 5 0.062 0.500 0.438
109 2 5 0.125 0.500 0.375
110 2 5 0.125 0.500 0.375
III 2 6 0.125 0.600 0.475 +- D
112 3 6 0.188 0.600 0.412
113 3 6 0.188 0.600 0.412
114 4 6 0.250 0.600 0.350
115 4 6 0.250 0.600 0.350
116 5 7 0.312 0.700 0.388
117 5 7 0.312 0.700 0.388
118 7 7 0.438 0.700 0.262
119 8 7 0.500 0.700 0.200
120 8 8 0.500 0.800 0.300
121 9 9 0.562 0.900 0.338
122 9 9 0.562 0.900 0.338
123 to 10 0.625 1.000 0.375
124 10 10 0.625 1.000 0.375
125 11 10 0.688 1.000 0.312
126 13 10 0.812 1.000 0.188
127 13 10 0.812 1.000 0.188
128 16 10 1.000 1.000 0

•

of two samples of chigger nymphs. We use the symbol F for cumulative frequen­
cies, which are summed with respect to the class marks shown in column (I),

and we give the cumulative frequencies of the two samples in columns (2) and
(3). Relative expected frequencies are obtained in columns (4) and (5) by dividing
by the respective sample sizes, while column (6) features the unsigned difference
between relative cumulative frequencies. The maximum unsigned difference is
D = 0.475. It is multiplied by n l n 2 to yield 76. The critical value for this statistic
can be found in Table XIII, which furnishes critical values for the two-tailed two­
sample Kolmogorov-Smirnov test. We obtain n1n2DO.IO = 76 and nln 2Do .05 =
84. Thus, there is a 10% probability of obtaining the observed difference by
chance alone, and we conclude that the two samples do not differ significantly
in their distributions.

When these data are subjected to the Mann-Whitney V test, however, one
finds that the two samples are significantly different at 0.05 > P > 0.02. This
contradicts the findings of the Kolmogorov-Smirnov test in Box 10.2. But that
is because the two tests differ in their sensitivities to different alternative hy­
potheses-~ the Mann-Whitney V test is sensitive to the number of interchanges
in rank (shifts in location) necessary to separate the two samples, whereas the
Kolmogorov-Smirnov test measures differences in the entire distributions of the
two samples and is thus less sensitive to differences in location only.

It is an underlying assumption of all Kolmogorov-Smirnov tests that the
variables studied are continuous. Goodness of fit tests by means of this statistic
are treated in Chapter 13.

Finally, we shall present a nonparametric method for the paired-compari­
sons design, discussed in Section 9.3 and illustrated in Box. 9.3. The most widely
used method is that of Wilcoxon's signed-ranks lest, illustrated in Box 10.3. The
example to which it is applied has not yet been encountered in this book. It
records mean litter size in two strains of guinea pigs kept in large colonies
during the years 1916 through 1924. Each of these values is the averagc of a
large number of litters. Note the parallelism in the changes in the variable in
the two strains. During 1917 and 1918 (war years for the United States), a
shortage of caretakers and of food resulted in a decrease in the number of
offspring per litter. As soon as better conditions returned, the mean litter size
increased. Notice that a subsequent drop in 1922 is again mirrored in both
lines, suggesting that these fluctuations arc environmentally caused. It is
therefore quite appropriate that the data be treated as paired comparisons, with
years as replications and the strain differences as the fixed treatments to be
tested.

Column (3} in Box 10.3 lists the differences on which a conventional paired­
comparisons t test could be performed. For Wilcoxon's test these differences
are ranked without reyard /0 siyn in column (4}, so that the smallest absolute
difference is ranked I and the largest absolute difference (of the nine differences)
is ranked 9. Tied ranks arc computed as averages of the ranks; thus if the fourth
and fifth difference have the same absolute magnitude they will both he assigned
rank 4.5. After the ranks haw been computed, the original sign of each difference
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is assigned to the corresponding rank. The sum of the positive or of the negative
ranks, whichever one is smaller in absolute value, is then computed (it is labeled
T,) and is compared with the critical value T in Table XII for the corre­
sponding sample size. In view of the significance of the rank sum, it is clear
that strain B has a litter size different from that of strain 13.

This is a very simple test to carry out, but it is, of course, not as efficient
as the corresponding parametric t test, which should be preferred if the necessary
assumptions hold. Note that one needs minimally six differences in order to
carry out Wilcoxon's signed-ranks test. With only six paired comparisons, all
differences must be of like sign for the test to be significant at the 5% level.

For a large sample an approximation using the normal curve is available,
which is given in Box 10.3. Note that the absolute magnitudes of the differences
playa role only insofar as they affect the ranks of the differences.

A still simpler test is the sign test, in which we count the number of positive
and negative signs among the differences (omitting all differences of zero). We
then test the hypothesis that the n plus and minus signs are sampled from a
population in which the two kinds of signs are present in equal proportions,
as might be expected if there were no true difference between the two paired
samples. Such sampling should follow the binomial distribution, and the test
of the hypothesis that the parametric frequency of the plus signs is p = 0.5 can
be made in a number of ways. Let us learn these by applying the sign test to
the guinea pig data of Box 10.3. There are nine differences, of which eight are
positive and one is negative. We could follow the methods of Section 4.2
(illustrated in Table 4.3) in which we calculate the expected probability of
sampling one minus sign in a sample of nine on the assumption of li = q = OS
The probability of such an occurrence and all "worse" outcomes equals 0.0195.
Since we have no a priori notions that one strain should have a greater litter
size than the other. this is a two-taikd test, and we doubk the probability to
0.0390. Clearly, this is an improbable outcome, and we reject the null hypothesis
that p = (I = OS

Since the computation of the exact probabilities may be quite tedious if no
table of cumulative binomial probabilities is at hand, w.: may take a second
approach, using Table IX, which furnishes confidence limits for {) for various
sample sizes and sampling outcomes. Looking up sample size 9 and Y = J

(number showing the property), we lind the 95"~; confidence limits to be 0.002~

and 0.4751 hy interpolation, thus excluding the value p = II = 05 postulated
hy the null hypothesis. At least at the 5':~ significance level we can conclude
that it is unlikely that the number of plus and minus signs is equal. The con·
fidence limits imply a two-tailed distribution; if we intend a one-tailed test, we
can infer a 0.025 significance level from the 95~;' confidence limits and a 0.005
level from the 99";, limits. Obviously, such a one-tailed tcst would be carried
out only if the results were in the direction of the alternative hypothesis. Thus,
if the alternative hypothesis were that strain 13 in Box f(U had greater filter
siz.e than strain B, we would not bother testing this example at all, since the
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(l) (2) (3) (4)
Year Strain B Strain D Rank(R)

1916 2.68 2.36 +0.32 +9
1917 2.60 2.41 +0.19 +8
1918 2.43 2.39 +0.04 +2
1919 2.90 2.85 +0.05 +3
1920 2.94 2.82 +0.12 +7
1921 2.70 2.73 -0.03 -1
1922 2.68 2.58 +0.10 +6
1923 2.98 2.89 +0.09 +5
1924 2.85 2.78 +0.07 +4

Absolute sum of negative ranks 1
Sum of positive ranks 44

Source: Data by S. Wright.

BOX 10.3

Wilcoxon's signed~ranks test for two groups,i .arranged as paired observations.

Mean litter size of two strains of guinea pigs, compared over n == 9 years.

•

Procedure

1. ~ompute the differences between the n pairs of observations. These are entered
In column O}, labeled D.

2. Rank these differences from the smallest to the largest without regard to sign.

3. Assign to the ranks the original signs of the differences.

4. Sum the positive and negative ranks separately. The sum that is smaller in
absolute value, Ts' is compared with the values in Table XII for n = 9.

. Since T, = 1, which is equal to or less than the entry for one-tailed ex = 0.005
In the table, our observed difference is significant at the 1% level. Litter size in
strain B is significantly different from that of strain 13. .

For large samples (n > 50) compute

•
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EXERCISES

observed proportion of years showing this relation is less than half. For larger
samples, we can use the normal approximation to the binomial distribution as
follows: ts = (Y - fl)/a y = (Y - kp)/J"kiq, where we substitute the mean and
standard deviation of the binomial distribution learned in Section 4.2. In
our case, we let n stand for k and assume that p= q= 0.5. Therefore, ts =
(Y - !n)/~ = (Y - !n)/l~. The value of ts is then compared with ta[",,] in
Table III, using one tailor two tails of the distribution as warranted. When the
sample size n ~ 12, this is a satisfactory approximation.

A third approach we can use is to test the departure from the expectation
that p= q= 0.5 by one of the methods of Chapter 13.

Exercises

10.3

10.4

The variable recorded was a color score (ranging from 1 for pure yellow to ~O
for deep orange-red) obtained by matching flower petals to sample colors m
Maerz and Paul's Dictionary of Color. Test whether the samples are homo-

scedastic. . 1 .
Test for a difference in surface and subsoil pH in the data of ExerCIse 9. , usmg
Wilcoxon's signed-ranks test. ANS. Ts = 38; P > 0.10. .
Number of bacteria in I cc of milk from three cows counted at three penods
(data from Park, Williams, and Krumwiede, 1924):

Cow no. At time ofmilkin!J After 24 hours After 48 hours

I 12,000 14,000 57,000

2 13,000 20,000 65,000

3 21,500 31,000 106,000

Allee and Bowen (1932) studied survival time of goldfish (in minutes) when placed
in colloidal silver suspensions. Experiment no. 9 involved 5 replications, and
experiment no. IO involved IO replicates. Do the results of the two experiments
differ? Addition of urea, NaCl, and NazS to a third series of suspensions ap­
parently prolonged the life of the fish.

Colloidal silver

(a) Calculate means and variances for the three periods and examine the relation
between these two statistics. Transform the variates to logarithms and com­
pare means and variances based on the transformcd data. Discu~s.

(b) Carry out an anova on transformed and untransformed data. DISCUSS your

results.
Analyze the measurements of the two samples of chigger nymphs i~ Box 10.;
by the Mann-Whitney U test. Compare thc results WIth those shown 111 Box 1o.~
for the Kolmogorov-Smirnov test. ANS. U, = 123.5, P < 0.05.
Allee et al. (1934) studied the rate of growth of Ameiurus me/as in conditioned
and unconditioned well water and obtaincd the following results for the gam m
average length of a sample fish. Although the original variates are not available,
we may still tcst for differences between the two treatment classes. Use the sIgn
test to test for ditTerences in the paired replicates.

A''I'rtl£/e £/I/i" i" /",,£/111
(inltllllIml'll'rs)

Unco"ditioned
\filter

Conditioned
walerRep/inl/'

10.6

10.5

330
300
300
420
360
270
360
360
300
120

Urea and
salts added

150
180
210
240
240
120
180
240
120
150

Experiment no. 10

210
180
240
210
210

Experiment no. 9

10.1

10.2

Analyzc and interprct. Test e4uality Df variances. Cl)mpare anova results with
those obtained using the Mann- Whitney U test for the two comparisons under
study. To test the etTeet of urea it might be best to pool Experiments 9 and 10.
if they prove not to ditTer significantly. ANS. Test for homogeneity of Experi­
ments 9 and 10, U, = D, lIS. For the comparison of Experiments 9 and 10 versus
urea and salts, U, = 136, P < 0.001.
In a study of flower color in Butterflyweed (/l.Icle{Ji!ls Il/hero.IlI), WDodsDn (1964)
obtained the following results:

I
2
3
4
5
6
7
S
9

10

2.20
1.05
3.25
2.60
1.90
1.50
2.25
1.00

-0.09
0.83

1.06
0.06
3.55
1.00
1.10
0.60
UO
0.90

-0.59
0.58

Geo<l'aphic
r('~JlUll

y n
--~--

Cl 29.3 226 4.59
SW2 15.8 94 10.15
SW3 6.3 23 1.22
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CHAPTER 11

Regression

In Section 11.1 we review the notion of mathematical functions and in­
troduce the new terminology required for regression analysis. This is followed
in Section 11.2 by a discussion of the appropriate statistical models for regres­
sion analysis. The basic computations in simple linear regression are shown in
Section 11.3 for the case of one dependent variate for each independent variate.
The case with several dependent variates for each independent variate is treated
in Section 11.4. Tests of significance and computation of confidence intervals
for regression problems are discussed in Section 11.5.

Section 11.6 serves as a summary of regression and discusses the various
uses of regression analysis in biology. How transformation of scale can straighten
out curvilinear relationships for ease of analysis is shown in Section 11.7. When
transformation cannot linearize the relation between variables, an alternative
approach is by a nonparametric test for regression. Such a test is illustrated in
Section 11.8.

M iCl'Oj.(rallls of drug!cc blood

r = a+ hX

11(;1IIU' 11.1

Blood pressure or an animal in IlllnHg as a function of drug concentration in Ill! pn IT of blood.

r = 20 f· \ fiX DrtI!!: A Oil alii mal I'

;; }' = ,10 + 7.;>.\ Ilrtl!!; H Oil animal (l
~_/----

_ - \' = 20 + 7,,;X Drug H Oil animal I'

}'
120 .

bIJ
::c 100E
E

.E so
'" ,-~....

liO -~ ----'" -.... 100-
-0
0

20..s
~

11.1 Introduction to regression

Much scientific thought concerns the relations between pairs of variables hy­
pothesized to be in a cause-and-effect relationship. We shall be content with
establishing the form and significance of functional relationships between two
variables, leaving the demonstration of cause-and-effect relationships to the
established procedures of the scientific method. A function is a mathematical
relationship enabling us to predict what values of a variable Y correspond to
given values ofa variable X. Such a relationship, generally written as Y = f(X),
is familiar to all of us.

A typical linear regression is of the form shown in Figure 11.1, which
illustrates the effect of two drugs on the blood pressure of two species ofWc now turn to the simultaneous analysis of two variables. Even though we

may have considered more than one variable at a time in our studies so far
(for example, seawater concentration and oxygen consumption in Box 9.1, or
age of girls and their face widths in Box 9.3), our actual analyses were of only
one variable. However, we frequently measure two or more variables on each
individual, and we consequently would like to be able to express more precisely
the nature of the relationships between these variables. This brings us to the
subjects of regression and correlation. In regression we estimate the relationship
of one variable with another by expressing the one in terms of a linear (or a
more complex) function of the other. We also use regression to predict values
of one variable in terms of the other. In correlation analysis, which is sometimes
confused with regression, we estimate the degree to which two variables vary
together. Chapter 12 deals with correlation, and we shall postpone our effort
to clarify the relation and distinction between regression and correlation until
then. The variables involved in regression and correlation arc either continuous
or meristic; if meristic, thcy arc treated as though they were continuous. Whcn
variables arc qualitative (that is, when they are attributes), the methods of
regression and correlation cannot be used,
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11.2 Models in regression

In any real example, observations would not .Iie perf~ctly alon~ a regression line
but would scatter along both sides of the Ime. ThIS scatter IS usually due to
inherent. natural variation of the items (genetically and environmentally ~ause?)
and also due to measurement error. Thus, in regression a functional relatIOnshIp
does not mean that given an X the value of Y must be a + bX. but rather that

the mean (or expected value) of Y is a + hX. . .
The appropriate computations and significance tests III regressIOn rel~te t.o

the following two models. The more common of these, Model J reYrl!s.m~/l, IS
especially suitable in experimental situations. It is based on four assumptIOns.

\. The independent variable X is measured without error. We tdheref0dre say
that the X's are "'fixed."' We mean by this that whereas Y, the .epen ent
variable, is a random variable, X does not vary at random but IS under thc
control of the investigator. Thus. in the example of Figure 11.1 we have
varied dose of drug at will and studied the response of the random
variable blood presssure. We can manipulate X in the same way that we
werc able to manipulate the treatment effect in a Model I anava. A~ a
matter of fact. as you shall see later. there is a very close relatIOnshIp

betwecn Model I anova and Model I regression. .,
2. The expected value for the variable Y for any given value .. X IS descnbed

by the linear function fly = rx + fiX. This is the same relatl~n we have Just
'11 'ountered but we use Greek letters instead of a and h. Sll1ce we arec ~ , .
describing a parametric relationship. Another way of stating thIS
assumption is that the parametric means Jly of the valu.es of Y .are a
function of X and lie on a straight line described by thiS equatIon.

3. For any given value X, of X, thc Y's arc indepen.dently and normally
distributed. This can be represented by thc equation r; = (J. + flX j +. E j •

where the E's arc assumed to be normally distributed error terms With a
mean of ze:o. Figure 11.2 illustrates this concept with a regression line
similar to the ones in Figure 11.1. A given expcriment can be repeated
several times. Thlls. for instancc. we could administer 2. 4, 6, X, and 10 Jig
of the drug to each of 20 individuals of an animal species and obtall1 a

animals. The relationships depicted in this graph can be expressed by the
formula Y = a + bX. Clearly, Y is a function of X. We call the variable Y the
dependent variable, while X is called the independent variable. The magnitude
of blood pressure Y depends on the amount of the drug X and can therefore
be predicted from the independent variable, which presumably is free to vary.
Although a cause would always be considered an independent variable and an
effect a dependent variable, a functional relationship observed in nature may
actually be something other than a cause-and-effect relationship. The highest
line is of the relationship Y = 20 + 15X, which represents the effect of drug
A on animal P. The quantity of drug is measured in micrograms, the blood
pressure in millimeters of mercury. Thus, after 4 J.1g of the drug have been given,
the blood pressure would be Y = 20 + (15)(4) = 80 mmHg. The independent
variable X is multiplied by a coefficient h, the slope factor. In the example
chosen, b = 15; that is, for an increase of one microgram of the drug, the blood
pressure is raised by 15 mm.

In biology, such a relationship can clearly be appropriate over only a limited
range of values of X. Negative values of X are mcaningless in this case; it is
also unlikely that the blood pressure will continue to increase at a uniform rate.
Quitc probably the slope of the functional relationship will flatten out as the
drug level rises. But, for a limited portion of the range of variable X (micrograms
of the drug), the linear relationship Y = a + hX may be an adequate description
of the functional dependcnce of Yon X.

By this formula. whcn the independent variable equals zero, the depcndent
variable equals iI. This point is the interesection of the function line with the
Y axis. It is called the Y i/ltacept. In Figure I 1.\, when X = O. the function
just studied will yield a blood pressure of 20 mmHg, which is the normal blood
pressure of animal P in the absence of the drug.

The two other functions in Figure 11.1 show the effects of varying both
a, the Y intercept. and h, the slope. In the lowest line. Y = 20 + 7.5:'\:, the Y
intercept remains the same but the slope has been halved. We visualize this as
the effect of a different drug. B, on the same organism P. Obviously, when no
drug is administered, the blood pressure should be at the same Y intercept,
since the identical organism is being studied. However, a different drug is likely
to cxert a dillcrent hypertensive effect, as reflected by the different slope. The
third relationship also describes the effect of drug B, which is assumed to remain
the same, but the experiment is carried out on a different species, Q. whose
normal blood pressure is assumcd to be 40 mmHg. Thus. the equation for the
effect of drug H on species Q is written as Y = 40 + 7.5X. This line is parallel
to that corresponding to the second equation.

From your knowledge of analytical geometry you will have recognized the
slope factor h as the slo/'c of the function Y = a + hX, generally symbolized
by m. In calculw:. h is the dail'lltil'c of that same function (dY/dX = h). In
biostatistics. h is called the rcwcssio/l cocfficie/lt. and the function is called a
re!Jl'l'ssiol1 cquatio/l. When we wish to stress that the regression coetlicient is of
variable Yon variable X, wc writc hI \
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a given drug concentration.
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frequency distribution of blood pressure responses Y to the independent
variates X = 2, 4, 6, 8, and 10 J.1g. In view of the inherent variability of
biological material, the responses to each dosage would not be the same in
every individual; you would obtain a frequency distribution of values of Y
(blood pressure) around the expected value. Assumption 3 states that these
sample values would be independently and normally distributed. This is
indicated by the normal curves which are superimposed about several
points in the regression line in Figure 11.2. A few are shown to give you an
idea of the scatter about the regression line. In actuality there is, of course,
a continuous scatter, as though these separate normal distributions were
stacked right next to each other, there being, after all, an infinity of
possible intermediate values of X between any two dosages. In those rare
cases in which the independent variable is discontinuous, the distributions
of Y would be physically separate from each other and would occur only
along those points of the abscissa corresponding to independent variates.
An example of such a case would be weight of offspring (Y) as a function
of number of offspring (X) in litters of mice. There may be three or
four offspring per litter but there would be no intermediate value of X
representing 3.25 mice per litter.

Not every experiment will have more than one reading of Y for each
value of X. In fact, the basic computations we shall learn in the next
section are for only one value of Y per value of X, this being the more
common case. However, you should realize that even in such instanccs the
basic assumption of Model I regression is that the single variate of Y
corresponding to the given value of X is a sample from a population of
independently and normally distributed variates.

4. The final assumption is a familiar onc. We assume that these samples
along the regression line are homoscedastic; that is. that they have a
common variance (T2, which is the variance of the E's in the expression in
item 3. Thus, we assume that the variance around the regression line is
constant and independent of the magnitude of X or Y.

Many regression analyses in biology do not meet the assumptions of Model
I regression. Frequently both X and Yare subject to natural variation and/or
measurement error. Also, the variable X is sometimes not fixed. that is, under
control of the investigator. Suppose we sample a population of female flies and
measure wing length and total weight of each individual. We might be interested
in studying wing length as a function of weight or we might wish to predict
wing length for a given weight. In this case the weight. which we treat as an
independent variable. is not fixed and certainly not the "cause" of difTerences
in wing length. The weights of the flies will vary for genetic and environmental
reasons and will also be subject to measurement error. The general case where
both variables show random variation is called Model 11 reyress;oll. Although.
as will be discussed in the next chapter. cases of this sort are much bctter

analyzed by the methods of correlation analysis. we sometimes wish to describe
the functional relationship between such variables. To do so, we need to resort
to the special techniques of Model II regression. In this book we shall limit
ourselves to a treatment of Model I regression.

11.3 The linear regression equation

To learn the basic computations necessary to carry out a Model I linear regres­
sion, we shall choose an example with only one Y value per independent variate
X, since this is computationally simpler. The extension to a sample of values
of Y for each X is shown in Section 11.4. Just as in the case of the previous
analyses, there are also simple computational formulas, which will be presented
at the end of this section.

The data on which we shall learn regression come from a study of water loss
in Triho/ium confusum, the confused flour beetle. Nine batches of 25 beetles were
weighed (individual beetles could not be weighed with available equipment),
kept at different relative humidities, and weighed again after six days of starva­
tion. Weight loss in milligrams was computed for each batch. This is clearly a
Model I regression, in which the weight loss is the dependent variable Y and
the relative humidity is the independent variable X, a fixed treatment effect
under the control of the experimenter. The purpose of the analysis is to estab­
lish whether the relationship between relative humidity and weight loss can be
adequately described by a linear regression of the general form Y = a + hX.

The original data are shown in columns (1) and (2) of Table 11.1. They are
plotted in Figure 11.3, from which it appears that a negative relationship exists
between weight loss and humidity; as the humidity increases, the weight loss
decreases. The means of weight loss and relative humidity, Fand X, respectively,
are marked along the coordinate axes. The average humidity is 50.39'i;'. and the
average weight loss is 6.022 mg. How can we tit a regression line to these data.
permitting us to estimate a value of Y for a given value of X? Unless the actual
observations lie exactly on a straight line. we will need a criterion for deter­
mining the best possible placing of the regression line. Statisticians have gen­
erally followed the principle of least squares, which we first encountered in
Chapter 3 when learning about the arithmetic mean and the variance. If we
were to draw a horizontal line through X, F (that is, a line parallel to the X
axis at the level of F), then deviations to that line drawn parallel to the Y
axis would represent the deviations from the mean for these observations with
respect to variable Y(sec Figure 11.4). We learned in Chapter 3 that the sum of
these observations I: (Y - F) = I:y = O. The sum of squares of these deviations,
I:(Y - F)2 = I: y2, is less than that from any other horizontal line. Another
way of saying this is that the arithmetic mean of Y represents the least squares
horiz~ntal line. Any horizontal line drawn through the data at a point other
than Y would yield a sum of deviations other than zero and a sum of deviations
squared greater than I: y2. Therefore, a mathematically correct but impractical



236 11.3 / THE LINEAR REGRESSION EQUAnoN
237

(ILl )

FIGURE 11.4
Deviations from the mean (of Y) for the
data of Figure t I.J.

FIGURE 11.3
Weight loss (in mg) of nine batches of 25
Tribolium beetles after six days of starva­
tion at nine different relative humidities.
Data from Table 11.1, after Nelson (1964).

Y = a + hX
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method for finding the mean of Y would be to draw a series of horizontal lines
across a graph, calculate the sum of squares of deviations from it, and choose
that line yielding the smallest sum of squares.

In linear regression, we still draw a straight line through our observations,
but it is no longer necessarily horizontal. A sloped regression line will indicate
for each value of the independent variable Xi an estimated value of the de­
pendent variable. We should distinguish the estimated value of y;, which we
shall hereafter designate as 9;, (read: Y-hat or Y-carct), and the observed values,
conventionally designated as Y,. The regression equatIOn therefore should read
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which i!!dicates that for given values of X, this equation calculates estimated
v.alues Y (as distinct from the observed values Y in any actual case). The devia­
tion of .an observation r; from the regression line is (r; - 'Yi) and is generally
symbobzed as dy . x· These deviations can still be drawn parallel to the Y axis,
but they meet the sloped regression line at an angle (see Figure 11.5). The sum
of these deviations ~s again zero (L dy . x = 0), and the sum of their squares yields

. ~ ( 2 2a quantity ~ Y - y) = L d y . x analogous to the sum of squares Ly2. For rea-
sons that wIll become clear later, L d~. x is called the unexplained sum of squares.
The least squares linear regression line through a set of points is defined as that
str~ig~t lin.e which results in the smallest value of L d~ x. Geometrically, the
basIc Idea IS that one would prefer using a line that is in some sense close to
a.s n:any points as possible. For purposes of ordinary Model I regression analy­
SIS, It IS most useful to define closeness in terms of the vertical distances from
the points to a line, and to use the line that makes the sum of the squares
of these deviations as small as possible. A convenient consequence of this cri­
terion is that the line must pass through the point X, Y. Again, it would be
possible but impractical t.9 c~lculate the correct regression slope by pivoting
a ruler around the point X, Y and calculating the unexplained sum of squares
L d~. x for each of the innumerable possible positions. Whichever position gave
the smallest value of L tl~ x would be the least squares regression line.

The formula for the slope of a line based on the minimum value of L d ~
. . I·X
IS obtamed by means of the calculus. It is

(11.2)

Lct us calculate h = L xI'IL x 2 for our weight loss data.
We first compute the deviations from the respective means of X and y,

as shown in columns (3) and (4) of Table 11.1. The SUlllS of these dcviations,

}'

I

IIGURE 11.5

Deviations from the regression line for Ihe
data of Figure I U.
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L x and Ly, are slightly different from their expected value of zero because of
rounding errors. The squares of these deviations yield sums of squares and
variances in columns (5) and (7). In column (6) we have computed the products
xy, which in this example are all negative because the deviations are of unlike
sign. An increase in humidity results in a decrease in weight loss. The sum of
these products Ln xy is a new quantity, called the sum of products. This is a poor
but well-established term, referring to L xy, the sum of the products of the devia­
tions rather than LX Y, the sum of the products of the variates. You will
recall that Ly2 is called the sum of squares, while L y 2 is the sum of the squared
variates. The sum of products is analogous to the sum of squares. When divided
by the degrees of freedom, it yields the covariance, by analogy with the vari­
ance resulting from a similar division of the sum of squares. You may recall first
having encountered covariances in Section 7.4. Note that the sum of products
can be negative as well as positive. If it is negative, this indicates a negative
slope of the regression line: as X increases, Y decreases. In this respect it differs
from a sum of squares, which can only be positive. From Table Il.l we find that
LXy = -44l.Sl76, LX 2 = 8301.3SS9, and h = L\]'ILx 2 = -0.053.22. Thus,
for a one-unit increase in X, there is a decrease of 0.053,22 units of Y. Relating
it to our actual example, we can say that for a 17., increase in relative humidity,
there is a reduction of 0.053,22 mg in weight loss.

You may wish to convince yourself that the formula for the regression
coetficient is intuitively reasonable. It is the ratio of the sum of pruducts of
deviations for X and Y to the sum of squares of deviations for X. If wc look
at the product for X" a single value of X, we obtain XjYj' Similarly, the squared
deviation for Xi would be x?, or XjX j • Thus the ratio xiyJXjX j reduces to yJx j •

Although L xylL x 2 only approximates the average of yJxi for the 11 values of
Xi' the latter ratio indicates the direction and magnitude of the change in Y
for a unit change in .\'. Thus, if Y, on thc average el/uals Xi' h will equal I. When
I'i = - x" h= 1. Also, when II'il > lXii, h> III; and conversely, when !I'i[ <
IxJ h < III·

!low can wc complcte the equation Y = (J + hX'? We ha\:'.e stated that the
regression line will go through the point .Y, Y. At .Y_ = 5tU9. Y = 6.022; that is,
we use Y, the observed mean of )c', as an cstimate Y of the mean. We can sub­
stitute these mcans into Expression (11.1):

Y = a + hX

Y = (J + hi
II = Y - h,f

II = 6.022 - ( - 0.053,22)50.39

= S.703S

Therefore.

Y 8.7038 - 0.053,22X



240 CHAPTER II/REGRESSION 11.3 / THE LINEAR REGRESSION L()lIATlON 241

Therefore,

9 = Y+ hx

where y is defined as the deviation Y- Y. Next, using Expression (11.1), we
estimate Y for everyone of our given values of X. The estimated values fare
shown in column (8) of Table 11.1. Compare them with the observed values

a = f - bX

we can write Expression (11.1), 9 = a + bX, as

9 = (f - hX) + bX

= f + b(X - X)

of Y in column (2). Overall agreement between the two columns of values is

good. Note that except for rounding errors. L Y= LY and hence Y= f. How­
ever, our actual Y values usually are different from the estimated values Y. This
is due to individual variation around the regression line. Yet, the regression line
is a better base from which to compute deviations than the arithmetic average
f, since the value of X has been taken into account in constructing it.

When we compute deviations of each observed Y value from its estimated
value (Y - 9) = dy . x and list these in column (9), we notice that these deviations
exhibit one of the properties of deviations from a mean: they sum to zero except
for rounding errors. Thus L dy . x = 0, just as L y = O. Next, we compute in
column (10) the squares of these deviations and sum them to give a new sum
of squares, Ld~x = 0.6160. When we compare L(Y - f)2 = Ly2 = 24.1307
with L(Y - 9)2 = Ld~ x = 0.6160, we note that the new sum of squares is
much less than the previous old one. What has caused this reduction? Allowing
for different magnitudes of X has eliminated most of the variance of Y from
the sample. Remaining is the unexplained sum ofsquares L d~. x' which expresses
that portion of the total SS of Y that is not accounted for by differences in X.
It is unexplained with respect to X. The difference between the total SS, Ly2,
and the unexplained SS, L d~. x' is not surprisingly called the explained sum of
squares, Ly2, and is based on the deviations .0 = Y - Y. The computation of
these deviations and their squares is shown in columns (II) and (12). Note that
Ly approximates zero and that L .02 = 23.5130. Add the unexplained SS (0.6160)
to this and you obtain Ly2 = L.02 + Ld~ x = 24.1290, which is equal (except
for rounding errors) to the independently calculated value of 24.1307 in column
(7). We shall return to the meaning of the unexplained and explained sums of
squares in later sections.

We conclude this section with a discussion of calculator formulas for com­
puting thc regression equation in cases where there is a single value of Y for
each value of X. The regression coeffIcient L Xy/L x 2 can be rewritten as

( 11.3)

y - Y = bx

S' = hx

Also,

This is the equation that relates weight loss to relative humidity. Note that when
X is zero (humidity zero), the estimated weight loss is greatest. It is then equal
to a = 8.7038 mg. But as X increases to a maximum of 100, the weight loss de­
creases to 3.3818 mg.

We can use the regression formula to draw the regression line: simply esti­
mate 9 at two convenient points of X, such as X = 0 and X = 100, and draw
a straight line between them. This line has been added to the observed data
and is shown in Figure 11.6. Note that it goes through the point X, f. In
fact, for drawing the regression line, we frequently use the intersection of the two
means and one other point.

Since

/I

L (X X)P' -- Y)
hI"' X = /I

I(x \")2

(11.4)

The denominator of this expression is the sum of sq uares of X. Its computational
formula, as first encountered in Section 3.9. is L x 2 = L X 2 (2: X)2/1I. We shall
now Icarn an analogous formula for the numerator of Lxpression (11.4), the sum
of products. The customary formula is

7

FIGURE 11.6

Linear regression litted to data of

Figure 11.3.

(

1/ )( /I )L.'; L Y

fxv = fXY --
11

(11.5)
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The quantity LX Y is simply the accumulated product of thc two variables.
Expression (11.5) is derivcd in Appendix A1.S. The actual computations for a
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•

5. The explained sum of squares is

• (11.7)

(11.6)"d 2 _" 2 _ (Ixy)2
L- y. x - L- Y I x2

is demonstrated in Appendix A1.6. The term subtracted from Ly2 is obviously
the explained sum of squares, as shown in Expression (11.7) below:

sum of squares L y2 = L (9 - y)2 and the unexplained sum of squares L d~ . x =

L(Y - 9)2. That

11.4 More than one value of Y for each value of X

We now take up Model I regression as originally defined in Section 11.2 and
illustrated by Figure 11.2. For each value of the treatment X we sample Y
repeatedly, obtaining a sample distribution of Y values at each of the chosen
points of X. We have selected an experiment from the laboratory of one of us
(Sokal) in which Triho/ium beetles were reared from eggs to adulthood at four
different densities. The percentage survival to adulthood was calculated for
varying numbers of replicates at these densities. Following Section 10.2, these
percentages were given arcsine transformations, which are listed in Box 11.2.
These transformed values arc more likely to be normal and homoscedastic than
are percentages. The arrangement of these data is very much like that of a single­
classification model I anova. There arc four different densities and several sur­
vival values at each density. We now would like to determine whether there
arc dilferences in survival among the four groups, and also whether we can
establish a regression of survival on density.

A first approach, therefore, is to carry out an analysis of variance, using
the methods of Section ~U and Table 8.1. Our aim in doing this is illustrated
in Figure 11.7 (sec page 247). If the analysis of variance were not significant, this
would indicate, as shown in Figure 11.7A, that the means arc not significantly
different from each other, and it would be unlikely that a regression line fitted
to these data would have a slope significantly different from zero. However,
although hoth the analysis of variance and linear regression test the same null
hypothesis equality of means the regression test is more powerful (less type
II error; sec Section 6.8) against the alternative hypothesis that there is a linear
relationship hetween the group means and the independent variable X. Thus,
when the means increase or decrease slightly as X increases it may he that they
arc not different enough for the mean square among groups to be significant hy
anova hut that a significant regression can still be found. When we lind a marked
regression of the means on X, as shown in Figure 11.7H, we llsually will find
a significant difference among the means by an anova. However, we cannot turn

(453.5)(54.20) = -441.8178
9

= 2289.260

3. The regression coefficient is

b =Ixy=:-441.81?~= -005322
Y x I Xl 8301.3889 .. ..,

6. The unexplained sum of squares is

I# x = I y2 -- I y2 = 24.1306 23.5145 = 0.6161

II = 9 I X = 453.5 I Y = 54.20

IX l = 31,152.75 Iy2 = 350.5350 IXY= 2289.260

2. The means. sums of squares, and sum of products are

X = 50.389 Y= 6.022

Ix2 = 8301.3889 Iyl = 24.1306

Ixy = IXY- (~_~(I Y)
n

Basic comllUtatiolis

1. Compute sample size, sums, sums of the squared observations, and the sum of
the X Y's.

4. The Y intercept is

a = Y- by xX = 6.022 - (-0.053,22)(50.389) = 8.7037

(-441.8178)2
-.-.---- ~.-. = 23.5145

8301.3889

BOX ll.l
Computation of regression statistics. Single value of Y for each value of X.

Data from Table 11.1.

Weight loss
in mg (Y) 8.98 8.14 6.67 6.08 5.90 5.83 4.68 4.20 3.72
Percent relative
humidity (X) 0 12.0 29.5 43.0 53.0 62.5 75.5 85.0 93.0

regression equation (single value of Y per value of X) arc illustrated in Box 11.1,
employing the weight loss data of Table 11.1.

To compute regression statistics, we need six quantities initially. These are
n, LX, L X 2 , L Y, L y 2

, and LX Y. From these the regression equation is calcu­
lated as shown in Box 11.1, which also illustrates how to compute the explained
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BOX U.2
Computation of regression with more than one value of Y per value of X.

The variates Yare arcsine transformations of the percentage survival of the
bettIe Tribolium castaneum at 4 densities (X = number of eggs per gram of flour
medium).

Density = X
(0 = 4)

5/g 20/g 50/g 100/g

61.68 68.21 58.69 53.13
58.37 66.72 58.37 49.89

Survival; in degrees 69.30 63.44 58.37 49.82
61.68 60.84
69.30

a

L"' = 15

If y = 907.81

320.33
5

64.07

259.21
4

64.80

175.43
3

58.48

152.84
3

50.95

OOX 1l.2
Continued

o
2. Sum of X 2 weighted by sample size = 2: 1'1.,X2

= 5(5)2 + 4(20)2 + 3(50)2 + 3(100)2

= 39,225

3. Sum of products of X and f weighted by sample size

= f n,XY = t x(f Y) = 5(320.33) + ... + 100(152.84)

= 30,841.35

(tn,xy
4. Correction term for X = CTx = -'--0-"-­

2: n,

= (quantity 1)2 = (555)2 = 2053500
o 15' .
2: nl

a

5. Sum of squares of X =L x2 =L n,X 2
- CTx

= quantity 2 - quantity 4 = 39,225 - 20,535

= 18,690

Computation for regression analysis

The groups differ significantly with respect to survival.

We proceed to test whether the differences among the survival values can be
accounted for by lincar regression on density. If F. < [1/(a - 1)] F.II.E"", aI_ it
is impossible for regression to be significant.

Source: Data by Sokal (1967).

The anova computations are carried out as in Table 8.1.

Anova table

Source of variation df SS MS

y- Y Among groups 3 423.7016 141.2339
y- Y Within groups II 138.6867 12.6079
y- Y

_._._--_._-
Total 14 562.3883

p.•

11.20**
a ft,

. 3 quantity 1 x LL Y
= quanttty - -=----=-ac----=~'--

Ln,
(555)(907.81)=30,841.35 - ----i·s·---· = -2747.62

7. Explained sum of squares = Ly2 =(r:t
=(quantity 6)2 = (-2747.62)2 = 403.9281

quantity 5 18,690
a

1. Sum of X weighted by sample size = I niX

= 5(5) + 4(20) + 3(50) + 3(100)

= 555

8. Unexplained sum of squares = 2:d~. x = SSgroups - Ly2
=SSarouP' - quantity 7

= 423.7016 - 403.9281 = 19.7735
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BOX 11.2
Continued

Completed aDova table with regression

A
y

B
y

c

In addition to the familiar mean squares, MSgroups and MSwlthin, we now have
the mean square due to linear regression, MSf, and the mean square for deviations
from regression, MS y.x (= si. x). To test if the deviations from linear regression are
significant, compare the ratio F, = MSy . X/MSwilhin with F"1o-2.rdn,-o)' Since we
find F, < 1, we accept the null hypothesis that the deviations from linear regression
are zero.

To test for the presence of linear regression, we therefore tested MS y over the
mean square of deviations from regression si. x and, since F, = 403.9281(9.8868 =
40.86 is greater than F0.05(1.2] = 18.5, we clearly reject the null hypothesis that
there is no regression, or that P= o.

+

F

+ +

+

y

I

/
X

f

Y

/
~~X

+
+

o

+

+ + + +

+

df SS MS F,

3 423.7016 141.2339 11.20**
1 403.9281 4019281 40.86*
2 19.7735 9.8868 <1 ns

11 138,6867 12.6079

14 562.3883

Source of variation

y - Y Among densities (groups)
y - Y Linear regression
y - Y Deviations from regression
y - Y Within groups

y - Y Total

9. Regression coefficient (slope of regression line)

= by. x = LXY = quant~ty 6 = -2747.62 = -0.147,01
Lx2 quantity 5 18,690

10. Y intercept = a = Y - by. xX

FIGURE 11.7
Differences among means and linear regression. (Jencral trends only are indicated hy these ligures,
Significance of any of these would dcrcnd on the outcomcs of arrrorriatc tests.

o OJ

LL Y quantity 9 x quantity 1
=----a 0

En! Lni

= 90:581 - (-0.14
1
75°1)555 = 60.5207 + 5.4394 = 65.9601

Hence, the regression equation is Y= 65.9601 - O.l47,0IX.

•

this argument around and say that a significant dilference among means as
shown by an anova necessarily indicates that a significant linear regression can
be fitted to these data. In Figure 11.7(', the means follow a U-shaped function
(a parabola). Though the means would likely be significantly different from each
other, dearly a straight line filted to these data would be a horizontal line
halfway between the upper and the lower points. In such a set of data, lil1ear
regression can explain only little of the variation of the dependent variable.
However. a curvilinear parabolic regression would fit these data and remove

most of the variance of r. A similar case is shown in Figure 11.7D, in which
the means describe a periodically changing phenomenon, rising and falling al­
ternatingly. Again the regression line for these data has slope zero. A curvilinear
(cyclical) regression could also be fitted to such data, but our main purpose in
showing this example is to indicate that there could be heterogeneity among
the means of Y apparently unrelated to the magnitude of X. Remember that
in real examples you will rarely ever get a rcgression as dear-cut as the linear
case in Il.7B, or the curvilincar one in 11.7C, not will you necessarily get hetero­
geneity of the type shown in 11.70, in which any straight linc fitted to the data
would be horizontal. You are more likely to get data in which linear regression
can be demonstrated, but which will not fit a straight line well. Sometimes the
residual deviations of the means around linear regression can be removed by
changing from linear to curvilinear regression (as is suggested by the pattern of
points in Figure 11.7E), and sometimes they may remain as inexplicable residual
heterogeneity around the regression line, as indicated in Figure 11.7F.

We carry out the computations following the by now familiar outline for
analysis of variance and obtain the anova table shown in Box 11.2. The three
degr':es of freedom among the four groups yield a mean square thaI would he
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I'

not significant. They add the sum of squares for deviations alld 111.11 \\111,",

groups as well as their degrees of freedom. Then they calculate a p(" ,I" I , I I'"

mean square by dividing the pooled sums of squares by the pooled dlTI n .• d

freedom. The mean square for regression is then tested over the pookd ,'11 (,,

mean square, which, since it is based on more degrees of freedom, will 11(' ;1

better estimator of the error variance and should permit more sensitive tests
Other workers prefer never to pool, arguing that pooling the two sums 01
squares confounds the pseudoreplication of having several Y variates at each
value of X with the true replication of having more X points to determine the
slope of the regression line. Thus if we had only three X points but one hundred
Yvariates at each, we would be able to estimate the mean value of Y for each
of the three X values very well, but we would be estimating the slope of the
line on the basis of only three points, a risky procedure. The second attitude,
forgoing pooling, is more conservative and will decrease the likelihood that a

nonexistent regression will be declared significant.
We complete the computation of the regression coefficient and regression

equation as shown at the end of Box 11.2. Our conclusions are that as density
increases, survival decreases, and that this relationship can be expressed by a
significant linear regression of the form Y= 65.9601 - 0.147,01 X, where X is
density per gram and Y is the arcsine transformation of percentage survival.

This relation is graphed in Figure 11.8.
The sums of products and regression slopes of both examples discussed so

far have been negative, and you may begin to believe that this is always so.
However, it is only an accident of choice of these two examples. In the exercises
at the end of this chapter a positive regression coefficient will be encountcred.

When we have equal sample sizes of Y values for each value of X, the com­
putations become simpler. First we carry out the anava in the manner of Box
8.1. Steps 1 through 8 in Box 11.2 hecome simplilied hecause the unequal sample
sizes l1

i
are replaced hy a constant sample size 11, which can generally he factored

out of the various expressions. Also, L U
l1 i = all. Significance tests applied to such

cases arc also simplified.

highly significant if tested over the within-groups mean square. The additional
steps for the regression analysis follow in Box 11.2. We compute the sum of
squares of X, the su~ of products of X and Y, the explained sum of squares
of Y, and the unexplalOed sum of squares of Y. The formulas will look unfamiliar
because of the complication of the several Y's per value of X. The computations
~or the sum of squares of X involve the multiplication of X by the number of
Items 10 t?e study. Thus, though there may appear to be only four densities,
there are, III fact, .as many densities (although of only four magnitudes) as there
are values of Y 10 .the study. Having completed the computations, we again
present the results III the form of an anova table, as shown in Box 11.2. Note
that the ma~or qu~~tities in this table are the same as in a single-classification
anov~, but I? a~dltlOn we now have a sum of squares representing linear re­
?resslOn, which IS always based on one degree of freedom. This sum of squares
IS subtracted from the 55 .amo?g groups, leaving a residual sum of squares
(of two. degrees of freedom III thIS case) representing the deviations from linear
regressIOn.

We should understand what these sources of variation represent. The linear
m~del fo.r re~ression with replicated Y per X is derived directly from Expression
(7._), which IS

1';; = It + CJ. i + EO;

The tr~atment cfie~t CJ. i = {hi + D i , where (Jx is the component due to linear
regressIOn and Di IS the deviation of the mean ~ from regression, which is
assumed to have a mean of zero and a variance of rri). Thus we can write

1';; = It + {ix i + D i + Ei;

The SS due to linear r~gression represents that portion of the SS among groups
that IS explamed by lInear regression on X. The 5S due to deviations from
regression represents the residual variation or scatter around the regression line
as Illustrated by the various examples in Figure 11.7. The SS within groups is a
measure of the variation of the items around each group mean.

We first test whether the mean square for deviations from regression
(MS y . x = s~. x) is significant by computing the variance ratio of M5. over
h . I' y x

t c Wltlll~-groUps MS. In our case, the deviations from regression are clearly
not slgl1lficant, smce the mean square for deviations is less than that within
groups. We now test the mean square for regression, MS y , over the mean
square for deviations from regression and find it to be significant. Thus linear
regression on density has clearly removed a significant portion of the variation
of survival values. Significance of the mean square for deviations from regression
could mean eIther that Y is a curvilinear function of X or that there is a large
~11110unt of random heterogeneity around the regression line (as already discussed
III connection With Figure 11.7; actually a mixture of both conditions may
prevail).

Some workers, when analyzing regression examples with several Y variates
at each value of X, proceed as follows when the deviations from regression are
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11.5 Tests of significance in regression

Vje ~ave so far interpreted regression as a method for providing an estimate
}I' given a value of X I' Another interpretation is as a method fl' . '

f h .... . or exp aInIng
some 0 t e vanatlOn of the dependent varnble v I'n term f th " fh . < ISO e vanatIOn 0
t e Indep.endent varia~le X. The. SS of a sample of Y values, ~y2, is computed
by summl~g and squanng devIatIOns y = Y - Y. In Figure 11.9 we can see that
the devIatIOn y can be decom~o~ed i~to ~wo ~arts, )~ and dy . x. [t is also clear
fro.m FIgure 11.9 ..that the deViatIOn y = Y - Y represents the deviation of the
estImated value Y from the mean of Y. The height of y is clearly a function
of x. We ?a.ve already seen that .f' = hx (Expression (11.3)). In analytical ge­
ometry. thIS IS ,called the POInt=slope form of the equation. If b, the slope of the
regreSSIOn h~e. were s~eeper, y would be relatively larger for a given value of
x: ~he remaInmg portIOn of the deviation y is dy x. It represents the residual
vafldtlOn of the vanahle Y after the explained variation has been subtracted
We can see that V = Y+ d b'( h " .. - ~ _. _ y x Y wn mg out t ese deViatIOns explicity as
l' - Y = (Y - Y) + (Y - Y).

For each of these deviations we can compute a corresponding s f
squares. Appendix A 1.6 gives the calculator formula for the unexplain~~m 0
of squares, sum

Transposed, this yields

, (',',)')2Ir = L " + '\' .12I,' L y oX

Of course, L 1'2 corn~sronds to V Y,/2 ('.1 I. '. , ~ r .\" ' I Y .Y' and

I

corresponds to y (as shown in the previous section). Thus we are abk [II p,I III

tion the sum of squares of the dependent variable in regression in a \\;1,

analogous to the partition of the total 55 in analysis of variance. You IIIa y
wonder how the additive relation of the deviations can be matched by all

additive relation of their squares without the presence of any cross products.
Some simple algebra in Appendix A 1.7 will show that the cross products cancel
out. The magnitude of the unexplained deviation dy . x is independent of the
magnitude of the explained deviation y, just as in anova the magnitude of the
deviation of an item from the sample mean is independent of the magnitude of
the deviation of the sample mean from the grand mean. This relationship
between regression and analysis of variance can be carried further. We can
undertake an analysis of variance of the partitioned sums of squares as follows:

Source nf I'ariat ion <if 55 iUS EXf'l'crl'd MS

y- ..., Explained I02 = (~xY~ s~ (J~ . x + [j2 I x 2
} (estimated Y from - L 2 . r

x
mean of Y)

y
U lICX plained, error ,

Y- (observed Y from II - 2 Id~ = ') \'2 _ I ~2 Sy X (J~x\' L.J. •

estimated Y)

y Total (observed Y 1 Ly2 = I y 2 - tJ=_l'Y ,
Y- II -- Sy

from mean of Y) n

The explained mcan Sill/arc, or mcan si/llarc duc to !incar f('!/ression, meas­
ures the amount of variation in Y accounted for by variation of X. It is tested
over the ut/cxplained mean square, which measures the residual variation and
is used as an error MS. The mean square due to linear regression, s~, is based
on one degree of freedom, and consequently (n - 2) .If remain for the error AfS
since the total sum of squares possesses n - I degrees of freedom. The test is of
the null hypothesis H o: If = O. When we carry out such an anova on the weight
loss data of Box 11.1, we obtain the following results:

}', -

The significance test is F, = s~/si· x. It is clear from the observed value of F,
that a large and signiticanl portion of the variance of Y has heen explained
by regression on X.

}', - - - - - - - - - - -I-
I
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f C\', f)1
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I
I :
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JII;lIRL 11.9

S~hclJlatic diagram to show relations in­

wived in partitioning lhe sum of S<juarcs of
the dependent varia hie.
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Explained - due to linear
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Unexplailled error around
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BOX n.4
Significance tests and computation of confidence limits of regression statistics. Single
value or Y for each value of X.

Based on standard errors and degrees of freedom of Box 11.3; using example of
Box 11.1.

Js~. x (0.088.01 f 000 0 0 0
Sb == L;z = ~8301.3889 == yO. , 1 ,602 == .003,256.1

2. Testing significance of the regression coefficent:

t == b - 0 = ..=0.053.22 = -16.345
, Sb 0.003,256.1

to.OOI17] = 5.408 P < 0.001

3. 95% confidence limits for regression coefficient:

to .0517 \Sb = 2.365(0.003,256,1) = 0.007,70

L1 = b - t005[7)Sb = -0.053,22 - 0.007,70 == -0.060.92

L2 = b + tOOS[7JSb = -0.053,22 + 0.007,70 = -0.045,52

4. Standard error of the sampled mean Y (at X):

Sy =~ = JO.08
9
8,01 = 0.098,888,3

n == 9 X == 50.389 Y == 6.022

by.x = -0.053,22 Lx2 =8301.3889

S2y x = ~d;.x == 0.6161 == 0.088 01
. (n - 2)7 '

1. Standard error of the regression coefficient:

We now proceed to the standard errors for various regression statistics,
their employment in tests of hypotheses, and the computation of confidence
limits. Box 11.3 lists these standard errors in two columns. The right-hand
column is for the case with a single Y value for each value of X. The first row
of the table gives the standard error of the regression coefficient, which is simply
the square root of the ratio of the unexplained variance to the sum of squares
of X. Notc that the unexplained variance sr x is a fundamental quantity that
is a part of all standard errors in regression. The standard error of the regres­
sion coefficient permits us to test various hypotheses and to set confidence limits
to our sample estimate of b. The computation of Sb is illustrated in step 1 of Box
1104, using the weight loss example of Box 11.1 .

•

]
oop.
'­-

N

I
::
II
;:.

N

I

'"II

~-

o
::l

"@
;;

(:::
o
;>

.@.,

.- '".;.... ...
..2
;....
-0
~
ell

.5
;;;
IJ.l

N

I
r::
II...

N

I
It:

II
;:.

N

I
':$

II



254 CHAPTER II/REGRESSION 11.5 / TESTS OF SIGNIFICANC/, IN RH ;}{f,SSION 255

BOX 11.4
Continued
5. 95% confidence limits for the mean Itr corresponding to X(Y =6.022):

to.o5I7lSy = 2.365(0.098,888,3) =0.233,871

L 1 = Y - to.05[7]81' == 6.022 - 0.2339 = 5.7881

Lz = Y+ to.05I7lSy == 6.022 + 0.2339 = 6.2559

6. Standard error of Y;, an estimated Y for a given value of Xi:

z [1 (Xi - X)zJ
si, == Sf· X - + '(" zn £.,X

7

o

.\
,\ -L-J...\

10 20 :,010 ;'0 (.0 70 SO !)O 100

'; 1{~llltiV(' humidity

fiGURE 11.10
95% confidence limits to regression line of
Figure 1\.6.

For example, for Xi = 100% relative humidity

[
1 (100 - 50.38W]

Sy == 0.088,01 '9 + 8301.3889

= .j0.088,01(0.407,60) = .j0.035,873 = 0.189,40

7. 95% confidence limits for P.r, corresponding to the estimate Yi = 3.3817 at
Xi = 100% relative humidity:

(0.05[7]51' = 2.365(0.189,40) = 0.447,93

L j = Yi - to.05 [7]sy = 3.3817 - 0.4479 = 2.9338

Lz = Yi + to.051715i = 3.3817 + 0.4479 = 3.8296

•

The significance test illustrated in step 2 tests the "siqnificance" o(the rewes­
sion coefficient; that is, it tests the null hypothesis that the sample value of h
comes from a population with a parametric value f) = 0 for the regression
coefficient. This is a t test, the appropriate degrees of freedom being n --. 2 = 7.
If we cannot reject the null hypothesis, there is no evidence that the regression

is significantly deviant from zero in either the positive or negative direction.
Our conclusions for the weight loss data arc that a highly significant negative
regression is present. Wc saw earlier (Section gA) that t~ = 1". When we square

t, = 16.345 from Box 11.4. we obtain 267.16, which (within rounding error)
equals the value of F, found in the anova earlier in this section. The signifi­
cance test in step 2 of Box 11.4 could, of course, also he used to test whether

h is significantly dilferent from a parametric value {) other than zero.
Set/in9 confidellce limits to the rewe.ssion coefficient presents no new features.

since h is normally distrihuted. The computation is shown in step 3 of Box
I J.4. In view of the small magnitude of Sh' the confidence interval is quite
narrow. The confidence limits arc shown in Figure 11.1 0 as dashed lines repre­

senting the 95";, bounds of the slope. Note that the regression line as well as its

confidence limits passes through the means of X and Y. Variation in b therefore

rotates the regression line about the point ,Y, }'.
Next, we calculate a standard error .!i)r the ohserved sample mean Y. You

will recall from Section 6.1 that sf = sf/no However, now that we have regressed
Y on X, we are able to account for (that is, hold constant) some of the varia­
tion of Y in terms of the variation of X. The variance of Y around the point

X, Y on the regression line is less than s~; it is sf x. At X we may therefore
compute confidence limits of Y, using as a standard error of the mean Sr =

Jsf. x/n with n 2 degrees of freedom. This standard error is computed in step
4 of Box 11.4, and 95/:, confidence limits for the sampled mean Y at X arc
calculated in step 5. These limits (5.nlX I 6.2559) arc considerably narrower

than the confidence limits for the mcan hased on the conventional standard
error Sy, which would he from 4.6X7 to 7.3",7. Thus, knowing the relative humi­
dity greatly nxfuces much of the uncerlall1ly in weight loss.

The standard error for Y is only a special case of the standard error fil/'
any estilllllted /'01111.' }. aloll!/the rC!Jfcssioll lillc. A new factor, whose magnitude
is in part a funclion of the distance of a given value Xi from its mean ,Y, IHlW

enlers the error variance. Thus, the f~trther away Xi is from its mean, the greater
will he the error of estimate. This factor is seen in the third row of Box 11.3
as the deviation Xi X, squared and divided by the sum of squares of X.

The standard error fnr an estimate Yi for a relative humidity Xi = lOW;. is
given in step 6 of !lox IIA The 95',";, confidence limits for Ily. the parametric

value corresponding to the estimate Yi , are shown in step 7 (;f that bnx. Note

that the width of the contldence interval is 3.X296 2.933X = O.X95X, consid­

erahly wider than the confidence interval at X calculated in step 5. which was

6.2559 5.nlX 1 = OA6n1. If we calculate a series of confidence limits for dif­
ferent values of Xi' we ohtain a biconcave confidence belt as shown in Figure
11.11. The farther we get away from the mean, the Jess rcliahle are our estimates

of Y. because of the uncertainty about the true slope, fl, of the regre.ssion line.
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FIGURE 11.11
95% confidence limits to regression estimates
for data of Figure 11.6.

it may be as important to compare regression coefficients as it is to compare
these other statistics.

The test for the difference between two regression coefficients can be carried
out as an F test. We compute

F = (b l - b2 )2

s Lxi + I xi -2

(I xiHI x~) Sy. x
where .~~. x IS the weighted average S~. x of the two groups. Its formula IS

For one Y per value of X, V2 = n j + n2 - 4, but when there is more than one
variate Y per value of X, V 2 = a l + a2 - 4. Compare F, with Fa[!.v2)'

Furthermore, the linear regressions that we fit are often only rough approx­
imations to the more complicated functional relationships between biological
variables. Very often there is an approximately linear relation along a cer­
tain range of the independent variable, beyond which range the slope changes
rapidly. For example, heartbeat of a poikilothermic animal will be directly pro­
portional to temperature over a range of tolerable temperatures, but beneath
and above this range the heartbeat will eventually decrease as the animal freezes
or suffers heat prostration. Hence common sense indicates that one should be
very cautious about extrapolating from a regression equation if one has any
doubts about the linearity of the relationship.

The confidence limits for (x, the parametric value of a, are a special case of
those for /If, at Xi = n. and the standard error of a is therefore

J1 "lO. i--x 2 -j
s" = St' x _n + I x 2 J

Tests of significance in regression analyses where there is more than one
variate Y per value of X are carried out in a manner similar to that of Box
1104, except that the standard errors in the left-hand column of Box 11.3 are
employed.

Another significance test in regression is a test of the differences between
two regression lines. Why would we be interested in testing differences between
regression slopes? We might find that different toxicants yield different dosage­
mortality curves or that different drugs yield different relationships between
dosage and response (sec. for example. Figure 11.1). Or genetically difTcring
cultures might yield ditlerent responses to increasing density. which would be
important for understanding the eflect of natural selection in these cultures. The
regression slope of one variable on another is as fundamental a statistic of a
sample as is the mean or the standard deviation. and in comparing samples

11.6 The uses of regression

We have been so busy learning the mechanics of regression analysis that we
have not had time to give much thought to the various applications of re­
gression. We shall take up four more or less distinct applications in this section.
All are discussed in terms of Model I regression.

First, we might mention the study or causation. If we wish to know whether
variation in a variable Y is caused by changes in another variable X, we
manipulate X in an experiment and see whether we can obtain a significant
regression of Y on X. The idca of causation is a complex, philosophical one
that we shall not go into here. You have undoubtedly been cautioned from
your earliest scicntific experience not to confuse concomitant variation with
causation. Variables may vary together. yet this covariation may be accidental
or both may he functions of a common cause affecting them. The latter cases
are usually examples of Model II regression with both variables varying freely.
When we manipulate one variable and find that such manipulations affect a
second variable. we generally arc satisfied that the variation of the independent
variable X is the cause of the variation of the dependent variahle Y (not the
cause of the variable!). However. even here it is best to be cautious. When we
find that heartbeat rate in a cold-blooded animal is a function of ambient
temperature, we may conclude that temperature is one of the causes of dif­
ferences in hearbeat rate Thcre may well be other factors affecting rate of
heartbeat. A possible mistake is to invert the cause-and-effect relationship. It
is unlikely that anyone would suppose that hearbeat rate affects the temperature
of the general environment. but we might be mistaken about the cause-and­
c1lecl relationships between two chemical substances in the blood, for instance.
Despite these cautions. regression analysis is a commonly used device for
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Statistiwl (01/11'0/ is an application of regression that is not widely known
among blologlsls and represents a scientific philosophy that is not well estab­
lished in biology outside agricultural circles. Biologists frequently categorize
work as either deSCrIptIve or experimental, with the implication that only the
latter call hc analytIcal. Howcver. stati,tical approaches applied to descriptive

screening out causal relationships. While a significant regression of Y on X does
not pr.ove that changes in X are the cause of variations in Y, the converse state­
ment IS true. When we find no significant regression of Y on X, we can in all
but the most complex cases infer quite safely (allowing for the possibility of
type II error) that deviations of X do not affect Y.

The description of scientific lmvs and prediction are a second general area
of appl~catlOn of regres~ion analysis. Science aims at mathematical description
of relatlO.ns between .vanables In nature, and Modell regression analysis permits
us to estimate functIOnal relationships between variables, one of which is sub­
ject to error. These functional relationships do not always have clearly inter­
pretable .blOloglcal meamng. Thus. in many cases it may be difficult to assign
a bIOlogical Illterpretatlon to the statistics a and h, or their corresponding
parameters 'l. and j). When we can do so, we speak of a structural mathematical
model. one whose component parts have clear scientific meaning. However,
mathematical curves that are not structural models are also of value in science.
Most regression lines are em~irica/ly.tittedcurves. in which the functions simply
represent the best mathematical fit (by a criterion such as least squares) to an
observed set of data.

Compa!'isotl o{dependcnt l1ariates is another application of regression. As
~oon as It IS established that a given variable is a function of another one, as
III Box 11.2. where we found survival of beetles to be a function of density, one
IS bound to ask to what degree any observed difTerence in survival between two
samples of beetles is a function of the density at which they have been raised.
It would be unfair to compare beetles raised at very high density (and expected
to ha.ve low survIval) wIth those nused under optimal conditions of low density.
ThiS IS the same pomt of VH:W that makes us disinclined to comparc the mathe­
matical knowledge of a fifth-grader with that of a college student. Since we
could undoubtedly obtain a regression of mathematical knowledge on years of
schoolIng III mathematics, we should be comparing how far a given individual
deViates from his or her expected value based on such a regression. Thus, relative
to hIS or hcr classmates and age group, the fifth-grader may be far better than
IS the college student relative to his or her peer group. This suggcsts that we
calculate adjusted Y I'allies that allow for the magnitude of the independent
vanable X. A conventional way (If calculating such adjusted Y values is to
estImate thc ! value one would expect if the independent variable were eLJual
to Its mean X '.\Ild (hc oh~crvalion retaincdits observed deviation (eI} xl from
the regressIOn llI1e. Smce r = Y when X = :"-, the adjusted Y value can be com­
puted as

r;'dj = Y + d}' .\' = Y - h\ (I un

work can, in a number of instances, take the place of experimental techniques
quite adequately-occasionally they are even to be preferred. The~e appro~ches
are attempts to substitute statistical manipulation of a eonconll~ant v~nabl.e
for control of the variable by experimental means. An example Will clanfy thiS

technique. . .
Let us assume that we are studying the effects of vanous dIets on blood

pressure in rats. We find that the variability of bloo~ pressure in o.ur rat pop­
ulation is considerable, even before we introduce differences III diet. Further
study reveals that the variability is largely due to differences in age amo~g the
rats of the experimental population. This can be demonstrated by a slgl1lficant
linear regression of blood pressure on age. To reduce the variability of blood
pressure in the population, we should keep the age of the rats co~stant. The
reaction of most biologists at this point will be to repeat the expenment usmg
rats of only one age group; this is a valid, commonsense approach, which is
part of the experimental method. An alternative approach is superior in some
cases, when it is impractical or too costly to hold the variable constant. We
might continue to usc rats of variable ages and simply record the age of each
rat as well as its blood pressure. Then we regress blood pressure on age and
use an adjusted mean as the basic blood pressure reading for each individual.
We can now evaluatc the effect of differences in diet on these adjusted means.
Or we can analyze the effects of diet on unexplained deviations, dl · x' after the
experimental blood pressures have been regressed on age (which amounts to

the same thing).
What arc the advantages of such an approach? Often it will be impossible

to secure adequate numbers of individuals all of the same age. By using regression
we are able to utilize all the individuals in the population. The use of statistical
control assumes that it is relatively easy to record thc independent variable X
and, of course. that this variable can be measured without error, which would
be generally truc of such a variable as age of a laboratory animal. Statistical
control may also bc prefcrable bccause we obtain information over a wider
range of both Y and X and also hecause we obtain added knowledgc about
the relations bdween thesc two variables, which would not be so if we rc-

stricted ourselves to a single age group.

t t.7 Residuals and transformations in regression

An examination of rcgression residuals. il} . .\', may detl;ct outliers in a sample.
Such outliers may reveal systematic departures from regression that C,ln be
adjusted by transformation of scale, or by the lilting of a curvilinear rcgressil)H
Iinc. When it is believed that an outlier is due to an observational or recording
error, or to contamination of the sample studied, removal of such an outlier
may improve the regression fit considerably. In examining the magnitude of
residuals, wc should also allow for the corresponding deviation from X. Outly­
ing values of Y, that correspond to deviant variates X, will havc a greater
inlluenee in determining the slope of the regression line than will variates close
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to X. We can examine the residuals in column (9) of Table 11.1 for the weight
loss data. Although several residuals are quite large, they tend to be relatively
close to f. Only the residual for 0% relative humidity is suspiciously large and,
at the same time, is the single most deviant observation from X. Perhaps the
reading at this extreme relative humidity does not fit into the generally linear
relations described by the rest of the data.

In transforming either or both variables in regression, we aim at simplifying
a curvilinear relationship to a linear one. Such a procedure generally increases
the proportion of the variance of the dependent variable explained by the
independent variable, and the distribution of the deviations of points around
the regression line tcnds to become normal and homoscedastic. Rather than fit
a complicated curvilinear regression to points plotted on an arithmetic scale,
it is far more expedient to compute a simple linear regression for variates plotted
on a transformed scale. A general test of whether transformation will improve
linear regression is to graph the points to be fitted on ordinary graph paper as
well as on other graph paper in a scale suspected to improve the relationship.
If the function straightens out and the systematic deviation of points around a
visually fitted line is reduced, the transformation is worthwhile.

We shall briefly discuss a few of the transformations commonly applied in
regression analysis. Sq uare root and arcsine transformations (Section 10.2) are
not mentioned below, but they arc also clTective in regression cases involving
data suited to such transformations.

The !oyaril!lmic trans/iir/nation is the most frequently used. Anyone doing
statistical work is therefore well advised to kccp a supply of semilog papcr
handy. Most frcqucntly we transform the depcndent variable Y. This trans­
formation is indicated when pen'enlaye changes in the dependent variable vary
directly with changcs in the independcnt variable. Such a relationship is in­
dicated by thc equation Y = aenX, where a and h are constants and e is the
base of the natural logarithm. After the transformation, we obtain log Y =

log a + h(log c)X. In this expression log c is a constant which when multiplied
by h yields a ncw constant factor h' which is cquivalent to a regression coeffi­
cient. Similarly, log a is a new Yipten.:ept, a'. We can then simply regress log Y
on X to obtain the function TZ)g Y = a' + 17' X and obtain all our prediction
cquations and confidence intervals in this form. Figure 11.12 shows an cxample
of transforming the dcpendent variatc to logarithmic form, which results in
considerable straightening (If the response curve.

A logarithmic transformation of the independent variable in regression is
effective when proportional changes in the independent variable produce linear
responses in the dependent variable. An example might be the decline in weight
of an organism as density increases, where the successive increases in density
need to be in a conslant ratio in order to elrect equal decreases in weight. This
belongs to a well-known class of biological phenomena, another example of
which is the Weber-Fechner law in physiology and psychology, which stales
that a stimulus has to be increased by a constant proportion in order to produce
a constant increment in n:sponse. FigurL' 11.13 illustrates how logarithmic
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FlC;lIRE 11 14
Dosage mortality data illustrating an applicatilln of the prohit transformatilln. Data arc mean
mortalities for two replicates. Twenty DrosophUa meialIoqaS(pr per replicate were subjected tll seven

d"ses of an "unknllwn" insecticide in a class experiment. The point at dllse 0.1 which yielded 0",:
mortality has heen assigned a prohit value of 2.5 in lieu of ~f." which cannot he plotted.

abscissa has been transformed into logarithmIC scale. A regression line is fittl:d
to dosage-mortality data graphed on probit paper (see Figure 11.14). From
the regression line the 50",: lethal docs is estimated by a process of inverse
prediction, that is, we estimate the value of X (dosage) corresponding to a kill
of prohtt 5.0, which is equivalent to 50''':.

11.8 A non parametric test for regression

When transformations arc unable to linearize the relationship between the
dcpendcnt and independent variables, the research worker may wish to carry
out a simpler. nonparametric test in lieu or regression analysts. Such a test
furnishes neither a prediction equation nor a functional relationship, hut it d,lCs
test whcther the dependent variahle Y is a monotonically increasing (or de­
creasIng) function of the independent variable X. The sImplest such test is the
ordcrilll! Icsl, which is equivalent to computing Kendall's r~lnk correlation co­
efficient (sec Box 12.3) and can be carried out most easily as such. In fact, in
such a case the distinction bctween regression and correlatIon, which will be
discussed in detail in Section 12.1, breaks down. The test is carried out as follows.

Rank variates X and Y. Arrange the independent variable X in II1creasing
order of ranks and calculate the Kendall rank correlation of Y with ,\'. The

computational steps for the procedure arc shown in Box 12.3. If we carry out
this computation for thc weight loss data of Box 11.\ (reversing thc order of
percent relative humidity, X, which is negatively related to weight loss, Y), we
ohtain a quantity N ~, 72, which is significant at P < 0.01 when looked up in
Table XIV. There IS thus a significant trend of weight loss ;\" a function of
relative hUl1l1ciIty. The ranks of the weight losses are a perfect monotonic function
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transformation of the independent variable results in the straightening of the
regression line. For computations one would transform X into logarithms.

Logarithmic transformation for both variables is applicable in situations
in which the true relationship can be described by the formula Y = aX/>. The re­
gression equation is rewritten as log Y= log a + h log X and the computation
is done in the conventional manner. Examples are the greatly disproportionate
growth of various organs in some organisms, such as the sizes of antlers of deer
or horns of stage beetles, with respect to their general body sizes. A double
logarithmic transformation is indicated when a plot on log-log graph paper
results in a straight-line graph.

R£'ciproca/ tral1sjimnatiol1. Many rate phenomena (a given performance per
unit of time or per unit of population), such as wing beats per second or num­
ber of eggs laid per female, will yield hyperbolic curves when plotted in original
measurement scale. Thus, they form curves described by the general mathemat­
ical equations hX Y = I or (a + hX) Y = I. From these we can derive 1 Y =
hX or I/Y = a + hX. By transforming the dependent variable into its reciprocal,
we can frequently obtain straight-line regressions.

Finally, some cumulative curves can be straightened by the prohit trallS­

jimnatiol1. Refresh your memory on the cumulative normal curve shown in
Figure 5.5. Remember that by changing the ordinate of the cumulative normal
into probability scale we were able to straighten out this curve. We do the
same thing hcre except that we graduatc the probability scale in standard
deviation units. Thus, the 50";', point hecomes 0 standard deviations, the X4. 13";;
point hecomes +- I standard deviation. and the 2.27",; POInt becomes 2 stan­
dard deviations. Such standard deviations, correspondIng to a cumulative per­
centagc, arc called Ilorma/ cCIl/ira/cIlI d£'l'ialCs (N LJJ). If we usc ordinary graph
paper and mark the ordinate Il1 /VLD units. we ohta1I1 a straight line when
plotting the cumulative normal curve agall1st it. l'rohils arc simply normal
equivalent deviates coded hy the additIon of 5.n, which will avoid negative
values for most dcviates. Thus, thc prohit value 5.n corresponds to a cumulative
frequency of 50",'" the probit value 6.0 corresponds to a cumulative frequency of
X4.13",;, and thc probit value 3,0 corresponds to a cumulative frequency of
2.27° 0 .

hgure 11.14 shows an example of mortality percentages for increasing doses
of an insecticidc. These represent diffcring points of a cumulative frequency
distribution. With increaSIng dosages an ever greater proportion of thc samplc

dIes until at a high enough dose the entire sample is killed. It is often found
that if the doses of toxicants arc transformcd into logarithms, the tolcrances
or many organisms to these poisons arc approximately normally distrihuted.
These transformed doscs arc often called dOSU1!CS. Ine;easing do~sages lead to
cumulative lIormal distributions or mortalities, often called I!()Slh!C-1/l0r!u!l1 I'

ClIITCS. These curves are the subject matter of an entIre field (;f bi()metri~

analYSIS, h;oas.\u\', to which we can refcr only in passing herc. The most common
technique in [his field IS {Jr()!Jil Ill1ulnis. (jraphlc approxlmatiolls Gill be carnni
out on so-called prnhil {w{wr, which IS probahility grarh P~IPcr in winch the



Exercises

11.1 The following temperatures (Y) were recorded in a rabbit at various times (X)
after it was inoculated with rinderpest virus (data from Carter and Mitchell, 1958).

on the ranks of the relative humidities. The minimum number of points required
for significance by the rank correlation method is 5.
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Temperature Calories

eel y n

0 24.9 6 1.77

4 23.4 4 1.99

10 24.2 4 2.07

18 18.7 5 1.43

26 15.2 7 1.52

34 13.7 7 2.70

Using the complete data given in Exercise ILl, calculate the regr~ssio~e~ua-
, . d compare it with the one you obtained for the first fou~ pomts. ISCUSS
~~en e~~ct of the inclusion of the last three points in the analySIS. Compute the

residuals from regression. . ('
The following results wcre obtained in a study of oxy.gen consumptIOn InIcro-
Iiters/mg dry weight per hour) in Heliothis ;;~a by Phillips and Newsom (1966)
under controlled temperatures and photopenods.

Time after
injection

(h)

24
32
48
56
72
80
96

Temperature
I'F)

102.8
104,5
106.5
107.0
103.9
103.2
103,1

11.4

11.5

Temperature
re)

Photoperiod
(h)

10 14

Compute regression for each photoperiod s~parately and test: forl~o~~~~:.n~i~
of slopes. ANS. For 10 hours: h = 0.0633. Sr' x = 0,019.267. I or .

0020.00. s~ 1 = 0000.60 .' I' I' fh per t.'mp0(jS('a
Length of developmental period (m days) of t le pol<lto ea op . . J • •• I
luhal'. from egg to adult at various constant temperatures .(Kc)[Jskole,kas

f
<t;ll

D "k 19(6) The original data were weighted means. but for put poses 0 . liS
ee cr. . . 'I b" v'd values

analysis we shall consider them as though they were sing eo ser e ..

11.2

Graph the data. Clearly. the last three data points represent a different phenom­
enon from the first four pairs. For the fir.ll four pOillIS: (a) Calculate b, (b)
Calculate the regression equation and draw in the regression line. (c) Test the
hypothesis that fi= 0 and set 95% confidence limits. (d) Set 95% confidence
limits to your estimate of the rabbit's temperature 50 hours after the injection.
ANS, a = 100. h = 0.1300, F, = 59.4288. P < 005.950 = 106.5.
The following table is extracted from dala by Sokoloff (1955). Adult weights
of female Dro~;ophilll persimilis reared at 24"C arc affected by their density as
larvae. Carry out an anova among densities, Then calculate the regression of
weight on density and partition the sums of squares among groups into that
explained and unexplained by linear regression. Graph the data with the regres­
sion line filted to the means. Interpret your results.

11.6

18
21
24

05J
0.53
089

1.61
1.64
173

II..J

Meall weil/hr
Lan·al o{adulls s or wciqhl"
dellsity (in mg) (not ", J II

I 1.356 O,IRO 9
3 1356 0,13.1 34
5 1.284 0130 50
6 /252 0.105 63

10 0.989 0.130 83
20 0.664 0./41 144
40 0.475 0.083 24

Davis (1955) reported the following results in a study of the amount of energy
metabolizcd by fhe rnglish sparrow. l'a,I.ler domestjells. undcr various constant
temperature conditions and a ten-hour photoperiod, Analyze and interpret
ANS. MSi = 657.5043. MS, .r C X2IX(" MSwi'hin = 3.93JO. tlcv/a/101lS arc nOI

"}'t'f1Jflt'rUIUI'l'

(F)

59,X
67.6
70.0
70.4
74.0
75.3
7R.0
80.4
81.4
832
88.4
91.4

Meall/ellqlh 0/
d"pe/opmcllla/
period ill Jays

}'

58.1
213
2liX
21i.J
19.1
19.0
16.5
15.9
14.1'<
J4.2
14.4
14.6
1 < 1
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Analyze and interpret. Compute deviations from the regression line (Yi - YJ
and plot against temperature.

11.7 The experiment cited in Exercise 11.3 was repeated using a IS-hour photoperiod,
and the following results were obtained:

CHAPTER 12

Temperature Calories
('e) y n

0 24.3 6 1.93 Correlation10 25.1 7 1.98
18 22.2 8 3.67
26 13.8 10 4.01
34 16.4 6 2.92

Test for the equality of slopes of the regression lines for the 10-hour and IS-hour
photoperiod. ANS. Fs = 0.003.

I \.8 Carry out a nonparametric test for regression in Exercises 11.1 and 11.6.
11.9 Water temperature was recorded at various depths in Rot Lake on August 1, 1952,

by Vollenweider and Frei (1953).

Depth (m) 0
Temperature CC) 24.8

123
23.2 22.2 21.2

4
18.8

5 6 9
13.8 9.6 6.3

12
5.8

15.5
5.6

Plot the data and then compute the regression line. Compute the deviations
from regression. Does temperature vary as a linear function of depth? What do
the n:siduals suggest'l ANS. (/ = 23.384, h = - 1.435, F, = 45.2398, P < 0.01.

In this chaptcr we continuc our discussion of bivariate statistics. In Chapter
11, on regression, we dealt with the functional relation of one variable upon
the other; in the present chapter, wc treat the measurement of the amount of
association betwecn two variables. This general topic is called correlation
analysis.

It is not always obvious which type of analysis regression or corrclation­
one should employ in a given problem. There has been considerable confu­
sion in the minds of investigators and also in the literature on this topic. We
shall try to make the distinction between these two approaches clear at the
outset in Section 12.1. In Section 12.2 you will be introduced to the produet­
moment correlation coellicient, the common correlation coefficient of the lit­
erature. We shall derive a formula for this coefficient and give you something
of its theoretical background. The close mathematical relationship between
regression and correlation analysis will be examined in this section. We shall
also compute a product-moment correlation coefficient in this section, In Sec­
tion 12.3 we will talk about various tests of significance involving correlation
coetlicients. Then, in Section 12.4, we will introduce some of the applications of

correlation coefficients.
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Section 12.5 contains a nonparametric method that tests for association.
It is to be used in those cases in which the necessary assumptions for tests in­
volving correlation coefficients do not hold, or where quick but less than fully
efficient tests are preferred for reasons of speed in computation or for con­
velllence.

12.1 Correlation and regression

There has been much confusion on the subject matter of correlation and re­
gression. Quite frequently correlation problems are treated as regression prob­
lems in the scientific literature, and the converse is equally true. There are
several reasons for this confusion. First of all, the mathematical relations be­
tween the two methods of analysis are quite close, and mathematically one can
easily move from one to the other. Hence, the temptation to do so is great. Sec­
ond, earlier texts did not make the distinction between the two approaches
sufficiently clear, and this problem has still not been entirely overcome. At least
one textbook synonymizes the two, a step that we feel can only compound
the confusion. Finally, while an investigator may with good reason intend to
use one of the two approaches, the nature of the data may be such as to make
only the other approach appropriate.

Let us examine these points at some length. The many and close mathe­
matical relations between regression and correlation will be detailed in Section
12.2. It sufliees for now to state that for any given problem, the majority of
the computational steps are the same whether one carries out a regression or a
correlation analysis. You will recall that the fundamental quantity required
for regression analysis is the sum of products. This is the very same quantity
that serves as the base for the computation of the correlation coefficient. There
arc some simple mathematical relations between regression coefllcients and
correlation coefficients for the same data. Thus the temptation exists to com­
pute a correlation coeflicient corresponding to a given regression coefllcient.
Yet. as we shall see shortly, this would be wrong unless our intention at the
outset were to study association and the data were appropriate for such a com­
putation.

Let us then look at the intentions or purposes behind the two types of
analyses. In regression we intend to describe the dependence of a variable Y
on an independent variable X. As we have seen, we employ regression equations
for purposes of lending support to hypotheses regarding the possihle causation
of changes in Y hy changes in X; for purposes of prediction, of variable Y
given a value of variable X; and for purposes of explaining some of the varia­
tion of Y by X, by using the latter variable as a statistical control. Studies
of the effects of temperature on heartheat rate, nitrogen content of soil on
growth rate in a plant. age of an animal on blood pressure, or dose of an
insecticide on mortality of thc insect population are all typical examples or
regression for the purposes named above.

In correlation, by contrast, we are concerned largely whether two vari­
ables are interdependent, or covary-that is, vary together. We do not express
one as a function of the other. There is no distinction between independent
and dependent variables. It may well be that of the pair of variables whose
correlation is studied, one is the cause of the other, but we neither know nor
assume this. A more typical (but not essential) assumption is that the two vari­
ables are both effects of a common cause. What we wish to estimate is the degree
to which these variables vary together. Thus we might be interested in the cor­
relation between amount of fat in diet and incidence of heart attacks in human
populations, between foreleg length and hind leg length in a population ofmam­
mals, between body weight and egg production in female blowflies, or between
age and number of seeds in a weed. Reasons why we would wish to demon­
strate and measure association between pairs of variables need not concern us
yet. We shall take this up in Section 12.4. It suffices for now to state that when
we wish to establish the degree of association between pairs of variables in a
population sample, correlation analysis is the proper approach.

Thus a correlation coefficient computed from data that have been properly
analyzed by Model I regression is meaningless as an estimate of any popula­
tion correlation coefficient. Conversely, suppose we were to evaluate a regres­
sion coefficient of one variable on another in data that had been properly
computed as correlations. Not only would construction of such a functional
dependence for these variablcs not meet our intentions, but we should point
out that a conventional regression coefficient computed from data in which
both variables are measured with error-as is the case in correlation analysis­
furnishes biased estimates of the functional relation.

Even if we attempt the correct method in line with our purposes we may
run afoul of the nature of the data. Thus we may wish to establish cholesterol
content of blood <~ a function of weight, and to do so we may take a random
sample of men of the same age group, obtain each individual's cholesterol con­
tent and weight, and regress the former on the latter. However, both these
variables will have been measured with error. Individual variates of the sup­
posedly independent variable X will not have been deliberately dlOsen or con­
trolled by the experimenter. The underlying assumptions of Model I regression
do not hold, and litting a Model I regression to the data is not legitimate.
although you will have no dilliculty finding instances of such improper prac­
tices in the published research literature. If it is really an equation describing
the dependence of Y on X that we are after, we should carry out a Model II
regression. However, if it is the degree of association between the variables
(interdependcnce) that is of interest, then we should carry out a correlation
analysis, for which these data arc suitable. The converse dilliculty is trying to
obtain a corrclation coetlicient from data that arc properly computed as a re­
gression that is, arc computed when X is fixed. An example would be heart­
beats ofa poikilotherm as a function of temperature, where several temperatures
have been applied in an experiment. Such a correlation coeflicient is easily ob­
taincd mathematically but would simply be a numerical value. not an estimate
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Expression (12.2) can be rewritten as

Expression (12.2) can be rewritten in another common form. Since

(12.4)

(12.1 )

(12.2)

( 123)

I) = JI y2 (n -- I) = JI y2
n-I

I: YiYk
r'k = -----

J (n - I)sh

This is the formula for the product-moment correlation coefficient ry,y, between
variables Yj and Y2 . We shall simplify the symbolism to

You have seen that the sum of products is a measure of covariation, and
it is therefore likely that this will be the basic quantity from which to obtain
a formula for the correlation coefficient. We shall label the variables whose
correlation is to be estimated as YI and Y2 . Their sum of products will therefore
be LYIYZ and their covariance [1/(n - I)J LYIYz = S12' The latter quantity is
analogous to a variance, that is, a sum of squares divided by its degrees of
freedom.

A standard deviation is expressed in original measurement units such as
inches, grams, or cubic centimeters. Similarly, a regression coefficient is ex­
pressed as so many units of Y per unit of X, such as 5.2 grams/day. However,
a measure of association should be independent of the original scale of measure­
ment, so that we can compare the degree of association in one pair of variables
with that in another. One way to accomplish this is to divide the covariance
by the standard deviations of variables Yt and Yz. This results in dividing each
deviation YI and Yz by its proper standard deviation and making it into a
standardized deviate. The expression now becomes the sum of the products of
standardized deviates divided by n -- 1:

To state Expression (12.2) more generally for variables Yj and Yk , we can write
it as

Nature of the two variables

Purpose of investigator Y random, X fixed Yt , Y2 both random

Establish and estimate Model I regression. Model II regression.
dependence of one variable (Not treated in this
upon another. (Describe book.)
functional relationship
and/or predict one in terms
of the other.)

Establish and estimate Meaningless for this Correlation coefficient.
association (interdependence) case. If desired, an (Significance tests
between two variables. estimate of the entirely appropriate only

proportion of the if Yt , Yz are distributed
variation of Yexplained as bivariate normal
by X can be obtained variables.)
as the square of the
correlation coefficient

between X and Y.

TABLE 12.I
The relations between correlation and regression. This table indicates the correct computation for
any combination of purposes and variables. as shown.

of a parametric measure of correlation. There is an interpretation that ean be
given to the square of the correlation coefTicient that has some relevance to a
regression problem. However, it is not in any wayan estimate of a parametric
correlation.

This discussion is summarized in Table 12.1, which shows the relations
hetween correlation and regression. The two columns of the tahle indicate the
two conditions of the pair of variahles: in one case one random and measured
with error, the other variahle fixed; in the other case, both variables random.
In this text we depart from the usual convention of labeling the pair of vari­
ables Y and X or Xl' X 2 for both correlation and regression analysis. In re­
gression we continue the usc of Y for the dependent variable and X for the
independent variable, but in correlation both of the variables arc in fact random
variables, which we have throughout the text designated as Y. We therefore
refer to the two variables as Yt and Y2 . The rows of the tahle indicate the
intention of the investigator in carrying out the analysis, and the four quad­
rants of the table indicate the appropriate procedures for a given combination
of intention of investigator and nature of the pair of variahles.

12.2 The product-moment correlation coefficient

There arc numerous correlation coetlicients in statistics. The most common
of these is called the prodllcl-11I0l/U'111 correia I iOI1 coefficicnl, which in its current
formulation is due to Karl Pearson. We shall derive ils formula through an

The correlation codlicient rjk can range from + 1 for perfect association
to - I for perfect negative association. This is intuitively obvious when we
consider the correlati_~~~ofavariable 1j with itself. Expression (12.4) would then
yield rjj = LhV/ ftyJ Ly; = LyJ/LyJ = I, which yields a perfect correla­
tion of + I. If deviations in one variable were paired with opposite but equal
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FIGURE 12.2
Bivariate normal frequency distribution. The parametric correlation I' between variables YI and Yz
equals 0.9. The bell-shaped mound of Figure 12.1 has become elongated.

Figure 12.30) would become elongated in the form of an ellipse. This is so
because thosc parts of the circle that formerly included individuals high for one
variable and low for the other (and vice versa), are now scarcely represented.
Continued ~ampling (with the sand grain model) yields a three-dimensional
elliptic mound, shown in Figure 12.2. If correlation is perfect, all the data will
fall along a single regression line (the idcnticalline would describe the regression
of Y1 on Yz and of Yz on Y1), and if we let them pile up in a physical model,
they will result in a flat, essentially two-dimensional normal curve lying on this
regression line.

The circular or elliptical shape of the outline of the scallergram and of the
resulting mound is clearly a function of the degree of correlation het ween the
two varia hies, and this is the parameter IJ jk of thc hivariate normal distrihution.
By analogy with Fxpression (12.2), the paramcter fljk can he defined as

because the sum of products in the numerator would be negative. Proof that the
correlation coefficient is bounded by + I and - I will be given shortly.

If the variates follow a specified distribution, the bivariate normal distribu­
tion, the correlation coefficient rjk will estimate a parameter of that distribution
symbolized by Pjk'

Let us approach the distribution empirically. Suppose you have sampled
a hundred items and measured two variables on each item, obtaining two
samples of 100 variates in this manner. If you plot these 100 items on a graph
in which the variables Yj and Yz are the coordinates, you will obtain a scatter­
gram of points as in Figure 12.3A. Let us assume that both variables Yj and Y, z,

are normally distributed and that they are quite independent of each other,
so that the fact that one individual happens to be greater than the mean in
character Yj has no effect whatsoever on its value for variable Yz. Thus this
same individual may be greater or less than the mean for variable Yz. If there
is absolutely no relation between Yj and Yz and if the two variables are stan­
dardized to make their scales comparable, you will find that the outline of the
scattergram is roughly circular. Of course, for a sample of 100 items, the circle
will be only imperfectly outlined; but the larger the sample, the more clearly
you will be able to discern a circle with the central area around the intersec­
tion Yj , Yz heavily darkened because of the aggregation there of many points. If
you keep sampling, you will have to superimpose new points upon previous
points, and if you visualize these points in a physical sense, such as grains of
sand, a mound peaked in a bell-shaped fashion will gradually accumulate. This
is a three-dimensional realization of a normal distribution, shown in perspective
in Figure 12.1. Regarded from either coordinate axis, the mound will present
a two-dimensional appearance, and its outline will be that of a normal distribu­
tion curve, the two perspectives giving the distributions of Y1 and Yz, respec­
tively.

If we assume that the two variables Y1 and Yz are not independent but are
positively correlated to some degree, then if a given individual has a large value
of Yl , it is more likely than not to have a large value of Yz as well. Similarly,
a small value of Y1 willlikcly be associated with a small value of Yz. Were you
to sample items from such a population, the resulting scattergram (shown in fljk

(Jjk

(JPk

(12.5)

H<;(JRL 121
Bivariatc normal frcquency distribution. Thc paramctric correlation I' bctwccn variablcs YI and Y,
cquals fcrn. Thc frequency distribution may bc visualized as a bell-shaped mound.

where (Jjk is the parametric covariance of varia hies Yj and }~ and (Jj and (Jk arc
the parametric standard deviations of variahles }", and }~, as hefore. When two
variahles are distrihuted according to the bivariate normal. a sample correlation
coetlicient r jk estimates the parametric correlation coellicient fljk' We can make
some statements ahout the sampling distribution of I'jk and set confidence limits
to it.

Regrettahly, the elliptical shape of scattergrallls of corre/;[tcd variahles IS

not usually very clear unless either very large samples have heen taken or the
parametric correlation fljk is very high. To illustrate this point, we show in
Figure 12.3 several graphs illustrating scattergrams resulting from samples of
100 items from hivariatc normal populations with diflcring values of fljk' Note
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that in the first graph (Figure 12.3A), with Pjk = 0, the circular distribution is
only very vaguely outlined. A far greater sample is required to demonstrate the
circular shape of the distribution more clearly. No substantial difference is noted
in Figure 12.3B, based on Pjk = 0.3. Knowing that this depicts a positive correla­
tion, one can visualize a positive slope in the scattergram; but without prior
knowledge this would be difficult to detect visually. The next graph (Figure
12.3C, based on Pjk = 0.5) is somewhat clearer, but still does not exhibit an
unequivocal trend. In general, correlation cannot be inferred from inspection
of scattergrams based on samples from populations with Pjk between -0.5 and
+ 0.5 unless there are numerous sample points. This point is illustrated in the
last graph (Figure 12.3G), also sampled from a population with Pjk = 0.5 but
based on a sample of 500. Here, the positive slope and elliptical outline of the
scattergram are quite evident. Figure 12.3D, based on Pjk = 0.7 and n = 100,
shows the trend more clearly than the first three graphs. Note that the next
graph (Figure 12.3E), based on the same magnitude of Pjk but representing
negative correlation, also shows the trend but is more strung out than Figure
12.3D. The difference in shape of the ellipse has no relation to the negative
nature of the correlation; it is simply a function of sampling error, and the com­
parison of these two figures should give you some idea of the variability to be
expected on random sampling from a bivariate normal distribution. Finally,
Figure 12.3F, representing a correlation of Pjk = 0.9, shows a tight association
between the variables and a reasonable approximation to an ellipse of points.

Now let us return to the expression for the sample correlation coefficient
shown in Expression (12.3). Squaring this expression results in

I
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Look at the left term of the last expression. It is the square of the sum of
products or variables YI and Yz, divided by the sum or squares or YI . If this
were a regression problem, this would be the formula ror the explained sum or
squares of variable Yz on variable Y" LYi. In the symbolism of Chapter II,
on regression, it would be Lyz = (LXy)Z/LX Z

• Thus, we can write
Illa'RI. 12.\
Kandom samples rrnm bivariate normal distriblltlons Wllh V'''Vlnt~ "tllIes ur the paraml'lrle l'lllTe­

la tlun eol'ilici~nt f'. Sample Sll~S /I 100 ina II gra phs cxc~pl (j. which has /I 'iOO. (;\ I I' 0.4.

IBI" 1)1.1<'11' O'i 111111 07 1111' 0.7. (1-1 I' O'! 1(,11' OS
( 12.6)

The square of the correlation coeflicient, therefore, is the ratio formed by the
explained sum or squares of variable Yz divided by the total sum of squares
of variable Yz. Equivalently,

(12.6a)
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which can be derived just as easily. (Remember that since we are not really
regressing one variable on the other, it is just as legitimate to have Y1 explained
by Y2 as the other way around.) The ratio symbolized by Expressions (12.6) and
(12.6a) is a proportion ranging from 0 to 1. This becomes obvious after a little
contemplation of the meaning of this formula. The explained sum of squares
of any variable must be smaller than its total sum of squares or, maximally, if
all the variation of a variable has been explained, it can be as great as the total
sum of squares, but certainly no greater. Minimally, it will be zero if none of the
variable can be explained by the other variable with which the covariance has
been computed. Thus, we obtain an important measure of the proportion of
the variation of one variable determined by the variation of the other. This
quantity, the square of the correlation coefficient, ri2' is called the coefficient
of determination. It ranges from zero to I and must be positive regardless of
whether the correlation coefficient is negative or positive. Incidentally, here is
proof that the correlation coefficient cannot vary beyond - I and + 1. Since
its square is the coefficient of determination and we have just shown that the
bounds of the latter are zero to 1, it is obvious that the bounds of its square
root will be ± I.

The coefficient of determination is useful also when one is considering the
relative importance of correlations of different magnitudes. As can be seen by a
reexamination of Figure 12.3, the rate at which the scatter diagrams go from a
distribution with a circular outline to one resembling an ellipse seems to be
more directly proportional to r 2 than to r itself. Thus, in Figure 12.38, with
p2 = 0.09, it is difficult to detect the correlation visually. However, by the time
we reach Figure 12.3D, with p2 = 0.49, the presence of correlation is very
apparent.

The coefllcient of determination is a quantity that may be useful in regres­
sion analysis also. You will rccall that in a rcgrcssion wc used anova to partition
the total sum of squares into explained and unexplained sums of squares. Once
such an analysis of variancc has bccn carried out, one can obtain the ratio of
the explained sums of squares over the total SS as a measure of the proportion
of the total variation that has been explained by the regression. However, as
already discussed in Section 12.1, it would not be meaningful to take the square
root of such a coefficient of determination and consider it as an estimate of the
parametric correlation of these variables.

We shall now take up a mathematical relation between the coefficients of
correlation and regression. At the risk of being repetitious, wc should stress
again that though we can easily convert one coefficient into the other, this docs
not mean that the two types of coef1lcients can be used interchangcably on the
same sort of data. One important relationship betwccn thc correlation coefll­
cient and the regression coeflicient can be derived as follows from Expression
(12.3):

(12.9)

(12.8)

(12.7)

(12.7a)

(12.7b)

What Expression (12.8) indicates is that if we make a new compositc
variable that is the sum of two other variables, the variance of this ncw variable
will bc thc sum of thc variances of the variables of which it is composcd plus
an addcd term, which is a function of the standard deviations of these two
variablcs and of the corrclat ion between them. It is shown in Appcndix A1.8 that
this ad(kd !crm is twice the covariance of Y1 and Yz. When thc two variables

whcre St and S2 are standard deviations of Yt and Yz, respectively, and r l2 is
the correlation coeflicient between these variables. Similarly, for a difference
bctwccn two variables, we obtain

In these expressions bz . 1 is the regression coefficient for variable Y2 on YI' We
see, therefore, that the correlation coefficient is the regression slope multiplied
by the ratio of the standard deviations of the variables. The correlation coeffi­
cient may thus be regarded as a standardized regression coefficient. If the two
standard deviations are identical, both regression coefficients and the correla­
tion coefllcient will bc idcntical in valuc.

Now that we know about the coefTicient of correlation, somc of thc carlicr
work on paircd comparisons (see Section 9.3) can be put into proper perspective.
In Appendix A1.8 we show for the corresponding parametric expressions that
thc variancc of a sum of two variables is

and hence

Similarly, we could demonstrate that

L YIYz ~L YI L YIY2 ~L YI
r 12 = JLYI ~L YI .~l>~ = LYI .~l>~

Dividing numerator and denominator of the right term of this expression by
~,weobtain

Multiplying numerator and denominator of this expression by ~L YI, we
obtain

LYIY2. _1__

Jry1 ~LY~

LYtYzr t 2 = ccc- ---------

J, vZ
' v2

L,tL,Z



278

•
CHAPTER 12 ! CORRELATION 12.2 / THE PRODUCT-MOMEN j CORIU I.ATION COEHICIFNT '.,

being summed are uncorrelated, this added covariance term will be zero, and
the variance of the sum will simply be the sum of variances of the two variables.
This is the reason why, in an anova or in a I test of the difference between the
tW::l means, we had \0 assume the independence of the two variables to permit
us to add their variances. Otherwise we would have had to allow for a covari·
anee term. By contrast, in the p;med-coll1parisons technique we expect corre­
lation bctwccn the variahks, since thc mcmbers in each pair share a Clllllmon
experience. The paired-comparisons lest automatically suhtracts a covariancc
term, resulting in a smaller standard error and consequently in a larger value
or t,. since the numerator or the ratio remains the same. Thus, whenever corre­
lation hetween two variahles is positive. the variancc of their dillcrenees will
he considerably smaller than the sum of their variances: (his is the reason why
the paired-comparisons test has to be used in place of the I test for difference of

means. These considerations are equally true for the corresponding analyses
of variance. single-classification and two-way anova,

The eomputation of a product-moment eorrebtion coeflicient is quite

simple. The basic quantities needed are the same six Il:quired for computation
of the regression coefficient (Section fI.3). Box 12.1 illustrates how the cllclli­

cien! should he computed. The example is based 0/1 a sample Ill' 12 crahs in
which gill weight Y1 and hody weight Y2 have been recorded. We wish to know
whether there is a correlation between the weight of the gill and that of the hody.

the lattcr representing a measure of overall size. The existence of a positive
eorrelation might lead you to conclude that a bigger-bodied crab with its re­
sulting greater amllunt of metabolism would require larger gills in Ilrder to

BOX 1Z.1

Computation of the product~moment correlation coefficient.

Rela~onships between gill weight and body weight in the crab Pachygrapsus
crass/pes. n = 12.

(1) (2)
1'; Y2

Gill Body
weight in weight

milligrams in grams

159 14.40
179 15.20
100 11.30
45 2.50

384 22.70
230 14.90
100 1.41
320 15.81
80 4.19

220 15.39
320 17.25
210 9.52

Source: UnpUblished dala by L. Miller.

Computation

1. L~ = 159 + ... + 210 = 2347

2. Ln = 1592 + '" + 2102 = 583,403

3. LY2 = 14.40 + ... + 9.52 = 144.57

4. Ln = (14.40)2 + ... + (9.52)2 = 2204.1853

5. IY! Y2 = 14.40(159) + ... + 9.52(210) = 34,837.10

6. Sum of squares of Y1 = Lyf = LYf _(I~~
n

. . (quantity 1)2 (2347)2
= quantIty 2 - '----- = 583403 _

n ' 12
= 124,368.9167

7. Sum of squares of Y2 = Lyi = In _Q:YZ)2

n

= quantity 4 - (quan!_i~_~r = 2204.1853 _ (l44.57)~
II 12

= 462.4782

BOX 12.1
Continued

(L Y!)(L Y2 )
8. Sum of products = L YIY2 = I Y! Y2 - --~~-

. quantity I x quantity 3=quantity 5 - -~---'---'"
n

(2347)(144.57)
= 34.837.10 ---'12"'-- = 6561.6175

9. Product-moment correlation coefficient (by Expression (12.3)):

L YIY2 quantity 8
r l2 = -:=------ = ---==--==--=--=JI y~ I y~ J(jUantity 6 x quantity 7

6561.6175 6561.6175

=J(l24,368.9167)(462.4782) J57,S17,912.73-iJ

= ~261.6175 = 0.8652 ~ 0.87
7584.0565

•
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FIGURE 12.4

Scatter diagram for crab data of Box 12.1.

12.3 / SIGNIFICANCE TESTS IN CORRI'I.A liON

•
BOX 12.2
Tests of sitnificam:e and confidence limits for correlatioD coefficients.

TestofthenuU hypothesis 1I(): (J == 0 versus H t : (J "I: 0

The.~implest procedure is to consult Table VIII, where the critical values ot I

are tabulated for df ::::; n- 2 from 1 to 1000. If the absolute value of the observed
r is greater than the tabulated value in the column for two variables, we reject
the mdl hypothesis.

Examples. In Box 12.1 we found the correlation between body weight and
gill weight to be 0.8652, based on a sample of n == 12. For 10 degrees of fre~,?m
the critical values are 0.576 at the 5% level and 0.708 at the 1% level of slgmfi­
cance. Since the observed correlation is greater than both of these, we can reject
the null hypothesis, Ho: p =0, at P < 0.Ql.

Table VIll is based upon the following test, which may be carried out when
the table is not available or when an exact test is needed at significance levels or
at degrees of freedom other than those furnished in the table. The null hypothesis
is tested by means of the t distribution (with 11 - 2 df) by using the standard error
of r. When p = 0, _ r«:- r2

)

s, - ..j(il- 2)

provide the necessary oxygen. The computations are illustrated in Box 12.1. The
correlation coefficient of 0.87 agrees with the clear slope and narrow elliptical
outline of the scattergram for these data in Figure 12.4.

12.3 Significance tests in correlation

The most common significance tcst is whether it is possible for a sample cor­
relation coefIicient to have come from a population with a parametric correla­
tion coeflicient of zero. The null hypothesis is therefore H o: II = O. This implies
that (hc two va ria hIes arc uncorrclated. If the sample comes from a bivariate
normal distribution and f! = 0, the standard error of the correlation coetllcient
is s, = VII - ri17i,~=--2). The hypothesis is tested as a t test with n - 2 degrees

of freedom, t, = (I' -- O)/J( 1==,:2)/(11 - 2) = rj(;l 2)7U-=-~2). We should em­
phasize 1hal this standard error applies only when p = 0, so that it cannot be
al'plied to testing a hYl'othcsis that f! is a specific valuc other than zero. The I

test for the significance of r is mathematically equivalent to the t test for the
SIgnificance of h, in cithcr case measuring the strength of the association between
the two variables being tested. This is somewhat analogous to the situation
in Model I and Model II single-classification anova, where the same F test es­
tablishes the significancc regardless of the model.

Significance tests following this formula have been carried out system­
atically and arc tabulated in Table VIII, which permits the direct inspection
of a sample correlation codlicicnt for significance without further computation.
Box 12.2 illustrates tcsts of the hypothesis fI(l: P = O. using Table VIII as well
as the I test discussed at lirs!.

Therefore,
(r - 0) ((i= 2)

t. =,)(1 _ r2)j(n _ 2) = r ..j l1='r2)

For the data of Box 12.1, this would be

t. =0.8652,)(12 - 2)/(1 - 0.86522
) == 0.8652 J10/0.25143

= 0.8652,)39.7725 = 0.8652(6.3065) = 5.4564 > to.OOlllOI

For a one-tailed test the 0.10 and 0.02 values of t should be used for 5%
and 1% significance tests, respectively. Such tests would apply if the alternative
hypothesis were HI: P > 0 or HI: P < 0, rather than HI: P -# O.

When n is greater than 50, we can.J!.lso make use of the z transformation
described in the text. Since u. = 1/..;;1- 3, we test

ts "" ~_=zJn-3
1/ n - 3

Since z is normally distributed and we are using a parametric standard deviation,
we compare t. with t«Jool or employ Table II, "Areas of t~e normal curv,e." If '!'e
had a sample correlation of r "" 0.837 between length of nght- and left-wmg veins
of bees based on n = 500, we would find z = 1.2111 in Table X. Then

t. = l.2lll J497 = 26.997

This value, when looked up in Table n. yields a very small probability « 10- 6
).

Test ~rthe null hypothesis Ho: p = PH where Pt "I: 0

To test this hypothesis we cannot use Table VIll or the I test given above, but
must make use of the z transformation.
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t, = (1.2lIl - 0.5493)(y497) = 14.7538

The probability ~f obtaining such a value of ts by random sampling is P < 10 - 6

(see Table. II). It. IS ?,ost unlikely that the parametric correlation between right­
and left-WIng vems IS 0.5.

BOX 12.2
Continued

Suppose we 'Yish to t7st the null hypothesis Ho: p = +0.5 versus H
1

: P~
+0.5 for the case Just considered. We would use the following expression:

z - ~ c--
ts =_._._-- =(z - O-vn - 3
l/~

where z ~nd , are the z transformations of rand p, respectively. Again we com­
pare t, with taloo ) or look it up in Table II. From Table VIn we find

For r = 0.837 z = 1.2111

Therefore

For p = 0.500 ,= 0.5493

BOX 12.2
Continued

Since ZI - Z2 is normally distributed and we are using a parametric standard
deviation, we compare t. with £<1[«)) Or employ Table n, "Areas of the normal
curve...

For example, the correlation between body weight and wing length in Dro­
sophila pseudoobscura was found by Sokoloff (1966) to be 0.552 in a sample of
nl =39 at the Grand Canyon and 0.665 in a sample of n2 =20 at Flagstaff,
Arizona.

Grand Canyon: ZI = 0.6213 Flagstaff: Z2 = 0.8017

t.:;: 0.62~017 -0.1804 = -=-~.1804 == -0.6130
-l6 + 1\ ~0.086,601 0.294,28

By linear interpolation in Table n, we find the probability that a value of ts will
be between ±0.6130 to be about 2(0.229,41) = 0.458,82, so we clearly have no
evidence 011 which to reject the null hypothesis.

•

When p is close to ± 1.0, the distribution of sam pic values of r is markcdly
asymmetrical, and, although a standard error is available for r in such cases,
it should not be applicd unlcss the sample is very large (/1 > 500). a most in­
frequent case of little interest To overcome this difficulty, we transform r to a
function Z, developed by Fisher. The formula for Z is

Confidence limits

If n > 50, we can set confidence limits to r using the z transformation. We first
~o~vert the sample r to z, set confidence limits to this z, and then transform these
Im:uts back to the r scale. We shall find 95% confidence limits for the above wing
velD length data.

For r = 0.837, :: = 1.2111, IX = 0.05,

L 1 = Z - ta1oc'jl1: = z - ~-:.OJI~~ = I.2ltl _ 1.960
.In= 3 22.2953

= 1.2111 0.0879 = 1.1232
:.: = I In (I + r)

2 I I'
(12.10)

L 2 = z + Jt():~~(5'~, = 1.2111 + 0.0879 = 1.2990
n -- 3

We retransform these z values to the r scale by finding the corresponding argu­
ments for the z function in Table X.

L I .~ 0.808 and L 2 ~ 0.862

are the 95~-;; confidence limits around r = 0.837.

Test of the differe/lce between two correlation coefficients

For two correlation coefficients we may test IJ : I) = P versus H . p -J.
follows: 0 ,. I 2 I' 1 -r 112 as

You may recognize this as :.: = tanh 1 r, the formula for the inverse hy­
perholic tangent of r. This function has been tahulated in Table X, where values
of:.: corresponding to absolute values of r arc given. Inspection of Expression
(12.10) will show that when r = O. :.: will also eq ual zero, since lin I equals
zero. However, as r approaches ± I, (I + 1');'(1 -- r) approaches 1:'/ and 0;
consequently. :.: approaches ± intinity. Therefore, substantial diflcrences he­
twecn rand Z OCCIlr at the higher valucs for r. Thus, whl'n I' is 0.115, Z = 0.1155.
For r = -0.531, we obtain Z = -0.5915; r = 0.972 yic1ds:.: = 2.127.1. Noll' hy
how much:.: exceeds r in this last pair of values. By finding a given value of z in
Table X, we can also obtain the corresponding value of r. Inverse inkrpolation
may be necessary. Thus, :.: = 0.70 corresponds to r = 0.604, and a value of
:: = - 2.76 corresponds to r = - 0.992. Some pocket calculators hav\: huilt-in
hyperbolic and inverse hyperbolic functions. Keys for such functions would
ohviate the need for Tahle X.

The advantage of the:.: transformation is that while correlation coeflicients
are distributed in skewed fashion for values of p of O. the values or:: are ap-
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12.4 Applications of correlation

The purpose of correlation analysis is to measure the intensity of association
observed between any pair of variables and to test whether it is greater than
could be cxpected by chance alone. Once established, such an association is
likely to lead to reasoning about causal relationships between the variables.
Students of statistics are told at an early stage not to confuse significant cor­
relation with causation. We are also warned about so-called nonsensc corrc1a-

This is an approximation adequate for sample sizes n ;:::: 50 and a tolerable
approximation even when n ;:::: 25. An interesting aspect of the variance of z
evident from Expression (12.11) is that it is independent of the magnitude of r,
but is simply a function of sample size n.

As shown in Box 12.2, for sample sizes greater than 50 we can also use
the z transformation to test the significance of a sample r employing the hy­
pothesis Ho: p = O. In the second section of Box 12.2 we show the test of a null
hypothesis that p =I O. We may have a hypothesis that the true correlation
between two variables is a given value p different from zero. Such hypotheses
about the expected correlation between two variables are frequent in genetic
work, and we may wish to test observed data against such a hypothesis. Al­
though there is no a priori reason to assume that the true correlation be­
tween right and left sides of the bee wing vein lengths in Box 12.2 is 0.5, we
show the test of such a hypothesis to illustrate the method. Corresponding to
p = 0.5, there is (. the parametric value of z. It is the z transformation of p.
We note that the probability that the sample r of 0.837 could have been sampled
from a population with p = 0.5 is vanishingly small.

Next. in Box 12.2 we see how to set confidence limits to a sample cor­
relation coefficient r. This is done by means of the z transformation; it will
result in asymmetrical confidence limits when these are retransformed to the
r scale, as when setting confidence limits with variables subjected to square
root or logarithmic transformations.

A test for the significance of the difference between two sample correlation
coelficients is the final example illustrated in Box 12.2. A standard error for the
difference is computed and tested against a table of areas of the normal curve.
In the example the correlation between body weight and wing length in two
Drosophila populations was tested. and the difference in correlation coefficients
betwccn the two populations was found not significant. The formula given is
an acceptable approximation when the smaller of the two samples is greatcr
than 25. It is frequently used with even smaller sample sizes. as shown in our
example in Box 12.2.

, (zeta), following the usual convention. The expected variance of z is

2 1a. =--
- n - 3

(12.11)

tions, a well-known case being the positive correlation between the number of
Baptist ministers and the per capita liquor consumption in cities with popula­
tions of over 10,000 in the United States. Individual cases of correlation must
be carefully analyzed before inferences are drawn from them. It is useful to
distinguish correlations in which one variable is the entire or, more likely, the
partial cause of another from others in which the two correlated variables have
a common cause and from more complicated situations involving both direct
influence and common causes. The establishment of a significant correlation
does not tell us which of many possible structural models is appropriate. Further
analysis is needed to discriminate between the various models.

The traditional distinction of real versus nonsense or illusory correlation
is of little use. In supposedly legitimate correlations, causal connections are
known or at least believed to be clearly understood. In so-called illusory cor­
relations, no reasonable connection between the variables can be found; or if
one is demonstrated, it is of no real interest or may be shown to be an arti­
fact of the sampling procedure. Thus, the correlation between Baptist ministers
and liquor consumption is simply a consequence of city size. The larger the city,
the more Baptist ministers it will contain on the average and the greater will be
the liquor consumption. The correlation is of little interest to anyone studying
either the distribution of Baptist ministers or the consumption of alcohol. Some
correlations have time as the common factor, and processes that change with
time arc frequently likely to be correlated, not because of any functional bio­
logical reasons but simply because the change with time ;n the two variables
under consideration happens to be in the same direction. Thus, size of an insect
population building up through the summer may be correlated with the height
of some weeds, but this may simply be a function of the passage of time. There
may be no ecological relation between the plant and the insects. Another situa­
tion in which the correlation might be considered an artifact is when one of
the variables is in part a mathematical function of the other. Thus. for example,
if Y = Zj X and we compute thc corrclation of X with Y, the existing rcla­
tion will tend to produce a negativc correlation.

Perhaps the only correlations properly called nonsense or illusory arc thosc
assumed by popular belief or scientific intuition which, when tested by proper
statistical methodology using adequate sample sizes, arc found to be not sig­
nificant. Thus, if wc can show that therc is no significant correlation bctwccn
amount of saturated fats caten and the degrec of atherosclerosis, we can consider
this to be an illusory correlation. Remember also that when testing significance
of correlations at conventional levels of significancc. you must allow for type I
error. which will lead to your judging a certain perccntage of correlations sig­
nificant whcn in fact the parametric value of p = O.

Correlation coefllcients have a history of extcnsivc usc and application
dating back to the English biometric school at the beginning of the twcnticth
century. Recent years have seen somewhat less application of this technique as
increasing segmcnts of biological research have become expcrimental. In experi­
ments in which one factor is varied and the response of another variable to thc
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deliberate variation of the first is examined, the method of regression is more
appropriate, as has already been discussed. However, large areas of biology and
of other sciences remain where the experimental method is not suitable because
variables cannot be brought under control of the investigator. There are many
areas of medicine, ecology, systematics, evolution, and other fields in which
experimental methods are difficult to apply. As yet, the weather cannot be con­
trolled, nor can historical evolutionary factors be altered. Epidemiological vari­
ables are generally not subject to experimental manipulation. Nevertheless, we
need an understanding of the scientific mechanisms underlying these phenom­
ena as much as of those in biochemistry or experimental embryology. In such
cases, correlation analysis serves as a first descriptive technique estimating the
degrees of association among the variables involved.

12.5 Kendall's coefficient of rank correlation

Occasionally data are known not to follow the bivariate normal distribution,
yet we wish to test for the significance of association between the two variables.
One method of analyzing such data is by ranking the variates and calculating
a coefficient of rank correlation. This approach belongs to the general family of
nonparamelric methods we encountered in Chapter 10. where we learned
methods for analyses of ranked variates paralleling anova. In other cases es­
pecially suited to ranking methods. we cannot measure the variable on an
absolute scale, but only on an ordinal scale. This is typical of data in which
we estimate relative performance, as in assigning positions in a class. We can
say that A is the best student. B is the second-best student, C and D are equal
to each other and next-best, and so on. If two instructors independently rank
a group of students. we can then test whether the two sets of rankings arc
independent (which we would not expect if the judgments of the instructors arc
hased on objective evidence). Of greater biological and medical interest arc the
following examples. We might wish to correlate order of emergence in a sample
of /llsects with a ranking in size. or order of germination in a sample of plants
with rank order of tlowering. An epidemiologist may wish to associate rank
order of occurrence (by time) of an infectious disease within a community, on
the one hand. with its severity as measured hy an ohjective criterion, on the
other.

We present in Box 12.3 Kendall's ('()e//icil'lll 0( rallk ('()rrelalioll, generally
symholized by r (tau), although it is a sample statistic, not a parameter. The
formula for Kendall's coeflicient of rank correlation is r = N /n(n ~ I), where II

is the conventional sample size and N is a count of ranks. which can be ob­
tained in a variety of ways. A second variahle Yz• if it is perfectly correlated
with the tirst variahle YI • should he in the same order as the YI variates. However.
if the correlation is less than perfect, the order of the variates Yz will not entirely
correspond to that of YI . The quantity N measures how well the second variable
corresponds to the order of the /irst. It has a maximal value of n(1l I) and
a minimal value of- n(n I). The following small example will make this clear.

•
BOX 12.3
KendaU's coefficient of rank correlation, T.

Computation ofa rank correlation coefficient between the blood I1cu1[opllll It 1111,1',

(Y1: x 10-3 per ,ul) and total marrow neutrophil mass (Y2 ; x 10'> per kg) '" I',

patients with nonhematological tumors; n = 15 pairs of observations.

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)
Patient Y1 R, Yz R2 Patient Y1 R, Y, R,

1 4.9 6 4.34 1 8 7.1 9 7.12 5
2 4.6 5 9.64 9 9 2.3 1 9.75 10
3 5.5 7 7.39 6 10 3.6 2 8.65 8
4 9.1 11 13.97 12 11 18.0 15 15.34 14
5 16.3 14 20.12 15 12 3.7 3 12.33 11
6 12.7 13 15.01 13 13 7.3 10 5.99 2
7 6.4 8 6.93 4 14 4.4 4 7.66 7

15 9.8 12 6.07 3

Source: Dala extracted from Lilt, Kesfeld. and Koo (1983).

Computational steps

1. Rank variables Y1 and Yz separately and then replace the original variates with
the ranks (assign tied ranks if necessary so that for both variables you will
always have n ranks for n variates). These ranks are listed in columns (3) and
(5) above.

2. Write down the n ranks of one of the two variables in order, paired with the
rank values assigned for the other variable (as shown below). If only one vari­
able has ties. order the pairs by the variable without ties. If both variables have
ties, it does not matter which of the variables is ordered.

3. Obtain a sum of the counts C j , as follows. Examine the first value in the column
of ranks paired with the ordered column. In our case, this is rank 10. Count
all ranks subsequent to it which are higher than the rank being considered.
Thus, in this case, count all ranks greater than 10. There are fourteen ranks
following the 10 and five of them are greater than 10. Therefore, we count a
score of C 1 = 5. Now we look at the next rank (rank 8) and find that six of
the thirteen subsequent ranks are greater than it; therefore, C2 is equal to 6.
The third rank is I t. and four following ranks are higher than it. Hence, C3 = 4.
Continue in this manner, taking each rank of the variable in turn and counting
the number of higher ranks subsequent to it. This can usually be done in one's
head, but we show it explicitly below so that the method will be entirely clear.
Whenever a subsequent rank is tied in value with the pivotal rank R 2 , count
! instead of 1.
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We then need the following quantity:

N =4'.t C. - n(n - 1) =4(59) - 15(]4) = 236 - 210 = 26

4. The Kendall coefficient of rank correlation, r, can be found as follows:

N 26
r = ~(n _ I) = ]5(14) = 0.124

When there are ties, the coefficient is computed as follows:

N
r = .. - . . .. .

J[n(n - 1)- I T1J[n<n - 1) - I T2J
where I;"' T 1 and I;"' T 2 arc thc sums of correction tcrms for ties in the ranks of
variable Yj and Y2 , respectively, defined as follows. A T value equal to t(t - 1)
is computed for each group of t tied variates and summed over m such groups.
Thus if variable Y2 had had two sets of ties, one involving t = 2 variates
and a second involving t = 3 variates, one would have computed 1:;"' T 2 =
2(2 - I) + 3(3 - ]) = 8. It has been suggested that if the ties are due to lack
of precision rather than being real, the coefficient should be computed by the
simpler formula.

BOX 12.3
Continued

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

to
8

11
7
9
1
6
4
5
2

12
3

13
15
14

Subsequent ranks greater
than pivotal rank R2

11, 12, 13, 15, 14
11,9, 12, 13, 15, 14
12,13, 15, 14
9,12, 13, 15, 14
12, 13, 15, 14
6,4,5,2, 12,3, 13, 15, 14
12, 13, 15, 14
5,12,13,15,14
12, 13, 15, 14
12,3, 13, 15, 14
13, ]5, 14
13, 15, 14
15, 14

Counts C.

5
6
4
5
4
9
4
5
4
5
3
3
2
o
o

BOX 12.3
Continued

S. To test significance for sample sizes >40, we can make usel',)f a normal ap­
proximation to test the null hypothesis that the true value oft- 0:

1:
t - compa·red with t
• - J2(2n + 5)/9n(n - 1) «r«»

When n S; 40, this approximation is not accurate, and Table XIV must be
consulted. The table gives various (two-tailed) critical values of 1: for n "'" 4 to
40. The minimal significant value of the coefficient at P "'" 0.05 is 0.390. Hence
tHe observed value of 1: is not significantly different from zero.

•

Suppose we have a sample of five individuals that have been arrayed by rank
of variable Yj and whose rankings for a second variable Yz are entered paired
with the ranks for Yj :

Yj 2345

Y2 3 2 5 4

Note that the ranking by variable Y2 is not totally concordant with that by Yj'
Thc technique employed in Box 12.3 is to count the number of higher ranks
following any given rank, sum this quantity for all ranks, multiply the sum I:n C j

by 4, and subtract from the result a correction factor n(n - I l to obtain a statistic
N. If, for purposes of illustration, we undertake to calculate the correlation of
variablc Y1 with itself, we will find I:n C j = 4 + 3 + 2 + I + 0 = 10. Then we
compute N = 4 I:n C. - n(n - 1) = 40 - 5(4) =~ 20, to obtain the maximum
possible score N = n(n - Jl == 20. Obviously, Y1 , bcing ordered, is always per­
fectly concordant with itself. However, for Yz we obtain only I:nC j = 4 + 2 +
2 + 0 + 0 = 8, and so N = 4(8) -- 5(4) = 12. Since the maximum score of N for
Y1 (the score we would have if the correlation were perfect) is n(n - I) = 20 and
the observed score 12, an obvious eoeffieicnt suggests itself as N / I/(n 1l =

[4 I:n C j - n(n - 1l]/n(n - 1) = 12/20 = 0.6. Tics between individuals in the
ranking process present minor complications that arc dealt with in Box 12.3.
The correlation in that box is between blood neutrophil counts and total
marrow neutrophil mass in 15 cancer patients. The authors note that there is
a product-moment correlation of 0.69 between these two variables, but when
the data arc analyzed by Kendall's rank correlation coefficient, the association
between the two variables is low and nonsignifIcant. Examination of the data
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12.3

Compute the correlation coefficient separately for each species and test signifi­
cance of each. Test whether the two correlation coefficients differ significantly.
A pathologist measured the concentration of a toxic substance in the liver and
in the peripheral blood (in ltg/kg) in order to ascertain if the liver concentration
is related to the blood concentration. Calculate T and test its significance.

12.5 Brown and Comstock (1952) found the following correlations between the length
of the wing and the width of a band on the wing of females of two samples
of the butterfly Heliconius charitonius:

Sample n

Test whether the samples were drawn from populations with the same value of
p. ANS. No, ts = - 3.104, P < 0.01. .
Test for the presence of association between tibia length and tarsu.s length III

the data of Exercise 12.1 using Kendall's coefficient of rank correlatIOn.

Liver Blood

0.296 0.283
0.315 0.323
0.022 0.159
0.361 0.381
0.202 0.208 12.6

0.444 0.411
0.252 0.254
0.371 0.352
0.329 0.319
0.183 0.177
0.369 0.315
0.199 0.259
0.353 0.353
0.251 0.303
0.346 0.293

ANS. T = 0.733.
12.4 The following table of data is from an unpublished morphometric study of the

cottonwood Populus deltoide.\ by T. J. Crovello. Twenty-six leaves from one
tree were measured when fresh and again after drying. The variables shown are
fresh-leaf width (YI ) and dry-leaf width (Y,), both in millimeters. Calculate r
and test its significance. -

YI Y, Y Y,I
~--_._-_...~--- ------

90 88 100 97
88 87 110 105
55 52 95 90

100 95 99 98
86 83 92 92
90 88 80 82
82 77 110 106
78 75 105 97

115 lOY 101 Y8
100 Y5 95 91
I 10 105 80 76
84 7X 103 97
76 71

I
2

100
46

0.29
0.70



In Section 13.1 we introduce the idea of goodness of fit, discuss the types
of significance tests that are appropriate, explain the basic rationale behind such
tests, and develop general computational formulas for these tests.

Section 13.2 illustrates the actual computations for goodness of fit when
the data are arranged by a single criterion of classification, as in a one-way
quantitative or qualitative frequency distribution. This design applies to cases
expected to follow one of the well-known frequency distributions such a~ th.e
binomial, Poisson, or normal distribution. It applies as well to expected dlstn­
butions following some other law suggested by the scientific subject matter
under investigation, such as, for example, tests of goodness of fit of observed
genetic ratios against expected Mendelian frequencies. ..

In Section 13.3 we proceed to significance tests of frequencies m two-way
classifications--called tests of independence. We shall discuss the common tests
of 2 x 2 tables in which each of two criteria of classification divides the fre­
quencies into two classes, yielding a four-cell table, as well as R x C tables with
more rows and columns.

Throughout this chapter we carry out goodness of fit tests by the G statis.tic.
We briefly mention chi-square tests, which are the traditional way of analyzmg
such cases. But as is explained a t various places throughout the text, G tests
have general theoretical advantages over chi-square tests, as well as being
computationally simpler, not only by computer, but also on most pocket or
tabletop calculators.

CHAPTER 13

Analysis of Frequencies

13.1 / TESTS FOR GOODNESS OF FIT: lNTRODUCTION 295

Almost all our work so far has dealt with estimation of parameters and tests
of hypotheses for continuous variables. The present chapter treats an important
class of cases, tests of hypotheses about frequencies. Biological variables may
be distributed into two or more classes, depending on some criterion such as
arbitrary class limits in a continuous variable or a set of mutually exclusive
attributes. An example of the former would be a frequency distribution of birth
weights (a continuous variable arbitrarily divided into a number of contiguous
classes); one of the latter would be a qualitative frequency distribution such as
the frequency of individuals of ten different species obtained from a soil sample.
For any such distribution we may hypothcsize that it has been sampled from
a population in which the frequencies of the various classes represent certain
parametric proportions of the total frequency We need a test of goodness or/it
for our observed frequcncy distribution to the expected frequency distribution
representing our hypothesis. You may recall that we first realized the need for
such a test in Chapters 4 and 5, where we calculated expected binomial. Poisson,
and normal frequency distributions but were unable to decide whether an ob­
served sample distribution departed significantly from the theoretical one.

13.1 Tests for goodness of fit: Introduction

The basic idea of a goodness of fit test is easily understood, given the extensive
experience you now have with statistical hypothesis testing. Let us assume that
a geneticist has carried out a crossing experiment between two F I hybnds (lnd
obtains an F 1 progeny of 90 offspring, 80 of which appear to be wrl? type and
10 of which are the mutant phenotype. The geneticist assumes dommance and
expects a 3: I ratio of the phenotypes. When we calculate the actual ratios,
however, we observe that the data are in a ratio 80/10= 8: I. Expected values
for p and q arc fi = 0.75 and q = 0.25 for the wild type and mutant, respectively.
Note that we use the caret (generally called "hat" in statistics) to II1dlcatc hypo­
thetical or expected values of the binomial proportions. However, the. observed
proportions of these two classes are p = 0.89 and q = 0.11, respccllvely.. Yet
another way of noting the contrast between observation and expectallon IS to
state it in frequencies: the observed frequencies ar~ II = 80 and J~ = to for the
two phenotypes. Expected frequencies should be II = fm = 0.75(90) = 67.5 and
I~ = (Ill = 0.25(90) = 22.5, respectively, where n refers to the sample. size of
offspring from the cross. Note that when we sum the expected frequenCies they
yield 67.5 + 22.5 = n = 90, as they should. .. .

The obvious question that comes to mind is whether the deVIatIon trom the
3: I hypothesis observed in our sample is of such a magnitude as to be im­
probahle. In other words, do the observed data differ enough from the expected
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values to cause us to reject the null hypothesis? For the case just considered, you
already know two methods for coming to a decision about the null hypothesis.
Clearly, this is a binomial distribution in which p is the probability of being
a wild type and q is the probability of being a mutant. It is possible to work
out the probability of obtaining an outcome of 80 wild type and 10 mutants
as well as all "worse" cases for p= 0.75 and 4 = 0.25, and a sample of n = 90
offspring. We use the conventional binomial expression here (p + q)" except that
p and q are hypothesized, and we replace the symbol k by n, which we adopted
in Chapter 4 as the appropriate symbol for the sum of all the frequencies in a
frequency distribution. In this example, we have only one sample, so what would
ordinarily be labeled k in the binomial is, at the same time, n. Such an example
was illustrated in Table 4.3 and Section 4.2, and we can compute the cumulative
probability of the tail of the binomial distribution. When this is done, we obtain
a probability of 0.000,849 for all outcomes as deviant or more deviant from the
hypothesis. Note that this is a one-tailed test, the alternative hypothesis being
that there are, in fact, more wild-type offspring than the Mendelian hypothesis
would postulate. Assuming p = 0.75 and 4= 0.25, the observed sample is, c.on­
sequently, a very unusual outcome, and we conclude that there is a significant
deviation from expectation.

A less time-consuming approach based on the same principle is to look up
confidence limits for the binomial proportions, as was done for the sign test in
Section to.3. Interpolation in Table IX shows that for a sample of n = 90, an
observed percentage of 89% would yield approximate 99% confidence limits of
78 and 96 for the true percentage of wild-type individuals. Clearly, the hy­
pothesized value for p= 0.75 is beyond the 99:~~ confidence bounds.

Now, let us develop a third approach by a goodness of fit test. Table 13.1
illustrates how we might proceed. The first column gives the observed frequen­
cies f representing the outcome of the experiment. Column (2) shows the ob­
served frequencies as (observed) proportions p and q computed as fl/II and f~/n,

respectively. Column (3) lists the expeded proportions for the particular null
hypothesis being tested. In this case, the hypothesis is a 3: 1 ratio, corresponding
to expected proportions p = 0.75 and 4 = 0.25, as we have seen. In column (4)
we show the expected frequencies. which we have already calculated for these
proportions as II = fin = 0.75(90) = 67.5 and f~ = 411 = 0.25(90) = 22.5.

The log likelihood ratio test for goodness of flt may be developed as follows.
Using Expression (4.1) for the expected relative frequencies in a binomial dis·
tribution, we compute two quantities of interest to us here:

C(90, RO)(tH)H()(~~11 () = 0.132,683,8

C(90. KO)(l)Ho(!lIO = 0.000,551,754.9

The first quantity is the probability of observing the sampled results (RO wild
type and 10 mutants) on the hypothesis that [i = p-that is, thaI the population
parameter equals the observed sample proportion. The second is the probability
or observing the sampled results assuming that fi = i. as per the Mendelian null
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can be approximated by the X2 distribution when sample sizes are large (for a
definition of "large" in this case, see Section 13.2). The appropriate number of
degrees of freedom in Table 13.1 is I because the frequencies in the two cells
for these data add to a constant sample size, 90. The outcome of the sampling
experiment could have been any number of mutants from 0 to 90, but the
number of wild type consequently would have to be constrained so that the
total would add up to 90. One of the cells in the table is free to vary, the other
is constrained. Hence, there is one degree of freedom.

In our case,

(13.3)

(13.4)

(13.5)

In L = fl In(j:) + f2 In (j:)

Since fl = np and f: = np and similarly f2 = nq and j2 = ml,

and

The computational steps implied by Expression (13.3) are shown in columns
(5) and (6) of Table 13.1. In column (5) are given the ratios of observed over
expected frequencies. These ratios would be 1 in the unlikely case of a perfect
fit of observations to the hypothesis. In such a case, the logarithms of these
ratios entered in column (6) would be 0, as would their sum. Consequently, G,
which is twice the natural logarithm of L, would be 0, indicating a perfect fit
of the observations to the expectations.

It has been shown that the distribution of G follows a X2 distribution. In
the particular case we have been studying-the two phenotype classes-the
appropriate X2 distribution would be the one for one degree of freedom. We
can appreciate the reason for the single degree of freedom when we consider
the frequencies in the two classes of Table 13.1 and their sum: 80 + 10 = 90.
In such an example, the total frequency is fixed. Therefore, if we were to vary
the frequency of anyone class, the other class would have to compensate for
changes in the first class to retain a correct total. Here the meaning of one
degree of freedom becomes quite clear. One of the classes is free to vary; the
other is not.

The test for goodness of fit can be applied to a distribution with more than
two classes. If we designate the number of frequency classes in the Table as a,
the operation can be expressed by the following general computational formula,
whose derivation, based on the multinominal expectations (for more than two
classes), is shown in Appendix A1.9:

Thus the formula can be seen as the sum of the independent contributions
of departures from expectation (In CUj;)) weighted by the frequency of the
particular class (fJ If the expected values are given as a proportion, a conve­
nient computational formula for G, also derived in Appendix A1.9, is

To evaluate the outcome of our test of goodness of fit, we need to know the
appropriate number of degrees of freedom to be applied to the X2 distribution.
For a classes. the number of del'rees of freedom is f1 - I Sinc:e the slim of,~

(13.2)

(13.1)

(13.2a)

G = 21n L

('(11, II )pflqh

= C(II.ftlpf'q}' = (E)f l (lJ.)f'
L . . 'I' 'f' ' ,( 'J1 f \n I II . n f1

But

and

hypothesis. Note that these expressions yield the probabilities for the observed
outcomes only, not for observed and all worse outcomes. Thus, P = 0.000,551,8
is less than the earlier computed P = 0.000,849, which is the probability of 10

. , 3' Iand fewer mutants, assumlllg p = 4, q = 4'

The first probability (0.132,683,8) is greater than the second (0.000,551,754,9),
since the hypothesis is based on the observed data. If the observed proportion
p is in fact equal to the proportion ppostulated under the null hypothesis, then
the two computed probabilities will be equal and their ratio, L, will equal 1.0.
The greater the difference between p and p(the expected proportion under the
null hypothesis), the higher the ratio will be (the probability based on p is
divided by the probability based on por defined by the null hypothesis). This
indicates that the ratio of these two probabilities or likelihoods can be used as
a statistic to measure the degree of agreement between sampled and expected
frequencies. A test based on such a ratio is called a likelihood ratio test. In our
case, L = 0.132,683,8/0.000,551,754,9 = 240.4761.

It has been shown that the distribution of

G = 2 In L = 2(5.482,62) = 10.9652

If we compare this observed value with a X2 distribution with one degree of
freedom, we find that the result is significant (P < 0.001). Clearly, we reject the
3: I hypothesis and conclude that the proportion of wild type is greater than
0.75. The geneticist must, consequently, look for a mechanism explaining this
departure from expectation.

We shall now develop a simple computational formula for G. Referring
back to Expression (4.1), we can rewrite the two probabilities computed earlier
as
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frequencies in any problem is fixed, this means that a-I classes are free to
vary, whereas the ath class must constitute the difference between the total sum
and the sum of the previous a - I classes.

In some goodness of fit tests involving more than two classes, we subtract
~ore than one degree of freedom from the number of classes, a. These are
Instances where the parameters for the null hypothesis have been extracted from
~he sample data themselves, in contrast with the null hypotheses encountered
In Tabl.e 13.1. I~ the ~atter case, the hypothesis to be tested was generated on
the basIs of the Investigator's general knowledge of the specific problem and of
Mendelian g~netics. The values.of p= 0.75 and q= 0.25 were dictated by the
3: 1 hypothesIs and were not estimated from the sampled data. For this reason,
the expecte? frequencies are said to have been based on an extrinsic hypothesis,
a hypothesIs external to the data. By contrast, consider the expected Poisson
frequencies of yeast cells in a hemacytometer (Box 4.1). You win recall that to
compute these fre~uencies, you needed values for fl, which you estimated from
the ,sample mean Y. Therefore, the parameter of the computed Poisson distri­
butIOn c~me from the sampled observations themselves. The expected Poisson
frequencIes represent an intrinsic hypothesis. In such a case, to obtain the correct
number of degrees of freedom for the test of goodness of fit, we would subtract
from a, the number of classes into which the data had been grouped, not only
one degree of freedom for n, the sum of the frequencies, but also one further
deg~e~ of,freedom for the estimate of the mean. Thus, in such a case, a sample
statlstIc G would be compared with chi-square for a- 2 degrees of freedom.

Now let us introduce you to an alternative technique. This is the traditional
approa~h with which we must acquaint you because you will see it applied in
the. earher hterature and in a substantial proportion of current research publi­
catIOns..W~ ~urn once more to the genetic cross with 80 wild-type and 10
~utant IndIVIduals. The computations are laid out in columns (7), (8), and (9)
In Table 13.1.

. We lirst measure f - f, the deviation of observed from expected frequen­
cies. Note th~t the sum of these deviations eq uals zero, for reasons very similar
to those .causlng the sum of deviations from a mean to add to zero. Following
our prevIOus ~~proach of making all deviations positive by squaring them, we
s~uare (f - f) In column (8) to yield a measure of the magnitude of the devia­
tIOn from expectation. This quantity must be expressed as a proportion of the
expected frequency. After all, if the expected frequency were 13.0, a deviation of
12.5 ~o~ld be an extremely large one, comprising almost 100'70 of f, but such
a devJat~on would represent only 10% of an expected frequency of 125.0. Thus,
we obtal.n column (9) as the quotient of division of the quantity in column (8)
by that In column (4). Note t!lat the magnitude of the quotient is greater for
the .se~o~d line, in which the f is smaller. Our next step in developing our test
statistic IS to sum the quotients, which is done at the foot of column (9), yielding
a value of 9.259,26.

. This test is called the chi-square test because the resultant statistic, X 2 , is
dlstnbuted as chi-square with l/ I degrees of freedom. Many persons inap-

propriately call the statistic obtained as the sum of column (9) a chi-square.
However, since the sample statistic is not a chi-square, we have followed the
increasingly prevalent convention oflabeling the sample statistic Xl rather than
Xl. The value of Xl = 9.259,26 from Table 13.1, when compared with the critical
value of X2 (Table IV), is highly significant (P < 0.005). The chi-square test is
always one-tailed. Since the deviations are squared, negative and positive devia­
tions both result in positive values of X 2

• Clearly, we reject the 3: 1 hypothesis
and conclude that the proportion of wild type is greater than 0.75. The geneticist
must, consequently, look for a mechanism explaining this departure from ex­
pectation. Our conclusions are the same as with the G test. In general, X 2 will
be numerically similar to G.

We can apply the chi-square test for goodness of fit to a distribution with
more than two classes as well. The operation can be described by the formula

(13.6)

which is a generalization of the computations carried out in columns (7), (8),
and (9) of Table 13.1. The pertinent degrees of freedom are again a-I in the
case of an extrinsic hypothesis and vary in the case of an intrinsic hypothesis.
The formula is straightforward and can be applied to any of the examples we
show in the next section, although we carry these out by means of the G test.

13.2 Single-classification goodness of fit tests

Before we discuss in detail the computational steps involved in tests of good­
ness of fit of single-classification frequency distributions, some remarks on the
choice of a test statistic are in order. We have already stated that the traditional
method for such a test is the chi-square test for goodness of fit. However, the
newer approach by the G test has been recommended on theoretical grounds.
The major advantage of the G test is that it is computationally simpler, espe­
cially in more complicated designs. Earlier reservations regarding G when desk
calculators are used no longer apply. The common presence of natural logarithm
keys on pocket and tabletop calculators makes G as easy to compute as X 2

.

The G tests of goodness of fit for single-classification frequency distributions
are given in Box IJ I. Expected frequencies in three or more classes can be
based on either extrinsic or intrinsic hypotheses, as discussed in the previous
section. Examples of goodness of fit tests with more than two classes might be
as follows: A genetic cross with four phenotypic classes might be tested against
an expected ratio of 9: 3: 3: I for these classes. A phenomenon that occurs over
various time periods could be tested for uniform frequency of occurrence~for
example, number of births in a city over 12 months: Is the frequency of births
equal in each month? In such a case the expected frequencies arc computed as
being equally likely in each class. Thus, for a classes, the expected frequency
for anyone class would be nla.
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Parameters estimated
+ Distribution from sample df

+
Binomial fi a-2+
Normal J.I,U a-3

+ Poisson J.I a-2

a2 - 1
q=I+-.-­

6nv

11 2 -1
= 1 + 6(6115)(9) = 1.000,363,4

G
adj

=!!.. = 94.871,55 = 94.837,09
q 1.000,363,4

Gad; =; 94.837,09 > X~.OOl[9J = 27.877

The null hypothesis-that the sample data follow a binomial distribu­
tion-is therefore rejected decisively.

Typically, the following degrees of freedom will pertain to G tests for
goodness of fit with expected frequencies based on a hypothesis intrinsic to the
sample data (a is the number of classes after lumping, if any):

BOX 13.1
Continued

problem. We obtain

+
+
+

(1) (2) (3) (t)
66 n f f

12 0 4~}52 2~:~:~:~n 28.429,7311 1
10 2 181 132.835,70
9 3 478 410.012,56
8 4 829 854.246,65
7 5 1112 1265.630,31
6 6 1343 1367.279,36
5 7 1033 1085.210,70
4 8 670 628.055,01
3 9 286 258.475,13
2 10 104 71.803,17
1 11

2j}27 12.088,84} 13.021,68
0 12 0.932,84

6115 = n 6115.000,00

(5)
Deviation

from
expectation

BOX 13.1
G Test for Goodness of Fit. Single Classifteation.

1. Freqlle1U:ies divided into a ~ 2 classes: Sex ratio i.n6115 sib~hips 0!12 h~Sax.on~.
The fourth column gives the expected frequenCIes, assunung a bInomIal dIStrI­
bution. These were first computed in Table 4.4 but are here given to five­
decimal-place precision to give sufficierJt accuracy to the computation of G.

•

Since expected frequencies.it < 3 for a = 13 classes should be avoided, we lump
the classes at both tails with the adjacent classes to create classes of adequate
size. Corresponding classes of observed frequencies it should be lumped to
match. The number of classes after lumping is a = 11.

Compute G by Expression (13.4):

Since there are a = 11 classes remaining, the degrees of freedom would be
a-I = 10, if this were an example tested against expected frequencies based
on an extrinsic hypothesis. However, because the expected frequencies are based
on a binomial distribution with mean Po estimated from the Po of the sample,
a further degree of freedom is removed, and the sample value of G is compa~ed
with a X2 distribution with a - 2 = 11 - 2 = 9 degrees of freedom. We apphed
Williams' correction to G, to obtain a better approximation to X2

• In the for­
mula computed below, v symbolizes the pertinent degrees of freedom of the

When the parameters for such distributions are estimated from hypotheses
extrinsic to the sampled data, the degrees of freedom are uniformly a - I.

2. Special case of frequencies divided in a = 2 classes: In an F 2 cross in dro­
sophila, the following 176 progeny were obtained, of which 130 were wild-type
flies and 46 ebony mutants. Assuming that the mutant is an autosomal recessive,
one would expect a ratio of 3 wild-type flies to each mutant fly. To test whether
the observed results are consistent with this 3: I hypothesis, we set up the data
as follows.

Flies f Hypothesis j

Wild type j; =130 fi = 0.75 fin =132.0
Ebony mutant j~ = 46 q= 0.25 qn= 44.0

n =176 176.0

Computing G from Expression (13.4), we obtain

G = 2f it In (~)
= 2[130 In (m) + 46 In (H)] ~ 7. C' ',-;"'1" 1-·

Z
'. ~ ";

= 0.120,02
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BOX 13.1
Continued

Williams' correction for the two-cell case is q == 1 + 1/2n, which is

1
1 + 2(176) = 1.002,84

in this example.

G == ~ = 0.120,02 =°1197
adj q 1.002,84 .

Since Gads « X~.O'(11 == 3.841, we clearly do not have sufficient evidence to
reject our null hypothesis.

•

The case presented in Box 13.1, however, is one in which the expected
frequencies are based on an intrinsic hypothesis. We use the sex ratio data in
sibships of 12, first introduced in Table 4.4, Section 4.2. As you will recall, the
expected frequencies in these data are based on the binomial distribution, with
the parametric proportion of males {is estimated from the observed frequencies
of the sample (Vs = 0.519,215). The computation of this case is outlined fully
in Box 13.1.

The C test does not yield very accurate probabilities for smallJ, The cells
with j~ < 3 (when a 2 5) or j; < 5 (when a < 5) are generally lumped with
adjacent classes so that the new.! are large enough. The lumping of classes
results in a less powerful test with respect to alternative hypotheses. By these
criteria the classes of j~ at both tails of the distribution arc too small. We lump
them by adding their frequencies to those in contiguous classes, as shown in
Box 13.1. Clearly, the observed frequencies must be lumped to match. The
number of classes a is the number alia lumping has taken place. In our case,
a = II.

Because the actual type I error of G tests tends to be higher than the
intended level, a correction for G to obtain a bettcr approximation to thc chi­
squarc distribution has been suggested by Williams (1976). He divides G by a
correction factor q (not to be confused with a proportion) to be computed as
q = I + (0 2 - I)/611\,. In this formula, \' is the number of degrees of freedom
appropriate to the G test. The effect of this correction is to reduce the observed
value of G slightly.

Since this is an examplc with expected frequencies based on an intrinsic
hypothesis, we have to subtract more than one degree of freedom from iI for
the significance test. In this case, we estimated {ic' from the sample, and therefore
a sccond degree of freedom is subtracted from ii, making the final number of
degrees of freedom iI - 2 = II 2 ~c 9. Comparing the corrccted sample valuc

of Cadi = 94.837,09 with the critical value of X2 at 9 degrees of freedom, we find
it highly significant (P« 0.001, assuming that the null hypothesis is correct).
We therefore reject this hypothesis and conclude that the sex ratios are not
binomially distributed. As is evident from the pattern of deviations, there is an
excess of sibships in which one sex or the other predominates. Had we applied
the chi-square test to these data, the critical value would have been the same

(X;[91)'
Next we consider the case for a = 2 cells. The computation is carried out

by means of Expression (13.4), as before. In tests of goodness of fit involving
only two classes, the value of C as computed from this expression will typically
result in type I errors at a level higher than the intended one. Williams' correction
reduces the value of C and results in a more conservative test. An alternative
correction that has been widely applied is the correction for continuity, usually
applied in order to make the value of C or X 2 approximate the X2 distribution
more closely. We have found the continuity correction too conservative and
therefore recommend that Williams' correction be applied routinely, although
it will have little effect when sample sizes are large. For sample sizes of 25 or
less, work out the exact probabilities as shown in Table 4.3, Section 4.2.

The example of the two cell case in Box 13.1 is a genetic cross with an
expected 3: 1 ratio. The C test is adjusted by Williams' correction. The expected
frequencies differ very little from the observed frequencies, and it is no surprise,
therefore, that the resulting value of Cadi is far less than the critical value of X2

at one degree offreedom. Inspection of the chi-square table reveals that roughly
80% of all samples from a population with the expected ratio would show
greater deviations than the sample at hand.

13.3 Tests of independence: Two-way tables

The notion of statistical or probabilistic independence was first introduced in
Section 4.1, where it was shown that if two events were independent, the prob­
ability of their occurring together could be computed as the product of their
separate probabilities. Thus, if among the progeny of a certain genetic cross
the probability that a kernel of corn will be red is 1 and the probability that
the kernel will be dented is *, the probability of obtaining a kernel both dented
and red will be 1 x ! = i, if the joint occurrences of these two characteristics
arc statistically independent.

The appropriate statistical test for this genetic problem would be to test
the frequencies for goodness of fit to the expected ratios of 2 (red, not dented): 2
(not red, not dented): I (red, dented): 1 (not red, dented). This would be a simul­
taneous test of two null hypotheses: that the expected proportions are 1and ~

for red and dented, respectively, and that these two properties are independent.
The first null hypothesis tests the Mendelian model in general. The second tests
whether these characters assort independently-that is, whether they arc deter­
mined by genes located in different linkage groups. If thc second hypothesis
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.i~act alv = npbact alv = npbact xPalv = n(c + d) (h + ~) = (c + d)(h+ d)
" n n n

From a two-way table one can systematically compute the expected fre­
quencies (based on the null hypothesis of independence) and compare them
with the observed frequencies. For example, the expected frequency for cell d
(bacteria, alive) would be

which in our case would be (54)(73)/111 = 35.514, a higher value than the
observed frequency of 29. We can proceed similarly to compute the expected
frequencies jiJr each cell in the table by multiplying a row total hy a column total,
and dividing the product hy the grand total. The expected frequencies can be

Thus 13 mice received bacteria and antiserum but died, as seen in the table.
The marginal totals give the number of mice exhibiting anyone property: 57
mice received bacteria and antiserum; 73 mice survived the experiment. Alto­
gether III mice were involved in the experiment and constitute the total sample.

In discussing such a table it is convenient to label the cells of the tahle and
the row and column sums as follows:

57
54

11173

44
29

Alive

13
25

Dead

L 38

a h a+h
c d c+d

----~--

a+c h+d n

Bacteria and antiserum
Bacteria only

association between membership in blood group Y and susceptibility to the
disease X?

The example we shall work out in detail is from immunology. A sample of
III mice was divided into two groups: 57 that received a standard dose of
pathogenic bacteria followed by an antiserum, and a control group of 54 that
received the bacteria but no antiserum. After sufficient time had elapsed for
an incubation period and for the disease to run its course, 38 dead mice and
73 survivors were counted. Of those that died, 13 had received bacteria and
antiserum while 25 had received bacteria only. A question of interest is whether
the antiserum had in any way protected the mice so that there were propor­
tionally more survivors in that group. Here again the proportions of these
properties are of no more interest than in the first example (predation on moths).

Such data are conveniently displayed in the form of a two-way table as
shown below. Two-way and multiway tables (more than two criteria) are often
known as contingency tables. This type of two-way table, in which each of the
two criteria is divided into two classes, is known as a 2 x 2 table.

must be rejected, this is taken as evidence that the characters are linked-that
is, located on the same chromosome.

There are numerous instances in biology in which the second hypothesis,
concerning the independence of two properties, is of great interest and the first
hypothesis, regarding the true proportion of one or both properties, is of little
interest. In fact, often no hypothesis regarding the parametric values Pi can be
formulated by the investigator. We shall cite several examples of such situations,
which lead to the test of independence to be learned in this section. We employ
this test whenever we wish to test whether two different properties, each occurring
in two states, are dependent on each other. For instance, specimens of a certain
moth may occur in two color phases--light and dark. Fifty specimens of each
phase may be exposed in the open, subject to predation by birds. The number
of surviving moths is counted after a fixed interval of time. The proportion
predated may differ in the two color phases. The two properties in this example
are color and survival. We can divide our sample into four classes: light-colored
survivors, light-colored prey, dark survivors, and dark prey. If the probability
of being preyed upon is independent of the color of the moth, the expected
frequencies of these four classes can be simply computed as independent prod­
ucts of the proportion of each color (in our experiment, ~) and the overall
proportion preyed upon in the entire sample. Should the statistical test of inde­
pendence explained below show that the two properties are not independent,
we are led to conclude that one of the color phases is more susceptible to
predation than the other. In this example, this is the issue of biological impor­
tance; the exact proportions of the two properties are of little interest here. The
proportion of the color phases is arbitrary, and the proportion of survivors is
of interest only insofar as it differs for the two phases.

A second example might relate to a sampling experiment carried out by a
plant ecologist. A random sample is obtained of 100 individuals of a fairly rare
species of tree distributed over an area of 400 square miles. For each tree the
ecologist notes whether it is rooted in a serpentine soil or not, and whether the
leaves arc pubescent or smooth. Thus the sample of 11 = 100 trees can be divided
into four groups: serpentine-pubescent. serpentine-smooth, nonserpentine­
pubescent, and nonserpentine-smooth. If the probability that a tree is or is not
pubescent is independent of its location. our null hypothesis of the independence
of these properties will be upheld. If, on the other hand, the proportion of
puhescence differs for the two types of soils. our statistical test will most prob­
ably result in rejection of the null hypothesis of independence. Again, the ex­
pected frequencies will simply be products of the independent proportions of
the two properties- serpentine versus nonserpentine. and pubescent versus
smooth. In this instance the proportions may themselves be of interest to the
investigator.

An analogous example may occur in medicine. Among 10,000 patients ad­
mitted to a hospital. a certain proportion may be diagnosed as exhibiting disease
X. At the same time. all patients admitted are tested for several blood groups.
A certain proportion of these arc members of blood group Y. Is there some
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conveniently displayed in the form of a two-way table:

Bacteria and antiserum
Bacteria only

Dead

19.514
18.486

I 38.000

Alive

37.486
35.514

73.000

57.000
54.000

111.000

•
BOX 13.2
2 x 2 test or indepeudenee.

A plant t(:ologistsamples 100 trees of a rare species from a 400-square-.mile area.
He recorddor~ tree whether it is rooted in serpentine soils or not, an<lwnetner
its leaves are pubescent or smooth.

•

The conventional algebraic representation of this table is as follows:

Compare Gadj with critical value of X2 for one degree of freedom. Since our
observed Gadj is much less than X~.05(1J = 3.841, we accept the null hypothesis
that the leaf type is independent of the type of soil in which the tree is rooted.

Totals

34
66

100= n

L
a+b
c+d
a+b+c+d=n

22
50

72

Smooth

12
16

28

PubescentSoil

3. n In n = 100 In 100 = 460.517,02

4. Compute G as follows:

G = 2(quantity 1 - quantity 2 + quantity 3)

= 2(337.784,38 - 797.635,16 + 460.517,02)

= 2(0.666,24) = 1.332,49

Williams' correction for a 2 x 2 table is

(
n n )( n n )--+---1 --+---1

q=l+ a+b c+d a+c b+d
6n

For these data we obtain

= 1 + (¥,p + ..'H - 1)(W +W - 1)
q 6(100)

= 1.022,81

G _ G _ 1.332,49 _
ad) - q - 1.022,81 - 1.3028

a b

c d
L a+c b+d

Compute the following quantities.

1. Lf In f for the cell frequencies =121n 12 + 22 In 22 + 161n 16 + 50 In 50

= 337.784,38

2. Lf for the row and column totals = 34 In 34 + 66 In 66 + 28 In 28 + 72 In 72

= 797.635,16

serpentine
Not Serpentine
Totals

You will note that the row and column sums of this table are identical to those
in the table of observed frequencies, which should not surprise you, since the
expected frequencies were computed on the basis of these row and column
totals. It should therefore be clear that a test of independence will not test
whether any property occurs at a given proportion but can only test whether
or not the two properties are manifested independently.

The statistical test appropriate to a given 2 x 2 table depends on the under­
lying model that it represents. There has been considerable confusion on this
subject in the statistical literature. For our purposes here it is not necessary to
distinguish among the three models of contingency tables. The G test illustrated
in Box 13.2 will give at least approximately correct results with moderate- to
large-sized samples regardless of the underlying model. When the test is applied
to the above immunology example, using the formulas given in Box 13.2, one
obtains Gadj = 6.7732. One could also carry out a chi-square test on the devia­
tions of the observed from the expected frequencies using Expression (13.2).
This would yield X2 = 6.7966, using the expected frequencies in the table above.
Let us state without explanation that the observed G or X 2 should be compared
with X2 for one degree of freedom. We shall examine the reasons for this at the
end of this section. The probability of finding a fit as bad, or worse, to these
data is 0.005 < P < 0.01. We conclude, therefore, that mortality in these mice
is not independent of the presence of antiserum. We note that the percentage
mortality among those animals gi ven bacteria and antiserum is (13)( 100)/57 =
22.8%, considerably lower than the mortality of (25)(100)/54 = 46.3% among
the mice to whom only bacteria had been administered. Clearly, the antiserum
has been effective in reducing mortality.

In Box 13.2 we illustrate the G test applied to the sampling experiment ill
plant ecology, dealing with trees rooted in two different soils and possessing
two types of leaves. With small sample sizes (n < 200), it is desirable to apply
Williams' correction, the application of which is shown in the box. The result
of the analysis shows clearly that we cannot reject the null hypothesis of inde­
pendence between soil type and leaf type. The presence of pubescent leaves is
independent of whether the tree is rooted in serpentine soils or not.

Tests of independence need not be restricted to 2 x 2 tables. In the two-way
cases considered in this section, we are concerned with only two properties,
but each of these properties may be divided into any number of classes. Thus
organisms may occur in four color classes and be sampled at five different times
during the year, yielding a 4 x 5 test of independence. Such a test would ex­
amine whether the color proportions exhibited by the marginal totals are inde-
___ ..J __ 4. ~f" .. L", .. : .......................~. ~ •. L..: .. L.. .1... ", :~....I:~.:~.J~."" ....... """ ...... t... ......... _ ..... " ......... _1 .........-1 c ............. 4- ........ C"
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BOX 13.3
R x C test of independence using the G test.

Frequencies for the M and N blood ~oups in six populauo1l$f:tomLebanon.

Genotypes (a "" 3)
Populations

(b == 6) MM MN NN Totals %MM %MN %NN

Druse 59 100 44 203 29.06 49.26 21.61
Greek Catholic 64 98 41 203 31.S3 48.28 20.20
Greek Orthodox 44 94 49 187 23.$3 $0.27 26.20
Maronites 342 435 165 942 36.31 46.18 17.52
Shiites 140 259 104 503 27.83 51.49 20.68
Sunni Moslems 169 168 91 428 39.49 39.25 21.03

Totals 818 1154 494 2466

Source: Ruffie and Taleb (1965).

Compute the following quantities.

1. Sum of transforms of the frequencies in the body of the contingency table

b a

=LLJii1n iii == 59 In 59 + 100 In 100 + ... + 911n 91

"" 240.575 + 460.517 + ... + 40.488 = 12,752.715

2. Sum of transforms of the row totals

=I (fiii) In (fiii)
= 203 In 203 + ... + 428 In 428 =1078.581 + ... + 2593.305

= 15,308.461

3. Sum of the transforms of the column totals

= f (I It}) In (Iii})
= 8181n 818 + ... + 494 In 494 = 5486.213 + ... + 3064.053 =

4. Transform of the grand total = n In n = 2466 In 2466 = 19,260.330

5. G = 2(quantity 1 - quantity 2 - quantity 3 + quantity 4)

= 2(12,752.715 - 15,308.46 - 16,687.108 + 19,260.330) = 2(17.475) = 34.951

6. The lower bound estimate of q using Williams' correction for an a x b table
is

BOX 13.3
Cootiouect

1 (a + 1)(b + 1)
qmln == + 6n

_ 1 (3 + 1)(6 + 1)
- + 6(2466)

:= 1.001,892

Thus Gadj == G/qmin == 34.951/1.001,892 == 34.885.
Tms value is to be compared with a Xl distribution with (a - 1)(b - 1)

degrees of freedom, where a is the number of columns and b the number of
rows in the table. In our case, df == (3 - 1)(6 - 1) == 10.

Since X~.001[lOJ == 29.588, our G value is significant at P < 0.001, and we
must reject our null hypothesis that genotype frequency is independent of the
population sampled.

•

are often called R x C tests of independence, Rand C standing for the number
of rows and columns in the frequency table. Another case, examined in detail
in Box 13.3, concerns the MN blood groups which occur in human populations
in three genotypes-MM, MN, and NN. Frequencies of these blood groups
can be obtained in samples of human populations and the samples compared
for differences in these frequencies. In Box 13.3 we feature frequencies from six
Lebanese populations and test whether the proportions of the three groups are
independent of the populations sampled, or in other words, whether the fre­
quencies of the three genotypes difler among these six populations.

As shown in Box 13.3. the following is a simple general rule for computation
of the G test of independence:

G = 2UI fIn f for the cell frequencies)

-(I f In I for the row and column totals) + n In n]

The transformations can be computed using the natural logarithm function
found on most calculators. In the formulas in Box 13.3 we employ a double
subscript to refer to entries in a two-way table, as in the structurally similar
case of two-way anova. The quantity j;j in Box 13.3 refers to the observed
frequency in row i and column j of the table. Williams' correction is now more
complicated. We feature a lower bound estimate of its correct value. The adjust­
ment will be minor when sample size is large, as in this example, and need be
carried out only when the sample size is small and the observed G value is of
marginal significance.

The results in Box 13.3 show clearly that the frequency of the three genotypes
is dependent upon the population sampled. We note the lower frequency of the
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In a study of polymorphism of chromosomal inversions in the grasshopper
Maraba scurra, Lewontin and White (1960) gave the following results for the
composition of a population at Royalla "B" in 1958.

Test whether the percentage of nymphs of the aphid Myzus persicae that de­
veloped into winged forms depends on the type of diet provided. Stem mothers
had been placed on the diets one day before the birth of the nymphs (data by
Mittler and Dadd, 1966).

Analyze and interpret the results.

Refer to the distributions of melanoma over body regions shown in Table 2.1.
Is there evidence for differential susceptibility to melanoma of ditTering hody
regions in males and females? ANS. G = 160.2366, 5 d/: G,,,lj = 158.6083.

Chromosome CD

St/St St/BI BI/BI

Chromosome EF Td/Td 22 96 75
St/Td 8 56 64
St/St 0 6 6

n

216
230

75

16
4

Alltihiotic
+"Iaceho

100
92
36

I
19

% winged forms

Alltihiotic
+ lVill/l'Sfllidl'

Negative opinion
Positive opinion

Type of diet

Synthetic diet
Cotyledon "sandwich"
Free cotyledon

Are the frequencies of the three different combinations of chromosome EF in­
dependent of those of the frequencies of the three combinations of chromosome
CD') ANS. G = 7.396.
Test agreement of observed frequencies with those expected on the hasis of a
binomial distribution for the data given in Tables 4.1 and 4.2.
Test agreement of observed frequencies with those expected on the basis of a
Poisson distribution for the data given in Taole 4.5 and Taole 4.6. ANS. For
Table 4.5: G = 49.9557. 3 d/: Gad; = 49.8914. For Tahle 4.6: G = 20.6077, 2 dt:
Gadj = 20.4858.
In clinical tests of the drug Nilllesulide, Pfiindner (1984) reports the following
results. The drug was given, together with an antibiotic, to 20 persons. A control
group of 20 persons with urinary infections were given the antibiotic and a
placeho. The results, edited for purposes of this exercise, arc as follows:

13.5

13.4

13.6

13.7

13.8

13.9

13.1 In an experiment to determine the mode of inheritance of a ween mutant, 146
wild-type and 30 mutant offspring were obtained when F 1 generation houseflies
were crossed. Test whether the data agree with the hypothesis that the ratio of
wild type of mutants is 3: I. ANS. G = 6.4624, Gadj = 6.441, I dr, X~.05[11 = 3.841.

13.2 Locality A has been exhaustively collected for snakes of species S. An ex­
amination of the 167 adult males that have been collected reveals that 35 of
these have pale-colored bands around their necks. From locality B, 90 miles
away. we obtain a sample of 27 adult males of the same species, 6 of which show
the hands. What is the chance that both samples are from the same statistical
population with respect to frequency of bands?

13.3 Of 445 specimens of the butterfly Erebia epipsadea from mountainous areas,
2.5'~~ have light color patches on their wings. Of 65 specimens from the prairie,
70.S''.': have such patches (unpublished data by P. R. Ehrlich). Is this difference
significant') /lint: First work hack wards to obtain original frequencies. ANS.
G = 175.5163. 1 dr, Gadi = 17I.45H

Exercise.\·

M M genotypes in the third population (Greek Orthodox) and the much lower
frequency of the MN heterozygotes in the last population (Sunni Moslems).

The degrees offreedom for tests of independence are always the same and
can be computed using the rules given earlier (Section 13.2). There are k cells
in the table but we must subtract one degree of freedom for each independent
parameter we have estimated from the data. We must, of course, subtract one
degree of freedom for the observed total sample size, n. We have also estimated
a - 1 row probabilities and b - 1 column probabilities, where a and bare
the number of rows and columns in the table, respectively. Thus, there are
k - (a - 1) - (b - 1) - 1 = k - a - b + 1 degrees of freedom for the test.
But since k = a x b, this expression becomes (a x b) - a - b + 1 = (a - 1) x
(b -1), the conventional expression for the degrees of freedom in a two-way
test of independence. Thus, the degrees of freedom in the example of Box 13.3,
a 6 x 3 case, was (6 - 1) x (3 - 1) = 10. In all 2 x 2 cases there is clearly only
(2 - 1) x (2 - 1) = 1 degree of freedom.

Another name for test of independence is test of association. If two prop­
erties are not independent of each other they are associated. Thus, in the ex­
ample testing relative frequency of two leaf types on two different soils, we
can speak of an association between leaf types and soils. In the immunology
experiment there is a negative association between presence of antiserum and
mortality. Association is thus similar to correlation, but it is a more general
term, applying to attributes as well as continuous variables. In the 2 x 2 tests
of independence of this section, one way of looking for suspected lack of
independence was to examine the percentage occurrence of one of the prop­
erties in the two classes based on the other property. Thus we compared the
percentage of smooth leaves on the two types of soils, or we studied the per­
centage mortality with or without antiserum. This way of looking at a test of
independence suggests another interpretation of these tests as tests for the
significance of differences between two percentages.
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(Since Y = ¥)

APPENDIX 1

Mathematical Appendix

AU Demonstration that the sum of the deviations from the mean is equal
to zero.

We have to learn two common rules of statistical illgebra. We can open a
pair of parentheses with a L sign in front of them by treating the 1: as though
it were a common factor. We have

n

I (A j + B,) = (A) + Bd + (04 2 + B2 ) + ... + IAn + B,,)
i ~ 1

= (A 1 + 04 2 + ... + An) + (B I + B2 + ... + Bn)

Therefore,

" "nI (A, + Hi) = I Ai + I Hi
; I i 1 i= 1

Since in a given problem a mean is a constant value, Lny = nY. If you wish, you
may check these rules, using simple numbers. In the subsequent demonstration
and others to follow, whenever all summations are over n items, we have simpli­
fied the notation by dropping subscripts for variables and superscripts above
summation signs.

We wish to prove that L Y = O. By definition,

Iy=I(Y-Y)

= IY - n Y

=Iy_ nIY
n

= IY - IY
Therefore, I y = O.

Al.2 Demonstration that Expression (3.8), the computational formula for the
sum of squares, equals Expression (3.7), the expression originally developed for
this statistic.

We wish to prove that L(Y - y)2 = Ly 2 - «Ly)2/n). We have

I(Y - y)2 = ~)y2 _ 2YY + y 2)

= Iy2 ~ 2Y IY + ny 2

= "y2 _ 2(Iy)2 + n(Iy)2
L. n n2

Hence,

A1.3 Simplified formulas for standard error of the dilTerence between tWLl
means.

The standard error squared from Expression (X.2) is

Also, when 1:7_ l C is developed during an algebraic operation, where C is
a constant, this can he computed as follows:

n

Ic=c+c+···+C
i I

= /1('

(n terms)

When n) = 11 2 = n, this simplifies to

f(n -_I)~~jl1~ l)s~J (2n) = [(n - I)(si + S~)(2)J = I (sf + s~)
L 2n - 2 n2 2(n - IHIl) /I

which is the standard error squared of Expression (8.3).
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(11.5)

(since IXY = nXY)
(since IY/n = Y,
IY = nY; similarly, I X= nX)

F
s

= (± YI + f Y~ ) I[2(n - 1)]

n(n - 1HYl - y2)2
n n

LYI + LY~

LXY = L(X - X)(Y - Y)
=IXY-XIY- YIX+nXY
= LXY- XnY - YnX + nXY

= IXY- nXY

~IY
= IXY- nX­

n

A1.5 Demonstration that Expression (11.5), the computational formula for
the sum of products, equals L(X - X)(Y - Y), the expression originally de­
veloped for this quantity.

All summations are over n items. We have

and

=IXY-XIY

Similarly,(since iT = (Yt + Y2 )/2)

I (n n)
n(n _ I) I YI + I y~

n(n - t)(Y! - y2)2
n n

IYI + LY~

ts (from Box 8.2) = F
- (si + sD
n

- ~ 2
2 (Yl - Y2 )

t - I (" n)
n(n - 1) IYI + I y~

In the two-sample anava,

which is the standard error squared of Expression (8.4).

When n l i= n2 but each is large, so that (n l - I) ::::; n l and (n2 - 1) ::::; n2, the
standard error squared of Expression (8.2) simplifies to

AlA Demonstration that t; obtained from a test of significance of the differ­
ence between two means (as in Box 8.2) is identical to the F s value obtained in
a single-classification anova of two equal-sized groups (in the same box).

AI.6 Derivation of computational formula for Id~. x = I y 2 -

((Ixy)2/Ix1
).

By definition, £I} . x = y - Y. Since Y = Y, we can subtract Yfrom both Y
and Yto obtain

since the squares of the numerators are identical. Then

£1} . x = Y - Y= y - bx (since .f· = bx)
n n

IYI + Iy~

M SWithin =2(~= 1-)-

. MSgroupsf = --~~
S MSwithin

Therefore,
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or But, since Pl2 = (Jl2/(Jl(J2, we have

(11.6)

Therefore

(13.4)

(12.8)

(12.9)

(13.5)

G = 2 II In C:fiJ = 2[Ii; In (2)- I./; In nl
= 2[I./; In G~) -11 In I1J

If we now replace /, oy npi,

G = 21n L

n! '

f' 'f'-' .. "/ ' vf 'pf2 ,. ,Pl."
. t·, l' . (J"

L=
11'

, p' f1 fi f2 .,. p',f,"

/
' '/' -, -':'-./', I r 2
1-, 2' ".

where I is the ohserved frequency, Pi is the ohserved proportion, and {Ii the
expected proportion of class i, while n is sample si/e, the sum of the observed
frequencies over the a classes,

A1.9 Proof that the general expression for the G test can be simplified to Ex­
pressions (13.4) and (13.5).

In general, G is twice the natural logarithm of the ratio of the probability
of the sample with all parameters estimated from the data and the probability
of the sample assuming the null hypothesis is true. Assuming a multinomial
distribution, this ratio is

(J1 = O}Yl-Yl) = (Ji + (J~ - 2PI2(Jj(J2

The analogous expressions apply to sample statistics. Thus

Similarly,

Since f: = I1p' and f~' = I1p'.,. I , . I I

where (J, and (J 2 are standard deviations of YI and Y2 , respectively, and flI2 is
the parametric correlation coefficient hetween Y, and Y2'

If Z = YI + Y2 , then

2 1" ~ .- 2 1" [ . 1 " l2(Jz = L..(Z - Z) = L.. (Y, + }2) - L..(Y1 + Y2 ),
n n n

I [ I 1]2 I= ,., L (YI + Y2 ) - - LY, - 'L Y2 =.- IllYI + Y2 ) YI - YJ2
n n 11 11

1 ,,[ - - '~2 I 2= L.. (Y, - YI ) + (Y2 - Y2), = Ievi + Y2)
n 11

Al.7 Demonstration that the sum of squares of the dependent variable in
regression can be partitioned exactly into explained and unexplained sums of
squares, the cross products canceling out.

By definition (Section 11.5),

y = y + dy· x

L l = L (y + dy. x)2 = L y2 + L drx + 2 Lydy,x

If we can show that LYdy . x = 0, then we have demonstrated the required
identity. We have

Lydy ,x = L bx(y - bx) [since .0 = bx from Expression (11.3) and
dy x = Y - bx from Appendix A1.6]

= bLXY - b2'LX2

= bLxy - b ~:; Lx
2

(since h = ~':n
=bLxy-bLxy

=0

Therefore, L y2 = L y2 + L d; x' or, written out in terms of variates,

L(Y - y)2 = L(Y - y)2 + 'L(Y - Y)2

A 1.8 Proof that the variance of the sum of two variables is



APPENDIX 2

Statistical Tables

I. Twenty-five hundred random digits 321
II. Areas of the normal curve 322

III. Critical values of Student's ( distribution 32J
IV. Critical values of the chi-square distribution 324
V. Critical values of the F distribution 326

VI. Critical values of Filla, 330
VII. Shortest unbiased confidence limits for the variance 33 I

VIII. Critical values for correlation coeffJcients ,~3~

IX. Confidencc limits of perccntages 333
X. The z transformation of correlation coefficient r 338

XI. Critical values of U, the Mann-Whitney statistic 339
XII. Critical values of thc Wilcoxon rank sum 343

XIII. Critical values of the two-sample Kolmogorov-Smirnov statistic 346
XIV. Critical valucs for Kendall's rank correlation coefficient T 34H

APPENDIX 2 / STATISTICAL TABLES

TABLE I
Twenty-five hundred random digits.

1 2 3 4 5 6 7 8 9 10

1 48461 14952 72619 73689 52059 37086 60050 86192 67049 64739 1
2 76534 38149 49692 31366 52093 15422 20498 33901 10319 43397 2
3 70437 25861 38504 14752 23757 59660 67844 78815 23758 86814 3
4 59584 03370 42806 11393 71722 93804 09095 07856 55589 46020 4
5 04285 58554 16085 51555 27501 73883 33427 33343 45507 50063 5

6 77340 10412 69189 85171 29082 44785 83638 02583 96483 76553 6
7 59183 62687 91778 80354 23512 97219 65921 02035 59847 91403 7
8 91800 04281 39979 03927 82564 28777 59049 97532 54540 79472 8
9 12066 24817 81099 48940 69554 55925 48379 12866 51232 21580 9

10 69907 91751 53512 23748 65906 91385 84983 27915 48491 91068 10

11 80467 04873 54053 25955 48518 13815 37707 68687 15570 08890 11
12 78057 67835 28302 45048 56761 97725 58438 91528 24645 18544 12
13 05648 39387 78191 88415 60269 94880 58812 42931 71898 61534 13
14 22304 39246 01350 99451 61862 78688 30339 60222 74052 25740 14
15 61346 50269 67005 40442 33100 16742 61640 21046 31909 72641 15

16 66793 37696 27965 30459 91011 51426 31006 77468 61029 57108 16
17 86411 48809 36698 42453 83061 43769 39948 87031 30767 13953 17
18 62098 12825 81744 28882 27369 88183 65846 92545 09065 22655 18
19 68775 06261 54265 16203 23340 84750 16317 88686 86842 00879 19
20 52679 19595 13687 74872 89181 01939 18447 10787 76246 80072 20

21 84096 87152 20719 25215 04349 54434 72344 93008 83282 31670 21
22 63964 55937 21417 49944 38356 98404 14850 17994 17161 98981 22
23 31191 75131 72386 11689 95727 05414 88727 45583 22568 77700 23
24 30545 68523 29850 67833 05622 89975 79042 27142 99257 32349 24
25 52573 91001 52315 26430 54175 30122 31796 98842 376(Xl 26025 25

26 16580 81842 01076 99414 31574 94719 34656 8(Xl1 8 86988 79234 26
27 81841 88481 61191 25013 30272 23388 22463 65774 10029 58376 27
28 43563 66829 72838 08074 57080 15446 11034 98143 74989 26885 28
29 19945 8,11'1:\ 57581 77252 85604 45412 43556 27518 90572 (X)56,3 29
30 79374 23791:> 16919 99691 8027tJ 32818 62953 78831 54395 30705 30

31 48503 26615 43980 09810 38289 66679 73799 48418 12647 40044 31
32 32049 tJ5541 37937 41105 70106 89706 40829 40789 59547 (X)783 32
33 18547 71562 95493 34112 76895 46766 96395 31718 48302 4589,3 33
34 03180 967,12 tJ148h 43305 3418,3 99605 67803 13491 09243 29557 34
35 94822 24738 tJ77,19 83748 59799 25210 31093 62925 72061 69991 35

36 34330 60599 8582R 19152 68499 27977 35611 96240 62747 89529 36
37 43770 81537 59527 95674 76692 86420 69930 J(X)20 72881 12532 37
38 56908 77192 506B 41215 14,31 J 42834 80651 93750 59957 31211 38
39 32787 07189 80539 75927 75475 73965 11796 72140 48944 74156 39
40 52441 78392 11733 57703 2913,3 71164 55355 3J(XJ6 25526 55790 40

41 22377 54723 18227 28449 04570 18882 (XX)23 67101 06895 08915 41
42 18376 73460 88841 39602 34049 20589 05701 08249 74213 25220 42
43 53201 28610 87957 21497 64729 64983 71551 99016 87903 63875 43
44 34919 78901 59710 27396 02593 05665 J 1964 44134 00273 76358 44
45 33617 92159 21971 16901 57383 34262 41744 60891 57624 06962 45

46 70010 40964 98780 72418 52571 18415 64362 90636 38034 04909 46
47 19282 68447 35665 31530 59832 49181 21914 65742 89815 39231 47
48 91429 73328 13266 54898 68795 40948 80808 63887 89939 47938 48
49 97637 78393 33021 05867 86520 45363 43066 <XJ988 Q4040 09803 49
50 95150 07625 05255 83254 93943 52325 93230 62668 79529 65964 50

321



Note" The quantity given is the area under the standard normal density function hctwccn the mean
and the critical point. The area is generally labeled! - Y. (as shown in the figure). By inverse inter­
polation one can lind the ll11mhcr of standard deviations corresponding to a given area.
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:12()~;, ~l ~:l ·-2 .- I

An'a 0' corrpspolHJillg- to p('n~(,lIta~('

point, rOlllpri'f" two tails of ,,/2 ('aell"1-
.:l

r .2

.1

v 0.9 0.5 0.4 0.2 0.1 0.05 0.02 0.01 0.001 v

1 .158 1.000 1.376 3.078 6.314 12.706 31.821 63.657 636.619 1

2 .142 .816 1.061 1.886 2.920 4.303 6.965 9.925 31.598 2

3 .137 .765 .978 1.638 2.353 3.182 4.541 5.841 12.924 3

4 .134 .741 .941 1.533 2.132 2.776 3.747 4.604 8.610 4

5 .132 .727 .920 1.476 2.015 2.571 3.365 4.032 6.869 5

6 .131 .718 .906 1.440 1.943 2.447 3.143 3.707 5.959 6

7 .130 .711 .896 1.415 1.895 2.3J,5 2.998 3.499 5.408 7

8 .130 .706 .889 1.397 1.860 rD.~ 2.896 3.355 5.041 8

9 .129 .703 .883 1.383 1.833 2.262 2.821 3.250 4.781 9

10 .129 .700 .879 1.372 1.812 2.228 2.764 3.169 4.587 10

11 .129 .697 .876 1.363 1.796 2.201 2.718 3.106 4.437 11

12 .128 .695 .873 1.356 1.782 2.179 2.681 3.055 4.318 12

13 .128 .694 .870 1.350 1.771 2.160 2.650 3.012 4.221 13

14 .128 .692 .868 1.345 1.761 2.145 2.624 2.977 4.140 14

15 .128 .691 .866 1.341 1.753 2.131 2.602 2.947 4.073 15

16 .128 .690 .865 1.337 1.746 2.120 2.583 2.921 4.015 16

17 .128 .689 .863 1.333 1.740 2.110 2.567 2.898 3.965 17

18 .127 .688 .862 1.330 1.734 2.101 2.552 2.878 3.922 18

19 .127 .688 .861 1.328 1.729 2.093 2.539 2.861 3.883 19

20 .127 .687 .860 1.325 1.725 2.086 2.528 2.845 3.850 20

21 .127 .686 .859 1.323 1.721 2.080 2.518 2,831 3.819 21

22 .127 .686 .858 1.321 1.717 2.074 2.508 2,819 3.792 22

23 .127 .685 .858 1.319 1.714 2.()69 2.500 2.807 3.767 23

24 .127 .685 .857 1.318 1.711 2.()64 2.492 2.797 3.745 24

25 .127 .684 .856 1.316 1.708 2.060 2.485 2.7&7 3.725 25

26 .127 .684 .856 1.315 1.706 2.056 2.474 2.779 3.707 26

27 .127 .684 .855 1.314 1.703 2.()52 2.473 2.77\ 3.690 27

28 .127 .683 .855 1.313 1.701 2.048 2.467 2.763 3.674 28

2'1 .127 .683 .854 1.311 1.699 2.045 2.462 2.756 3.654 29

30 .127 .683 .854 1.310 1.697 2.042 2.457 2.750 3.646 :10

40 .126 .681 .851 1.303 1.684 2.021 2.423 2.704 3.551 40

60 .126 .679 .848 1.296 1.671 2.(XXl 2.390 2.660 3.460 60

120 .126 .677 .845 1.289 1.658 1.980 2.358 2.617 .un 120

00 .126 .674 .842 1.282 1.645 1.960 2.326 2.576 3.291 00

TABLE III
Critical values of Student's t distribution

IX

When v > 120. interpolate between 120/.,. 0 and 120/120 = I. Values in this tahle have heen taken from a
more extensive one (table III) in R. A. Fisher and F. Yates, Statistical TaMes .lor Riolof/jeol. Agrieultorol and
"",,,1;,.,,1 lJM.•UJrrh J::ith pA IOli\lf"r £ R"vd FtlinhllTuh 1Q"sn with nprmi"'''':l(ln nf .hl" :lIl1hnr"- :lnd tht~ir nJlhli"hers

Note: If a one·tailed test is desired. the prohahilities at the head of the tahle must he halved. For degrees of
freedom v > .10, interpolate between the values of the argument v. The tahlc is designed for harmonic inter­
polation. Thus, to obtain 10_051431' interpolate oetwecn (0 (),;140j -:- 2.021 and t(lO';[hOl -..".- 2.<X}(). which arc furnisheo
in the tahle. Transform the arguments into 120/1' 120/43 2.791 and interpolate hetween 120/60" 2.l)(X) and
120/40 - 3.000 by ordinary linear interpolation:

t""'14 11~ (0.791 x 2(21) I [(1 (791) x 2.lXXl[

2017
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--:1 - 2 - 1 0

0.03 0.04 0.05 0.06 0.Q7 0.08 0.09 y/o
.0120 .0160 .0199 .0239 .0279 .0319 .0359 0.0
.0517 .0557 .0596 .0636 .0675 .0714 .0753 0.1
.0910 .0948 .0987 .1026 .1064 .1103 .1141 0.2
.1293 .1331 .1368 .1406 .1443 .1480 .1517 0.3
.1664 .1700 .1736 .1772 .1808 .1844 .1879 0.4

.2019 .2054 .2088 .2123 .2157 .2190 .2224 0.5

.2357 .2389 .2422 .2454 .2486 .2517 .2549 0.6

.2673 .2704 .2734 .2764 .2794 .2823 .2852 0.7

.2967 .2995 .3023 .3051 .3078 .3106 .3133 0.8

.3238 .3264 .3289 .3315 .3340 .3365 .3389 0.9

.3485 .3508 .3531 .3554 .3577 .3599 .3621 1.0

.3708 .3729 .3749 .3770 .3790 .3810 .3830 1.1

.3907 .3925 .3944 .3962 .3980 .3997 .4015 1.2

.4082 ,4099 .4115 ,4131 .4147 .4162 .4177 1.3

.4236 ,4251 ,4265 .4279 ,4292 .4306 .4319 1.4

.4370 .4382 .4394 .4406 .4418 .4429 .4441 1.5

.4484 ,4495 ,4505 .4515 .4525 .4535 .4545 1.6

.4582 .4591 .4599 .4608 .4616 .4625 .4633 1.7

.4664 .4671 .4678 .4686 .4693 .4699 .4706 1.8

.4732 .4738 .4744 ,4750 .4756 .4761 .4767 1.9

.4 788 .4793 .4798 .4803 .4808 .4812 .4817 2.0

.4834 .4838 ,4842 .4846 .4850 ,4854 .4857 2.1

.4871 .4875 .4878 .4881 .4884 ,4887 .4890 2.2

.4901 ,4904 .4906 .4909 .4911 .49lJ .4916 2.3

.4925 .4927 .4929 .4931 .4932 ,4934 .4936 2.4

.4943 .4945 .4946 .4948 .4949 .4951 .4952 2.5

.4957 .4959 .4960 .4961 .4962 ,4963 .4964 2.6

.4968 .4969 .4970 .4971 .4972 .4973 .4974 2.7

.4977 .4977 .4978 .4979 .4979 .4980 .4981 2.8

.4983 .-'1984 .4984 .4985 .4985 .4986 .4986 2.9

.4988 .4988 .4989 .4989 .4989 .4990 .4990 3.0

.4991 .4992 .4992 .4992 .4992 .4993 .4993 3.1

.4994 .4994 .4994 .4994 .4995 .4995 .4995 3.2

.4996 .4996 .4996 .4996 .4996 .4996 .4997 3.3

.4997 .4997 .4997 .4997 .4997 .4997 .4998 3.4

.f)

.4_

.1

.3

.2
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TABLE II
Areas of the normal curve

y/o 0.00 om 0.02
0.0 .0000 .0040 .0080
0.1 .0398 .0438 .0478
0.2 .0793 .0832 .0871
0.3 .1179 .1217 .1255
0.4 .1554 .1591 .1628

0.5 .1915 .1950 .1985
0.6 .2257 .2291 .2324
0.7 .2580 .2611 .2642
0.8 .2881 .2910 .2939
0.9 .3159 .3186 .3212

1.0 .3413 .3438 .3461
1.1 .3643 .3665 .3686
1.2 .3849 .3869 .3888
1.3 .4032 .4049 .4066
1.4 .4192 .4207 .4222

1.5 .4.H2 .4.,45 .4357
1.6 .4452 ..l463 .4474
1.7 .4554 .4564 .4573
1.8 .4641 ..lM9 .4656
1.9 .4713 .4719 .4726

VI 4772 .·1778 .4783
2.1 .482\ .4826 .4830
2.2 .,1861 .4864 .4868
2.3 .48'!.\ .4896 .4898
2.-1 .4918 .4920 .4922

2.5 4938 .4940 .4941
2.6 .4'153 .4955 .4'156
2.7 .4965 .4966 .4967
2.8 .4974 .4975 .4976
2.9 .4981 .4982 .4982

3.0 .4987 .4987 .4987
3.1 .49'10 .4991 .4991
3.2 .4'193 .4993 .4994
3.3 .4995 .4995 .4995
.'-4 .49'17 .4997 .4997

3.5 .499767
.1.6 .499841
:1.7 .-'199892
3.8 .499928
3.9 .499952

4.0 .499968
4.1 .499979
4.2 .499987
4.3 .499991
4.-'1 .-'199995

4.5 .499997
4.6 .499998
4.7 .499999
4.8 .499999
4.9 .5(XXXX)
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TABLE IV
Critical values of the chi-square distribution

TABLE IV
continued

IX

.995 .975 .9 .5 .1 .05 .025 .01 .005 .001 .995 .975 .9 .5 .1 .05 .025 .01 .005 .001

28.735 33.162 38.560 50.335
29.481 33.968 39.433 51.335
30.230 34.776 40.308 52.335
30.981 35.586 41.183 53.335
.11.735 36.398 42.060 54.335

32.490 37.212 42.937 55.335
33.248 38.027 43.816 56.335
34.cXJ8 38.844 44.696 57.335
34.770 39.662 45.577 58.335
35.534 40.482 46.45'1 59.335

36.300 41.303 47.342 60.335
37.068 42.12b 48.226 61.335
37.838 42.950 4'1.111 62.335
38.6J(l 43.776 4'1.9'16 6.1..135
39.38.1 44.603 ,0.88.' 64.335

40.158 45.431 51.770 65.335
40.935 46.261 52.65'1 66.335
41.713 47.092 53.548 67.334
42.4'14 47.924 54.4.18 68.334
4.1.27, 48.758 55.32'1 6'1..134

44.058 49.5'12 56.221 7(>..134
44.843 50,428 57.113 71.334
~'.62q S\ .2<>' 58.(~lf, 72..1.'~

·1".117 52.103 '8.'IIlO B.3.',1
47.21l" 52.'142 59.79S 14.'.1-1

86
87
88
89
'10

91
92
9.1
94
9,

51
52
53
54
55

56
57
58
59
60

61
62
63
64
65

66
67
68
6'1
70

71
72
7.\
74
75

76
77
78
7'1
80

81
82
8.\
84
85

87.968
89.272
90.57.1
91.872
93.168

'14.460
95.751
97.039
98.324
9'1.607

100.888
102.16h
103.442
104,716
105.'1'18

107.258
108.526
10'1.7'11
111.055
111.317

11.1.577
J 14835
116.0'12
117.346
1185'1'1

11'1.850
121.11~'

122..148
12.1.5'14
124.839

126.082
127..12-1
12~V)h~

12980·1
1\1.041

1.12.277
1.'.1.512
1.14.745
1.15.'178
137208

1.18.4.18
I.Nh6h
J40.89.1
142119
14\..14~

144.567
145.78"
147.010
148.1'0
\·l'!·1·1'1

129.4'1
1.10.68
1J1.~7

1.B.l)6
1.\4.2~

1:\5.4.1
1.\1>.62
137.80
138.'1'1
140.J7

111.50
112.70
1IJ.'I1
115.12
11h..12

117.52
11 R.B
11'1.93
12I.l.'
122..1~

123.52
124.72
125.'11
127.11
128..10

80.747
82.001
83.253
84.502
85.749

86.994
88.237
8'1.477
90.715
91.952

93.186
'14.41'1
'15.64'1
96.878
98. lO5

99.3.11
lOO.55
lO1.78
10.1.00
104.21

lO5.43
106.65
\07.&6
10'l.1J7
110.29

125.29
12(1.4(}

127.1>.\
128.80
129.97

1.11.14
1.12.3\
1.1.1.48
1.14.04
U5.81

w7.58
108.77
10'1.'16
111.14
112.:\\

1IJ.5\
114.6'1
115.88
117.01>
118.24

11'1.41
121l.5'1
121.77
122.'14
124.12

125.I~J

126.14
127.28
128.42
129.56

1\ 3.54
\ 14.h9
1\5.84
11().9(}

118.14

11'1.28
120..13
121.57
122.72
In.8(,

72.616 77.386
73.810 78.616
75.002 79.843
76.192 81.069
77 .380 82.292

78.567 83.513
79.752 84.733
80.936 85.950
82.117 87.166
83.298 88.379

84.476 89.591
85.654 90.802
86.830 92.010
88.004 93.217
8'1.177 '14.422

'10.349 '15.626
91.51'1 96.828
92.b89 '18.028
9.1.856 '1'1.228
'15.02.1 lW.43

96.\89 W1.62
'17 ..15.1 102.82
')1;.5\1> 11l4\)\
()(Ul7~ 105.20

11 ~ J. 84 W6 ..19

11l2.(XI
ItH.lh
W4..12
W5.47
106.63

107.78
108.'1·\
I W.Il'l
I I 1.24
112.3'1

10TO!

10·114
105.~7

lO(,.3 11

l07.:'i)

l08.h5
W'I.77
Jlll.'I1l
112.02
I1.U)

IHJ7
II '.N
Ilh'l
117.6;
118.7<

11 '1.87
120.'19
122.1\
123.23
124.3·\

68.669
69.832
70.993
72.153
73.311

74.468
75.624
76.778
77.931
79.082

80.232
81..181
82.529
83.1> 75
84.821

85.965
87.108
88.250
8'1..191
'10.531

'11.1>70
'12.808
(1.\.<'),\5

l/5.! )Rl
9t>.217

'17..151
~8.484

49.h17
Itn75
101.88

10.\.18
]1l4.n
11l5..17
101>.47
107.5h

J1l8.6I>
W'I.76
110.85
111.94
113.04

114.13
115.22
116.32
117.41
118.511

64.295
65.422
66.548
67.673
68.796

69.918
71.040
72.160
73.27'1
74.397

75.514
76.630
77.745
78.860
7'1.'173

81.085
82.1 '17
8.1.308
84.418
85.527

86.635
87.743
81'85<1
S~.45(1

'Il.llhl

'12.16"
'13.270
<),1.:\73

95.47h
'16.578

'17.680
98.780
'1'1.880

11~).98

W21l8

'15..1:\4
% ..1.14
97..'.1-\
98.334
9'1..'.1-1

'10.U4
91..\.].\
Q2 ..tH

'II 1\4
'/·1..13·1

75.334
76.3.H
77..1:14
78..134
79..134

80.334
81.334
82.3.,4
83..\34
84 ..\34

85..\34
86.1.14
87.334
88..\.\4
89..\34

74.1%
75.\01
76.0U6
7h.91.?
77.81 X

18.725
79.633
81l.5·n
81.4,19
82.\)8

1>9.1>7'1
71l.581
71.484
72.387
7.1.29\

60.691l
1>1.581>
h2.483
63.380
M.278

1>5.171>
66'()76
('6.97~)

67.876
68.777

70.18.\
71.(142
72.~()1

7.U61
7·1.221

5.U82
54.62.1
55.466
,6.30'1
57.15.1

57.998
58.84'
S9.&92
/l1l.5·11l
61..l89

1>2.2.\'1
/1.1089
b3. t}.11
(d,7(~3

h5.,,47

66.SOI
67.356
/18.211
()tJ.()h1'l

h9.925

M.063
64.878
65.69.1
61>.510
67.328

5,'113
56.777
.~75S:?

~R.:H';lI

~l).ll~6

o(H)()~

61l.81~

61.h2~

1>2417
h3.25()

51.96'1
5~.71>7

S\.567
54.31>8
5'.I71l

47.'1'17
48.188
49.58~

50..176
51.172

81
8~

8.'
84
8<

76
77
18
79
80

51
52
53
54
55

56
57
58
59
60

61
62
63
64
65

66
67
68
6'1
70

71
72
B
74
7S

36
37
38
39
40

26
27
28
2'1
.10

.\1
32
.13
34
.15

1
2
3
4
5

6
7
8
'I

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

41
·12
4.\
44
45

46
47
48
4'1
50

74.745
76.084
77.41'1
78.750
81>.077

81.4(~)

82720
84.037
85..151
86.601

10.828
13.816
16.266
18.467
20.515

22.458
24.322
26.124
27.877
29.588

31.264
32.910
34.528
36.J23
37.697

39.252
40.790
42.312
43.820
45.3J5

46.797
48.268
49.728
51.17'1
52.620

54.052
55.4 76
51>.8'12
58..lO1
5'1.703

I> l.O'J8
62.487
6.1.870
65.247
66.619

67.'185
1>'1..!·16
70.703
72.055
7.\.402

61.582
62.884
601.182
65.476
61>.761>

68.05.!
6~ ..1.11>
70.61h
71.8'13
13.lh6

74.-1.17
75.70.j
71>.'16'1
78.2.11
7'1.4'10

7.879
'1OS97-
12.838
14.860
16.750

18.548
20.278
21.955
23.589
25.188

26.757
28.3W
29.81'1
31.319
32.801

34.267
35.718
37.156
38.582
39.997

41.401
42.796
44.\81
45.558
46.'In

48.2'10
49.045
50.'193
52.336
5.\.672

'5.W3
S(l.J2<J
5704'1
58.'164
60.275

6.635
9.210

11.345
13.277
15.086

16.812
18.475
20.090
21.666
23.20'1

24.725
26.217
27.688
2'1.141
30.578

32.000
33.409
34.805
31>.1'11
37.566

38.'132
40.289
41.638
42.~gO

44.314

45.642
46.%3
48.278
4'1.588
50.8'12

)2.191
5.1.480
54.771>
~(d)(Jl

57.342

58.019
5'1.892
61.102
62..:12f-l
63.6'11

M.950
6b.20b
67.459
68.7 J()

6'1.'157

7UOI
72.443
73.683
74.'11 'I
71>154

41.'123
43.1'14
44.461
45722
46.~7'1

(J()..)() 1
hU77
t,2.Ql)O

(;.1.2()}

65.tl0

00.617
6 7.S2 I
6'1.02.\
70.222
7l.420

48.232
4'1.t80
50.725
51.'11>6
5.1.203

~4437

~:'.h68

~h.~l)(l

5R.120
)9.J·12

5.024
7.378
9.348

11.l43
12.832

14.449
16.013
17.535
19.023
20.483

21.920
2.1.337
24711>

7t>.TJlj

27.488

28.845
30.1 '11
31.526
32.852
34.170

35.47'1
36.781
.18.1171>
.<~.364

,-H).fI-~t)

38.885
40.11.1
4l..137
42.557
4.1.773

44.'185
46.1'14
·17.4I~J

c1f';,(I()]

49.~()2

3.841
5.991
7.815
9.488

11.070

12.592
14.067
15.507
16.919
18.307

19.675
21.026
22.362
23.685
24.996

26.296
27.587
28.869
30.144
31.410

50.9'18
~2.1q2

',\.\8·1
)4572
)).758

.12.670

.13.924
35.172
16.415
37.652

56.'142
58. 12·1
5'1.30·1
hO.481
61.65h

1>2.8.\0
64J~Jl

65.171
66.33'1
(,7.505

2Y.bl ~

3U.813
\2.0()7

Hl'16
\4.382

2.706
4.605
6.251
7.779
9.236

10.645
12.017
13.362
14.684
15.987

17.275
18.549
19.812
21.064
22.307

23.542
24.769
25.989
27.204
28.412

47.:!l2
48 .. \63
4').513
S(J.h6lJ

51.805

3:-'.5td
31>.741
17.916
39.088
40.256

41.422
42.585
41.745
.149113
·ltd).""

5~.9'1l)

54.090
55.230
5()..\69
57.505

~8.MI

5'1.774
(;0.907

h2.(JJ8
Id.11>7

llU37
21.337
22.3.17

2.' ..':~7
2·~.3.'7

2~.3.\h

2().33h

27.331>
28.331>
2'1 ..131>

~~3.\(l

.\(0..1.1,

.\7.1.\,

38..'."
.1'1.:\\5

.\<1.336
31.33h
32.J.Hl
l.t.'dt}
~.L33()

0.455
1.386
2.366
3.357
4.351

5.348
6.341>
7.344
8.343
9.342

10.341
11.340
12.340
13.339
14.339

15.338
16.338
17.338
18.338
1'1.337

40.33~

'II .3.1)
42 ..'3:'
·1.U\~

44.\.1)

·1).U5
4(dYi

47 U5
48 ..\.\5
.1'1 ..1\5

21.434
22.271
2.UIO
2.t952
24.797

0.016
0.211
0.584
1.064
1.610

2.204
2.833
3.490
4.168
4.865

5.578
6.304
7JJ42
7.790
8.547

9.312
10.085
10.865
11.651
12.443

1~.24(1

14.' '42
1·1.848
}~.bSq

11>·17.<

17.2'12
18.114
18.9.19
1'1.768
20.59'1

25.6-1.'

2h.492
27.:Q,\
28.1t~()

2'1.051

2'1.907
30.765
31.(,2~

J2A~7

3U~O

.\4.215
35.081
.\5.94'1
:16.818
37.689

0.000
OJJ51
0.216
0.484
0.831

2\.331,
22.10h

.~.~.~7~

J3.(1:'d

2·1.4.U

1.237
1.690
2.180
2.700
3.247

3.816
4.404
5JX)9
5.629
6.262

6.908
7.564
8.231
8.907
9.5'11

2'\215
2~.Y()l)

21>.785
27575
28.. \66

17.5.'"
18.291
19047
19.5()(1
205h()

10.28.1
10.982
11.688
\2Am
13.120

1.1.84·]
14.571
15.308
16J)47

16.7'11

2'1161J
2'1.'156
30.755
31.555
32.357

0.000
0.010
0.072
0.207
0.412

0.676
0.989
1.344
1.735
2.156

2.603
3.074
3.565
4.075
4.601

5.142
5.697
6.265
6.844
7.434

8.034
8.643
9.2/)(1
9.&86

10.520

11.160
11.808
12.461
1.1.121
13787

14.458
15\.\4
15.8\5
16.501
17 1'12

17887
1~.~r;h

lQ.2f\4
19.9/)()

20.707

21.421
22.138
22.859
n.58·\
24.:1I I

25.042
25.775
26.511
27,2,19
27.'1'11

21
22
2.1
24
25

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

2h
27
28
2'1
:lO
31
p

1.1
1.1
h

41
42
43
H
.]~

Not" FI)J' value ... n[~' ::>- !O(). l..:Omj1ulc appro.\lm;llL' critical values of X2 by formuhl as follows 1;1"1 1(12'1[' I ~

,,/21' I )-', where 11~[,.,t t:aIl he looked up ill Tahlc III. Thus lli.o~rl ~nJ i~ computed as ~lro 10[ •. ) I "i:!40 1)1

lll.M.' 1)2191' - j(17.I0462)' ~c 146.2X4 For ,·0, employ I j "loci in the above formula. When' O.S,
1,_ n. Values of chi-SQuare from I 10 'II d{~l'lel"s of fn'cdom h;1\1f' hppn hlpn from 'I rnnrf' ,·'Vf.-fH:i'I'· hhl.· h" II
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TABLE V
Critical values of the F distribution

TABLE V

continued

V 1 (degrees of freedom of numerator mean squares) V 1 (degrees of freedom of numerator mean squares)

2 3 4 5 6 7 8 9 10 11 12 rx rx 15 20 24 30 40 50 60 120 rx

4.26 ."l.86
5.71 5.08
8.02 6.99

4.10 .1.71
5.46 4.83
7.56 6.55

.1.6.1 .1.48 3.37 .1.29
4.72 4.48 4.32 4.20
6.42 6.06 5.80 5.61

3.48 3.33 3.22 .1.14
4.4 7 4.24 4.07 3.95
5.99 5.64 5.39 5.20

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

254
1020
6370

19.5
39.5
99.5

8.53
13.9
26.1

5.63
8.26
13.5

4.36
6.02
9.02

3.67
4.85
6.88

3.23
4.14
5.65

2.93
3.67
4.86

253
1010
6340

19.5
39.5
99.5

8.55
13.9
26.2

5.66
8.31
13.6

4.40
6.07
9.11

3.70
4.90
6.97

.1.27
4.20
5.74

2.97
3.73
4.95

2.79 2.75 271
.1.45 3.39 3.3.1
4.48 4.40 4.31

2.62 2.58 2.54
3.20 .1.14 3.08
4.08 4.00 .1.91

252
1010
6310

19.5
39.5
99.5

8.57
14.0
263

5.69
8.36
13.7

4.43
6.12
9.20

3.74
4.96
7.<16

3.30
4.25
5.82

3.01
3.n
5.0.1

252
1010
6300

19.5
39.5
99.5

8.58
14.0
26.3

5.70
8.38
13.7

4.44
6.14
9.24

3.75
4.98
7.09

.1.32
4.27
5.86

3.02
3.80
5.07

2.81
3.47
4.52

2.64
.1.22
4.12

251
1010
6290

19.5
39.5
99.5

8.59
14.0
26.4

5.72
8.41
13.7

4.46
6.18
9.29

3.77
5.oJ
7.14

3.34
4.31
5.91

3.04
3.84
5.12

2.86 2.83
3.56 3.51
4.65 4.57

2.70 2.66
.1..11 3.26
4.25 4.17

250
1000
6260

19.5
39.5
99.5

8.62
14.1
26.5

5.75
8.46
13.8

4.50
6.2.1
9.38

.1.81
5.07
7.23

3.38
4.36
5.99

.1.08
3.89
5.20

249
997

6230

19.5
39.5
99.5

8.64
14.1
26.6

5.77
8.51
13.9

4.53
6.28
9.47

3.84
5.12
7.31

3.41
4.42
6,<)7

3.12
3.95
5.28

2.90
3.61
4.7:\

2.74
3.]7
4.."lJ

248
993
6210

19.4
39.4
99.4

8.66
14.2
26.7

5.80
8.56
14.0

4.56
6.3.1
9.55

.1.87
5.17
7.40

3.44
4.47
6.16

3.15
4.1Xl
5.36

2.94
3.67
4.81

2.77
3.42
4.41

246
985

6160

19.4
39.4
99.4

8.70
14.3
26.9

5.86
8.66
14.2

4.62
6.43
9.72

3.94
5.27
7.56

3.51
4.57
6.31

3.22
4.10
5.52

3.01
3.77
4.96

2.85
3.52
456

1 .05
.025
.01

2.05
.025
.01

3.05
.025
.01

4,05
.025
.01

5.05
.025
.01

6.05
.025
.01

7 .05
.025
.01

X .05
.025
.01

9.05
.025
.01

10 .05
.025
.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

.05

.025

.01

244
977

6110

19.4
39.4
99.4

8.74
14.3
27.1

5.91
8.75
14.4

4.68
6.52
9.89

4.00
5.37
7.72

3.57
4.67
6.47

.1.28
4.20
5.67

3.!O 3.07
3.91 .187
5.18 5.11

2.94 2.91
.1.67 3.62
4.77 4.71

243
973

6080

19.4
39.4
99.4

8.76
14.3
27.1

5.93
8.79
14.4

4.71
6.57
9.99

4.0.1
5.41
7.79

3.60
4.71
6.54

.1.31
4.25
5.73

241
969

6060

19.4
39.4
99.4

8.79
14.4
27.2

5.96
8.84
14.5

4.74
6.62
10.1

4.06
5.46
7.87

.1.64
4.76
6.62

3..15
4.30
5.81

.1.14

.1.96
5.26

2.98
.1.72
4.85

241
963

6020

19.4
39.4
99.4

8.81
14.5
27.3

6.00
8.90
14.7

4.77
6.68
10.2

4.10
5.52
7.98

3.68
4.82
6.72

3..19
4.36
5.91

3.23 .U8
4.10 4.0.1
5.47 5..15

.1.07 .1.02
3.85 3.78
5.()6 4.94

239
957

5980

19.4
39.4
99.4

8.85
14.5
27.5

6'()4
8.98
14.8

4.82
6.76
10.3

4.15
5.60
8.10

3.73
4.89
6.84

3.44
4.43
6.0.1

237
948
5930

19.4
39.4
99.4

8.89
14.6
27.7

6.09
9.07
15.0

4.88
6.85
10.5

4.21
5.70
8.26

3.77
4.99
6.99

.1.50
4.5.1
6.18

234
937

5860

19.3
39.3
99.3

8.94
14.7
27.9

6.16
9.20
15.2

4.95
6.98
10.7

4.28
5.82
8.47

3.87
5.12
7.19

3.58
4.65
6.37

230
922

5760

19.3
39.3
99.3

9.01
14.9
28.2

6.26
9.36
15.5

5.05
7.15
I\.0

4.39
5.99
8.75

3.97
5.29
7.46

.1.69
4.82
6.63

225
900

5620

19.2
39.2
99.2

9.12
15.1
28.7

6.39
9.60
16.0

5.19
7.39
I\.4

4.53
6.23
9.15

4.12
5.52
7.85

3.84
5.05
7.01

4.07
5.42
7.59

216
864

5400

19.2
39.2
99.2

9.28
15.4
29.5

6.59
9.98
16.7

5.41
7.76
12.1

4.76
6.60
9.78

4.35
5.89
8.45

199
800

5000

19.0
39.0
99.0

9.55
16.0
30.8

6.94
10.6
18.0

5.79
8.43
13.3

5.14
7.26
10.9

4.74
6.54
9.55

4.46
6.06
8.65

161
648
4050

18.5
38.5
98.5

10.1
17.4
34.1

7.71
12.2
21.2

6.61
10.0
16.3

5.99
8.81
13.7

5.59
8.07
12.2

5..12
7.57
11.3

5.12
7.21
10.6

4.96
6.94
10.0

.05

.025

.01

2 .05
.025
.01

3.05
.025
.01

4.05
.025
.01

5.05
.025
.01

6 -OS
.025
.01

7.05
.025
.01

8.05
.025
.01

9.05
.025
.oJ

10 .05
.025
.01

.x

.Ii

I

.)

.\n'a
(,()IT('~POlldillg; to
P(,I'('('Ilt.ag(\ l)()illt~

() l.() :?()

F

a
;l() -t.(l

~()(l''' Int~rpolation for numher of degrees of freedom not furnished in the arguments is hy mC;JIlS of harmonil:
IlltcrpolallOn (sec footnote. for Table III). If both \'1 and v2 require interpolation. one needs (0 interpolate for
c:lch of these arguments In turn. Thus 10 ohtalll Fo (I';[~'UWl' one first interpolates hetween 1"0 O';I'i().hOj and
f 0 O'i[,I>(),hO! and hetween Fo.ll.'iI'iO, I 10) and F(J (1'i[h(J.l 20]- to estimate Fo .(1.'i[.'i5,601 and FO_(J.~I'i'i.llOI' respectively. One
then IIlterpolales hetween these two values to ohtalll the desired quantity. Entries for x ~ 0.05. 0.025. O.Ol. and
0.005 and for 1'1 and 1', I to 10. 12, 15,20.24.30,40,60,120, and eX were copied from a tahk hy M. Mefllllgton
and C M. Thompson (flwmelrIku .3.1:71 XX. 1943) with permission of the publisher. II
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TABLE V

continued

'" (degrees of freedom of numerator mean squares)

rx 2 3 4 5 6 7 8 9 10 11 12 Ct.

11 .05 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79 .05
.025 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.48 3.43 .025
.oJ 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46 4.40 .01

12 .05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69 .05
.025 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.32 3.28 .025
.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22 4.16 .01

'"l:! 15.05 4.54 3.68 3.29 3'()6 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48 .05.'"" .025 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 3.oJ 2.96 .025
~
c:: .01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 .01

'"" 20.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28 .05E
5 '()25 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.72 2.68 .025
;;; J)1 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29 3.23 .01
c::
E 24 .05 4.26 3.40 3.()1 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.22 2.18 .05
0 .025 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.59 2.54 .025c::
" .01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09 3.03-.j .01
'0 30.05 4.17 3.32 2.92 2.69 2.53E 2.42 2.33 2.27 2.21 2.16 2.13 2.09 .05
0 .025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.46 2.41 .025

-.j

" .oJ 7.56 5.39 4.51 4.02 .no 3.47 3.30 3.17 3.07 2.98 2.90 2.84 .01
"..::
'0 40.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.04 .05

'" .025 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.33 2.29 .025
"~ .01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73 2.66 .01
Oll

" 60 .05 4.00 3.15 2.76 2.53:s 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 .05
;' .025 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.22 2.17 .025

.oJ 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 .01

120 .05 3.92 3.07 2.68 2.45 2.29 217 209 2.02 1.96 1.91 1.87 1.83 .05
.025 5.15 3.80 .,.2.1 2.89 2.67 2.52 2.39 2.30 2.12 2.16 2.10 2.05 .025
.01 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.40 2.34 .01

0> .(15 3.84 3.(XI 2.bO 2.37 2.21 2.10 2.01 1.94 1.88 1.8.1 1.79 1.75 .05
.025 5.02 3.69 3.11 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.99 1.94 .025
.01 6.63 4.61 3.78 .n2 3.02 2.80 2.64 2.51 2.41 2..12 2.25 2.18 .oJ

_._---
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TABLE V
continued

", (degrees of freedom of numerator mean squares)

Ct. 15 20 24 30 40 50 60 120 00 Ct.

II .05 2.72 2.65 2.61 2.57 2.53 2.51 2.49 2.45 2.40 .05
.025 3.33 3.23 3.17 3.12 3.06 3.02 3JlO 2.94 2.88 .025
.01 4.25 4.10 4.02 3.94 3.86 3.81 3.78 3.69 3.60 .01

12 .05 2.62 2.54 2.51 2.47 2.43 2.40 2.38 2.34 2.30 .05
.025 3.18 3.07 3.02 2.96 2.91 2.87 2.85 2.79 2.72 .025
.01 4.01 3.86 3.78 3.70 3.62 3.57 3.54 3.45 3.36 .01

15.05 2.40 2.33 2.39 2.25 2.20 2.18 2.16 2.11 2.07 .05
.025 2.86 2.76 2.70 2.64 2.59 2.55 2.52 2.46 2.40 .025
.01 3.52 3.37 3.29 3.21 3.13 3.08 3.05 2.96 2.87 .oJ

20.05 2.20 2.12 2.08 2.04 1.99 1.97 1.95 1.90 1.84 .05
.025 2.57 2.46 2.41 2.35 2.29 2.25 2.22 2.16 2.09 .025
.01 3.09 2.94 2.86 2.78 2.69 2.64 2.61 2.52 2.42 .01

24 .05 2.11 2.03 1.98 1.94 1.89 1.86 1.8.4 1.79 1.73 .05
.025 2.44 2.33 2.27 2.21 2.15 2.1 J 2.08 2.01 1.94 '()25
.01 2.89 2.74 2.66 2.58 2.49 2.44 2.40 2.31 2.21 .01

30.05 2.01 1.93 1.89 1.84 1.79 1.76 1.74 1.68 1.62 .05
.025 2.31 2.20 2.14 2.07 2.01 1.97 1.94 1.87 1.79 .025
.01 2.70 2.55 2.47 2.39 2.30 2.25 2.21 2.11 2.01 .01

40.05 1.92 1.84 1.79 1.74 1.69 1.66 1.64 1.58 1.51 .c)5
.025 2.18 2.07 2.01 1.94 1.88 1.83 1.80 1.72 1.64 .025
.01 2.52 2.37 2.29 2.20 2.11 2'<)6 2.02 1.92 1.80 .01

60 .05 1.84 1.75 1.70 1.65 1.59 1.56 1.53 1.47 1.39 .05
.025 2.06 1.94 1.88 1.82 1.74 1.70 1.67 1.58 1.48 .025
.01 2.35 2.20 2.12 2.03 1.94 1.88 1.84 1.73 1.60 Jl1

120 .05 1.75 1.66 1.61 1.55 1.50 1.46 1.43 1.35 1.25 .05
.025 1.95 1.82 1.76 1.69 1.61 1.56 1.53 1.43 1.31 .025
.oJ 2.19 2.03 1.95 1.86 1.76 1.70 1.66 1.53 1.38 .0]

00 .05 1.67 1.57 1.52 1.46 1.39 1.35 1.32 1.22 UX) .05
.025 1.83 1.71 1.64 1.57 1.48 1.43 1.39 1.27 UK) '()25
.01 2.04 1.88 1.79 1.70 1.59 1.52 1.47 1.32 UK) .01

329
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TABLE VI

Critical values of Fmax

TABLE VII
Shortest unbiased confidence limits for the variance

a (number of samples) Confidence
coefficients

Confidence
coefficients

Confidence
coefficients

l' a 2 3 4 5 6 7 8 9 10 11 12
II 0.95 0.99 II 0.95 0.99 II 0.95 0.99

2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4..'1 4.49 4.59
.n2 .u; 4.3 4.6 49 5.1 5.3 5.5 5.6 5.8 5.9

2.07 2.40 2.61 2.71\ 2.<) 1 3.02 3.12 3.21 3.29 3.3{, 3.39
2.63 3.0 3.3 3.4 3.b 3.7 .'.8 3.9 4.0 4.1 4.2

16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9
33. 38. 42. 46. 50. 54. 57. 60.

6 .05 5.82 8.38 10.4 12.1
.01 11.1 15.5 19.1 22.

266. 333. 403. 475. 550. 626.
1362. 1705. 2063. 2432. 2813. 3204.

62.0 72.9 83.5 93.9 104. 114.
184. 21(6) 24(9) 28(l) 3](0) 33(7)

29.5 33.6 37.5 41.1 44.6 48.0
69. 79. 89. 97. 106. 113.

.5261
2.262

.5319
2.223

.5374
2.187

.5427
2.153

.5478
2.122

.5900
1.896

.6213
1.760

.6458
1.668

.6657
1.607

.6824
1.549

.6966
1.508

.7090
1.475

28

27

26

30

50

40

80

70

29

.6057
1.825

.6110
1.802

.6160
1.782

.6209
1.762

.6255
1.744

.6636
1.608

.6913
1.523

.7128
1.464

.7300
1.421

.7443
1.387

90 .7504
1.360

60

100 .7669
1.338

.4289
3.244

.4399
3.091

.4502
2.961

.4598
2.848

.4689
2.750

.4774
2.664

.4855
2.588

.4931
2.519

.5004
2.458

.5073
2.402

.5139
2.351

.5201
2.305

20

22

23

.5135
2.354

.5242
2.276

.5341
2.208

.5433
2.149

.5520
2.097

.5601
2.050

.5677
2.008

.5749
1.971

.5817
1.936

.5882
1.905

24 .5943
1.876

25 .6001
1.850

21

16

15

19

17

14

18

.1505
114.489

.1983
29.689

.2367
15.154

.2685
10.076

.2956
7.637

.3192
6.238

.3400
5.341

.3585
4.720

.3752
4.265

.3904
3.919

.4043
3.646

.4171
3.426

2 .2099
23.605

3 .2681
10.127

4 .3125
6.590

5 .3480
5.054

6 .3774
4.211

7 .4025
3.679

8 .4242
3.314

9 .4432
3.048

10 .4602
2.844

11 .4755
2.683

12 .4893
2.553

13 .5019
2.445

5.93
8.0

20.7
37.

15.8
27.

12.7
21.

10.7
16.6

9.34
13.9

7.48
10.6

704.
3605.

124.
36(t)

51.4
120.

5.77
7.8

7.25
10.2

15.1
26.

12.2
19.8

103
16.0

9.01
13.4

14.3
24.

11.7
18.9

6.72 7.fX)

9.5 Q.9

5.40 5.59
7.3 7.5

13.5
23.

11.1
17.9

9.45 9.91
14.7 IS..'

8.28 8.6h
12.4 12.9

17.5 18.6 19.7
32. 34. 36.

8.95
13.9

7.87
11.8

6.42
9.1

5.19
7.1

12.7
22.

6.09
8.7

4.95
6.7

8.41
1.'.1

7.42
11.1

11.8
20.

9.78 10.5
15.8 16.9

9.03
14.5

7.80
12.1

6.92
10.4

5.72
8.2

4.68
6.4

13.7 15.0 16.3
25. 27. 30.

8.12
13.2

7.11
I I. I

6.34
9.6

5.30
7.6

4.37
6.0

9.70 10.8
16.5 18.4

50.7
151.

25.2
59.

6.31
9.9

5.67
8.6

4.79
6.9

4.01
5.5

20.6
49.

4.16
6.1

3.54
4.9

6.00 7.18
9.9 11.7

5.34
8.5

4.85
7.4

27.8 39.2
85. 120.

87.5 142. 202.
44B 729. 1036.

2.86
4.07

3.72
5.85

3.28
4.<)1

4.99 6.94 8.44
8.89 12.1 14.5

4.43
7.50

4.()3

6.54

9.60 15.5
23.2 37.

15.4
47.5

2 .05 39.0
.01 199.

5 .05 7.15 10.8 13.7
.oI 14.9 22. 28.

3 .05
.01

4 .05
.01

12 .05
.oJ

15 .05
.01

20 .05
.oJ

30 .05
.01

7 .05
.01

8 .05
.01

9 .05
.oJ

10 .05
.01

60 .05
.01

"" .05
.01

J.(,7 1.85 1.96 2.04 2.11
1.<)6 2.2 2.3 2.4 2.4

1.<Xl 1.O() 1.00 1.00 1.O()
l}XI I}X) I}XI l}KI l}X)

2.17 2.22 2.26 2.30 2.33 2.36
2.5 2.5 2.6 2.h 2.7 2.7

UK) 1.00 1.<Xl 1.00 UX) UX)
I}X) l}XI I}X) I}X) l}XI l}XI

Note: The factors in this table have been obtained by dividing the quantity /I I by the values found in a table
prepared by 0 V. Lindley, D. A. East, and P. A. Hamilton (Riometrika 47:433 437, 1960).

Not,> CorrcspnndlTlg 10 each value of II (Ilumher of samples) and v (degrees of freedom) arc lwo critical values
of Fmal. represellting the upper 5~~;', and 1

11
;, percentage points. The corresponding prohahiJilics ex 0.05 and 0.01

represent 011(' tall or the rm~H distrihul;on. This lahlr was copied from H. A, David (Bioml'lriJ.;,1l J9:4~2 424, 19)2)
\\/Ilh permission of the puhlisher and author
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TABLE VIII TABLE IX

Critical values for correlation coefficients Confidence limits for percentages

lJ rx r J) rx r J) rx
This table furnishes confidence limits for percentages based on the binomial

r distribution.

1 .05 .997 16 .05 .468 35 .05 .325 The first part of the table furnishes limits for samples up to size n = 30.

.01 1.000 .01 .590 .01 .418 The arguments are Y, number of items in the sample that exhibit a given prop-

2 .05 .950 17 .05 .456 40 .05 .304 erty, and n, sample size. Argument Y is tabled for integral values between 0 and

.01 .990 .01 .575 .01 .393 15, which yield percentages up to 50%. For each sample size n and number of

45 .05 .288
items Y with the given property, three lines of numerical values are shown. The

3 .05 .878 18 .05 .444 first line of values gives 95% confidence limits for the percentage, the second line
.01 .959 .01 .561 .01 .372

lists the observed percentage incidence of the property, and the third line of
4 .05 .811 19 .05 .433

50 .05 .273 values furnishes the 99% confidence limits for the percentage. For example, for
.01 .917 .01 .549

.01 .354
Y = 8 individuals showing the property out of a sample of n = 20, the second

60 .05 .250 line indicates that this represents an incidence of the property of 40.00%, the5 .05 .754 20 .05 .423 .01 .325
.01 .874 .01 .537 first line yields the 95% confidence limits of this percentage as 19.10% to 63.95%,

70 .05 .232 and the third line gives the 99% limits as 14.60% to 70.10%.
6 .05 .707 21 .05 .413 .01 .302 Interpolate in this table (up to n = 49) by dividing L l and Ci., the lower

.01 .834 .01 .526 80 .05 .217 and upper confidence limits at the next lower tabled sample size n -, by desired
7 .05 .666 22 .05 .404 .01 .283 sample size n, and multiply them by the next lower tabled sample size n -. Thus,

.01 .798 .01 .515 90 .05 .205 for example, to obtain the confidence limits of the percentage corresponding to

8 .05 .632 23 .05 .396 .01 .267 8 individuals showing the given property in a sample of 22 individuals (which
.01 .765 .01 .505 100 .05 .195 corresponds to 36.36% of the individuals showing the property), compute the

9 .05 .602 24 .05 .388 .01 .254 lower confidence limit L I = L1n-/n = (19.10)20/22 = 17.36% and the upper

.01 .735 .01 .496 120 .05 .174 confidence limit L z = Lzn - /n = (63.95)20/22 = 58.14 o~ •

10 .05 .576 25 .05 .381
.01 .228 The second half of the table is for larger sample sizes (n = 50, 100, 200,

.01 .708 .01 .487 150 .05 .159 500, and 1000). The arguments along the left margin of the table are percentages

.01 .208 from 0 to 50% in increments of I %, rather than counts. The 95% and 99%
11 .05 .553 26 .05 .374 confidence limits corresponding to a given percentage incidence p and sample

.01 .684 .01 .478 2CX) .05 .138 size n are the functions given in two lines in the body of the table. For instance,
.01 .181

12 .05 .532 27 .05 .367 3(X) .05 .113
the 99% confidence limits of an observed incidence of 12';.; in a sample of

.01 .661 .01 .470 500 arc found to be ~.56-16.19'~, in the second of the two lines. Interpolation
.01 .148 in this table between the furnished sample sizes can be achieved by means of the

13 .05 .514 28 .05 .361 400 .05 .098 following formula for the lower limit:.(n .641 .01 .463 .01 .128
14 .05 .497 29 .05 .355 5(X) .05 .088 L1 n-(n+ - n) + Ltnt(n -- II )

.01 .623 .01 .456
L] = ----- _.~----_.._--_._--

.01 .115 n(n +- n-)

15 .05 .482 30 .05 .349 1,000 .05 .062
.oJ .606 .01 .449 .01 .081 In the above expression, n is the- size of the observed sample, n- and n+ the

next lower and upper tabled sample sizes, respectively, L l and Lt arc corre-

Noll'. Upper value IS .')',':" lower value is I 0:, critical value. This table is reproduced hy permission from Statistical
sponding tabled confidence limits for these sample sizes, and L 1 is the lower

A1etJwd.~, 5th edition, hy (jt'(lr~t..' W_ Snedt..'cor, (fl 145h hy The Iowa State University Press. confidcncc limit to be found by interpolation. The upper confidence limit, Lz,
can be obtaincd by a corrcsponding formula by substituting 2 for the subscript
1. By way of an example wc shall illustrate setting 95~~ confidence limits to an
observed percentage of 25'';", in a sample size of 80. The tabled 95'%', limits for
/I = 50 arc 13.~439.27'~:,. For /I = 100, the corresponding tabled limits are
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16.88-34.66%. When we substitute the values for the lower limits in the above
formula we obtain

TABLE IX
Confidence limits for percentages

L 1 =
(13.84)(50)(100 - 80) + (16.88)(100)(80 - 50)

= 16.12% n
80(100 - 50) y 1 -a 5 10 15 20 25 30 I-a Y

for the lower confidence limit. Similarly, for the upper confidence limit 95 0.00-45.c17 0.00-25.89 0.00-18.10 0.00-13.91 0.00-11.29 0.00- 9.50 95we 0 0.00 0.00 0.00 0.00 0.00 0.00 0
compute 99 0.00-60.19 0.00-36.90 0.cXl-26.44 0.00-20.57 0.00-16.82 0.00-14.23 99

95 0.51-71.60 0.25-44.50 0.17-32.00 0.13-24.85 0.10-20.36 0.08-17.23 95
(39.27)(50)(100 - 80) + (34.66)(100)(80 - 50) 20.00 lO.cXl 6.67 5.00 4.00 3.33

L z = = 35.81 % 99 0.10-81.40 0.05-54.4 0.03-40.27 0.02-31.70 0.02-26.24 0.02-22.33 99
80(100 - 50)

95 5.28-85.34 2.52-55.60 1.66-40.49 1.24-31.70 0.98-26.05 0.82-22.09 95

The tabled values in parentheses are limits for percentages that could not be
2 40.00 20.(Xl 13.33 10.00 8.00 6.67 2

99 2.28-91.72 1.08-64.80 0.71-48.71 0.53-38.70 0.42-32.08 0.35-27.35 99
obtained in any real sampling problem (for example, 25% in 50 items) but are 95 6.67-65.2 4.33-48.07 3.21-37.93 2.55-31.24 2.11-26.53 95
necessary for purposes of interpolation. For percentages greater than 50% look 3 30JXl 20.00 15.00 12.00 1O.O() 3

99 3.70-73.50 2.39-56.07 1.77-45.05 1.40-37.48 1.16-32.03 99
up the complementary percentage as the argument. The complements of the

95 12.20-73.80 7.80-55.14 5.75-43.65 4.55-36.10 3.77-30.74 95
tabled binomial confidence limits are the desired limits. 4 40.00 26.67 20.00 16.00 13.33 4

These tables have been extracted from more extensive ones in D. Mainland, 99 7.68-80.91 4.88-62.78 3.58-50.65 2.83-42.41 2.34-36.39 99

L. Herrera, and M. I. Sutcliffe, Tables for Use with Binomial Samples (Depart- 95 18.70-81.30 11.85-61.62 8.68-49.13 6.84-40.72 5.64-34.74 95
5 50.(Xl 33.33 25.00 20.(X) 16.67 5

ment of Medical Statistics, New York University College of Medicine, 1956) 99 12.80- 87.20 8.03-68.89 5.85-56.05 4.60-47.(Xl 3.79-40.44 99

with permission of the publisher. The interpolation formulas cited are also due 95 16.33-67.74 1190-54.30 9.35-45.14 7.70-38.56 95
6 40.00 30.(X) 24.(X) 20.00 6to these authors. Confidence limits of odd percentages up to 13% for n = 50 99 11.67-74.40 8.45-60.95 6.62-51.38 5.43·44.26 99

were computed by interpolation. For Y = 0, one-sided (I - 1X)100% confidence 95 21.29-73.38 15.38·59.20 12.06-49.38 9.92-42.29 95

limits were computed as Lz = 1 - IX
I !" with L 1 = O. 7 46.67 35.m 28.00 23.33

99 15.8779.54 11.40-65.70 8.90-55.56 7.29-48.01 99

95 19.10-63.95 14.96-53.50 12.29-45.89 95
8 40.(X) 32.<XJ 26.67 8

99 14.60-70.1 0 11.36-59.54 9.3051.58 99

95 B.05-68.48 17.97 57.48 14.73-49.40 95
9 45.<XJ .16.(XI :so.(X) 9

q<J 18.08-74.30 14.01-63..36 11.43·55.<Xl 99

95 n.20·72.RO 21.12-6U2 17.2952.80 95
10 50.<XJ 40.<X) 33.33 10

99 21.75-78.25 16.8067.04 13.69 58.35 99

95 24.41-65.06 19.9356.13 95
11 44JX) 36.67 11

9() 19.75-70.5S 16.06-61.57 99

'IS 27.81-68.69 22.665939 95
12 48.<Xl 40.00 12

99 22.84 73.93 18.50-64.69 99

95 25.4662.56 95
U 4.1.33 13

99 21.0767.72 99

95 28.35·65.06 95
14 46.67 14

99 23.73-70.66 99

95 3LlO 68.70 95
15 50.<XJ 15

9q 26.47 7.1.53 99
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TABLE IX TABLE IX
continued continued

n n
% I - x 50 100 200 500 1000 % I-x 50 100 200 500 1000

0 95 .00- 7.11 .00- 3.62 .00- 1.83 .00- 074 .00- 0.37 26 95 14.63-40.34 17.75-35.72 20.08-32.65 22.21-30.08 23.31-28.83
99 .00-10.05 .00- 5.16 JW)- 2.62 .00- 1.05 .00- 0.53 99 11.98-44.73 15.59-38.76 18.43-34.75 21.10-31.36 22.50-29.73

95 C02- 8.88) .02- 5.45 .12- 3.57 .32- 2.32 .48- 1.83 27 95 (15.45-41.40) 18.62-36.79 20.99-33.70 23.16-31.11 24.27-29.86
99 Coo-12.02) .00- 7.21 .05- 4.55 .22- 2.80 .37- 2.13 99 (12.71-45.79) 16.42-39.84 19.31-35.81 22.04-32.41 23.46-30.76

2 95 .05-10.66 .24- 7.04 .55- 5.04 1.06- 356 1.29- 3.01 28 95 16.23-42.48 19.50-37.85 21.91-34.76 24.11-32.15 25.24-30.89
99 .01-13.98 .10- 8.94 .34- 6.17 .87 4.12 1.13- 3.36 99 13.42-46.88 17.25-40.91 20.20-36.88 22.97-33.46 24.41-31.80

3 95 <.27-12.19) .62- 8.53 1.11- 6.42 1.79- 4.81 2.11- 4.19 29 95 (17.06-43.54) 20.37-38.92 22.82-35.81 25.06-33.19 26.21-31.92
99 (.16-15.60 ) .34-10.57 .78- 7.65 1.52- 5.44 1.88- 4.59 99 (14.18-47.92) 18.07-41.99 21.08-37.94 23.90-34.51 25.37-32.84

4 95 .49-13.72 1.10- 9.93 1.74- 7.73 2.53- 6.05 2.92- 5.36 30 95 17.87-44.61 21.24-39.98 23.74-36.87 26.01-34.23 27.17-32.95
99 .21-17.21 .68-12.08 1.31- 9.05 2.17- 6.75 2.64- 5.82 99 14.91-48.99 18.90-43.06 21.97-39.01 24.83-35.55 26.32-33.87

5 95 (.88-15.14) 1.64·11.29 2.43- 9.00 3.26- 7.29 3.73- 6.54 31 95 (18.71-45.65) 22.14-41.02 24.67-37.90 26.97-35.25 28.15-33.97
99 C45-18.76) 1.10-13.53 1.89-10.40 2.83- 8.07 3.39- 7.05 99 (15.68-50.02) 19.76-44.11 22.88-40.05 25.78-36.59 27.29-34.90

6 95 1.26-16.57 2.24-12.60 3.18-10.2] 4.11- 8.43 4.63- 7.64 32 95 19.55-46.68 23.04-42.06 25.6]-38.94 27.93-36.28 29.12-34.99
99 .69-20.32 1.56-14.93 2.57-] l.66 3.63- 9.24 4.25- 8.18 99 16.46-51.05 20.61-45.15 23.79-41.09 26.73-37.62 28.25-35.92

7 95 (1.74-17.91) 2.86-13.90 3.88-] 1.47 4.96- 9.56 5.52- 8.73 33 95 00.38-47.72) 23.93-43.10 26.54-39.97 28.90-37.31 30.09-36.01
99 (1.04-21.72) 2.08-]6.28 3.] 712.99 4.43-10.42 5.12- 9.31 99 (l7.B-52.08) 21.47-46.19 24.69-42.13 27.68-38.65 29.22-36.95

8 95 2.23-19.25 3.51-]5.]6 4.70-12.61 5.81-10.70 6.42- 9.83 34 95 21.22-48.76 24.83-44.15 27.47-41.01 29.86-38.33 31.07-37.03
99 1.38-23.13 2.(",-]7.6] 3.9.,14.18 5.23 11.60 5.98-10.43 99 18.01-53.11 22.33-47.24 25.60-43.18 28.62-39.69 30.18-37.97

9 95 C2.78-20.54) 4.20-16.40 5.46 13.82 6.6611.83 7.32-10.93 35 95 (22J>6-49.80) 25.73-45.19 28.41-42.04 30.82-39.36 32.0438.05
99 C1.80·24.46) 3.21 18.92 4.61 15.44 6.1l4] 2.77 6.84-] 1.56 99 (18.78-54.14) 23.19-48.28 26.51-44.22 29.57-40.72 31.14-39JW)

!O 95 332-21.82 4.90-17.62 6.22-15.02 7.51 J2.97 8.21 - J2.(13 36 95 22.93- 50.80 26.65-46.20 29.36-43.06 31.7'l-40.38 H02-W.06
99 2.22·25.80 3.82·20.20 5.29·} b.71l 6.84· J 3'15 7.70-J2.69 99 19.60-55.13 24.08-49.30 27.4445.24 30.53-41.74 32.12-40.02

11 95 (3.93-23.06) 5.65-18.S0 7.05 16.16 S.41 14.06 9.1413.10 37 95 (23.80-51.81) 27.5747.22 30.31 -44.08 32.76-41..19 34.(W;"40.07
99 (2.7(;"27.J ]) 4.48-21.42 6.0b·17.87 7.7! I 15.07 8.60 ] 3.78 99 (20.42-56.12) 24.%-50.31 28.37-46.26 31.49-42.76 33.09-4] .03

11 95 4.5424.31 6.40-19.98 7.87-] 7.30 9..11l ]5.J6 ](>.06- 14.16 38 95 24.67-52.81 28.49-48.24 31.25-45.10 33.73-42.41 34.98-41.09
99 3.18-28.42 5.15·22.65 6.83- J9.05 8.561b.J9 9.5J 14.86 99 21.23-57.10 25.85-51.32 29.30· 47.29 32.45-43.78 34.07-42.05

U 95 (5.18-27.03) 7.1 ]21.20 8.70-18.44 11l.20 16.25 10.99-15.23 39 95 05.54-53.82) 29.4]-49.26 32.20-46.12 34.70-43.43 35.97-42.10
99 Cl.7229.67J 5.77-23.92 7.6020.23 9.42 ] 7.31 10.41] 5.95 99 (22.05-58.09) 26.7452.34 30.2348.31 33.4244.80 35.04-43.06

14 95 5.82·26.75 7.8722..37 9.5.~ 19.58 1] .0917.34 ] 1.92- ]6.30 40 95 26.41-54.82 30.33-50.28 33.1547.14 35.68·44.44 36.9543.1 ]
99 4.25-30.92 6.4625.U 8.38-21.40 10.28 J8.4.' 11.3]-17.04 99 22.87-59.08 27.63-53.35 31.16-49.33 34.38.45.82 36.02-44.08

15 95 (6.50-27.94) 8.64 23.53 10.3620.72 11.98 ] 8.44 12.8417.37 41 95 (27.31-55.80) 31.27-51.28 34.12-48.15 36.66 45.45 37.93-44.12
9'1 (4.82-.12.]4) 7.152<>.33 9.15 n.5k 11.14 19.55 12.21 ]8.13 99 03.72-60.(4) 28.54-54.34 32.11-50.33 35.35-46.83 37.00-45'<19

16 95 7.1729.12 9.45-2·1.66 11.2221.82 12.90-19.50 13.79-18.42 42 95 28.21-56.78 32.2152.28 35.08-49.] 6 37.64-46.46 38.92-45.12
99 5.41l-.\3.31> 7.8927.4" '-1.972.\.71 12.lJ.\-2!).63 U.14-19.19 99 24.57·60.99 29.45-55.3.' .H06-51.33 36.32-47.83 37.98-46.10

17 9~ (7.88.,0.281 1lJ.25 25.7'-1 12.0'-1 n.92 \ '(,,2 20.57 J4.B 19.47 43 95 (29.10· 57.76) 33.]553.27 36.0550.J6 38.6247.46 39.91 46.1.3
99 (I>.<XI .~4.54) 8.1>3 lkN., 1lJ.79 24.k·] 12'-1221.72 14.0720.25 99 (25.42-61.95) .30.37-56.32 34.0152.34 37.29-48.84 38.96-47.JO

18 95 8.58 .31.44 11.1l6 26')2 12.% 24.02 1'\.7 4 21.1>·1 15.67-20.52 44 95 .'0.0058.74 34.0'1- 54.27 37.0]-51.17 39.60-48.47 40.9(;"47.14
99 6.60-.~5.73 11.372980 11.61·25.91> 1UJ nSl 14.99- 21.32 99 26.2762.90 31.2857.31 .34.95-53.34 38.27-49.85 39.95-48.11

19 95 (~31 32.5k) 11.862~~ 1.U2 25.12 15.1:>b 22.71 1(.,.62-21.57 45 95 00.9059.71) 35.0.3-55.27 .n.9752.]7 40.58-49.48 41.89-48.14
99 (7.2.1 36.88) 1lJ.}( I 30.% 12.4327.0') 14.7123.91l 15.9222.38 99 (27.]2-6.3.86) 32.1958.30 35.9(;"54.34 39.24-50.86 40.93-49.]2

20 95 J(J.()4-33.72 12.6() 29.1 q 1,1.692(1.22 16.:"~; 2.\.78 17.5622.62 46 95 31.83-60.67 .15.99 56.25 38.95-53.17 41.57-50.48 42.8849.14
99 7.86 38.04 1lJ.84 .32.12 I :1.::'(l 2k.22 15"i'·2·!'/9 16.84 23.4:" 99 28.01f·64.78 33.1359.26 36.87-55.33 40.22-51.85 41.92-50.12

21 95 (10.7934.84113.51 30.28 15.58 27..10 17.52-24.8' 18.52 23.65 47 95 (32.75-61.62) .16.95-57.23 39.93-54.16 42.56-5J.48 43.87-50.14
99 (8S139.181 1l.b3 :1.1.24 1<1.1129.31 16.:" 12605 17.78 24.50 '19 (28.8965.69) 34.07-60.22 37.84· 56.3 J 41.2] 52.85 42.9]51.12

22 95 J 1.5435.95 14 ..15.H ..\7 16.48 28..~7 J8.45 25.88 1'1.47 24.6'1 48 95 .H6862.57 37.9J-58.21 40.9]-55.15 4.1.55-52.47 44.8751.14
99 9.20-4IU2 12.41.\4;:'> 14.97- 30.40 17.43-27.12 18,72 25.:'15 99 29.78-66.61 35.01-61.19 38.80-57.30 42.19-5J.85 43.9(;"52.12

2.l 9:'1 (12.3037.061 ]:'1.19.12..17 17.37-29.45 19.39 26.93 20.43 2:'1.73 49 95 046163.52) 38.87-59.19 41.89-56.14 44.54 53.47 45.86 52.14
99 (9.88 41.44 I 13.(1) .\.1.82 15.8.1 31.50 18.34·28.18 19.67 26.59 99 00.6767.53) 35.95-62.15 39.77-58.28 43.1854.84 44.89-53.12

24 lj) 1.\.07 38.17 11>.IH 33.5h 18.27-30.52 2IU3-27.')\} 21.39 26.77 50 95 35.53-64.47 39.83-60.] 7 42.86-57.14 45.53-54.47 46.85-53.15
99 10.5642.56 1.1.98 3h.57 16.68 32.59 19.2(" 29.25 21l.(,127.M 99 31.5568.45 36.89-63.1 ] 40.74-59.26 44.16-55.84 45.8954.11

2~ 95 (U.84 :19.27) 1h88 3·1.hl, J9.]631.60 21.26- 29.1l·] 22 ..14 27.81
99 (11.25 '1.3.(5) H.77 17.1,9 ] 7.54-.'3.68 20.17-.'IUl 215528.6'1

--- - --~- - -------_._-
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TABLl X
TABLE Xl

The: transformation of correlation coefficient r Critical values of V, the Mann-Whitney statistic

IXr Z r 2

n l n2 0.10 0.05 0.025 0.01 0.005 0.0010.00 0.0000 0.50 0.5493
0.01 0.01 00 0.51 0.5627

3 2 60.02 0.02(XJ 0.52 0.5763
3 8 90.03 0.0300 0.53 0.5901

4 2 80.04 0.04(X) 0.54 0.6042
3 11 12

0.05 0.0500 0.55 0.6184 4 13 15 16
0.06 0.0601 0.56 0.6328 5 2 9 10
0.07 0.0701 0.57 0.6475 3 13 14 15
0.08 0.0802 0.58 0.6625 4 16 18 19 20
0.09 (W902 0.59 0.6777 5 20 21 23 24 25

0.60 0.6931 6 2 11 120.10 0.1003
3 15 16 170.11 0.1104 0.61 0.7089
4 19 21 22 23 240.l2 0.1206 0.62 0.7250
5 23 25 27 28 290.13 0.1307 0.63 0.7414
6 27 29 31 33 340.14 0.1409 0.64 0.7582

7 2 13 14
0.15 0.1511 0.65 0.7753 3 17 19 20 21
0.16 0.1614 0.66 0.7928 4 22 24 25 27 28
0.17 O.l717 0.67 0.8107 5 27 29 30 32 34
0.18 0.1820 0.68 0.8291 6 31 34 36 38 39 42
0.19 0.1923 0.69 0.8480 7 36 38 41 43 45 48

8 2 14 15 160.20 0.2027 070 0.8673
3 19 21 22 240.21 0.2132 0.71 0.8872
4 25 27 28 30 310.22 O.22:\? 0.72 0.9076
5 30 32 34 36 38 400.23 0.2.>42 0.73 0.9287 6 35 38 40 42 44 470.24 0.2448 0.74 0.9505 7 40 43 46 49 50 54

0.25 0.2554 0.75 0.9730 8 45 49 51 55 57 60
0.26 0.2661 0.76 0.9962 9 1 9
0.27 0.27h9 0.77 1.0203 2 16 17 18
0.28 0.2877 o.n 1.0454 3 22 23 25 26 27

O.7lJ 1.0714 4 27 30 32 33 350.29 O.298h
5 33 36 38 40 42 44(1.10 O.30lJ5 0.80 1.0'l8h 6 39 42 44 47 49 520..\1 <U205 0.81 1.1270 7 45 48 51 54 56 60

<U2 0..'-'16 0.82 1.151>8 8 50 54 57 61 6.> 67o..n 0.3428 0.83 1.1881 9 56 60 64 67 70 74
<1.14 (U541 O.S4 1.2212 10 1 10

2 17 19 200.35 O.3h54 0.85 1.2562
3 24 26 27 29 300.36 0.3769 0.86 1.2933
4 30 33 35 37 38 400.37 0.3884 0.87 1.3331
5 37 39 42 44 46 49(1.18 O.4(X)l O.8S 1.3758 6 43 46 49 52 54 57O.4IIS

0-

0.89 1.4219 7 490.39
53 56 59 61 65

0.42.>6 0.90 1.4722 8 56 60 63 67 69 740.40
9 62 66 70 74 77 820.41 0.4356 0.91 1.5275

10 68 73 77 81 84 900.42 0.4477 0.92 1.5890
0.43 0.4599 0.93 1.6584

Note" Critical values arc tahulalcu for two samples of sizes "1 and n
2

• where fit ~ '1
2

, up 10 "I0.44 0.4722 0.94 1.7380 "1 ~ 20. The
uppcr [}(lunds of Ihe critical values are furnished so that the sample statistic U. has to he greater Ihan a given

0.45 0.4847 0.95 1.8318 critical value to he sigllllicant. The probabilities at the heads of the columns arc based on a olle-tailed test and
OA6 OA973 0.96 1.9459 represent the p"'portll)n of the area of the distribution of U in one tail beyond the erilieal value. For a two-tatled
0.47 0.5101 0.97 2.0923 test lise thL' same critical values hut double the probability at the heads of the columns. This tahle was extracted
OA8 0.52-'1) 0.98 2.2976 frOIll a more extensive one (tahle 11.4) in D. B. Owen. Handbook (~f Statistical Tuhles (Addison-Wesley Puolishing
() 49 o " ,,, 1 0.99 2.6467 Co. Re"di))~. Mass.. 19(2): Courtesy of US. Atomic Energy Commission, with permission of the puhlishers
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TABLE XI TABLE XI
continued continued

a
a

n 1 n 2 0.10 0.05 0.025 0.01 0.005 0.001
n 1 n2 0.10 0.05 0.025 0.01 0.005 0.001

11 1 11
15 1 152 19 21 22

2 25 27 29 303 26 28 30 32 33
3 35 38 40 42 434 33 36 38 40 42 44
4 44 48 50 53 55 595 40 43 46 48 50 53
5 53 57 61 64 67 716 47 50 53 57 59 62
6 63 67 71 75 78 837 54 58 61 65 67 71
7 72 77 81 86 89 958 61 65 69 73 75 80
8 81 87 91 96 100 1069 68 72 76 81 83 89
9 90 96 101 107 111 11810 74 79 84 88 92 98

10 99 106 111 117 121 12911 81 87 91 96 100 106
11 108 115 121 128 132 14112 1 12
12 117 125 131 138 143 1522 20 22 23
13 127 134 141 148 153 1633 28 31 32 34 35
14 136 144 151 159 164 1744 36 39 41 42 45 48
15 145 153 161 169 174 1855 43 47 49 52 54 58

16 1 166 51 55 58 61 63 68
2 27 29 31 327 58 63 66 70 72 77
3 37 40 42 45 468 66 70 74 79 81 87
4 47 50 53 57 59 629 73 78 82 87 90 96
5 57 61 65 68 71 7510 81 86 91 96 99 106
6 67 71 75 80 83 8811 88 94 99 104 108 115
7 76 82 86 91 '14 10112 95 102 107 113 117 124
8 86 92 '17 102 106 11313 1 13
9 96 102 107 113 117 1252 22 24 25 26

10 106 112 118 124 129 1373 30 33 35 37 38
11 115 122 129 135 140 1494 39 42 44 47 49 51
12 125 132 139 146 151 1615 47 50 53 56 58 62
13 134 143 149 157 163 1736 55 59 62 66 68 73
14 144 153 160 168 174 1857 63 67 71 75 78 83
15 154 163 170 179 185 1'178 71 76 80 84 87 93
16 16:\ 17:\ 181 190 196 2089 79 84 89 94 97 103

17 1 1710 87 9,~ 97 10:\ 106 113
2 28 31 32 3411 95 101 106 112 116 123
3 39 42 45 47 49 5112 103 109 lIS 121 125 B3
4 50 53 57 60 62 6613 111 118 124 130 135 143
5 60 65 68 72 75 8014 1 14
6 71 76 80 84 87 932 24 25 27 28
7 81 86 91 96 J(X) 1063 32 35 37 40 41
8 91 97 102 lO8 112 1194 41 45 47 50 52 55 9 101 108 114 120 124 1325 50 54 57 60 63 67 10 112 11'1 125 132 136 1456 5'1 63 67 71 73 78

II 122 130 136 143 148 1587 67 72 76 81 83 89 12 132 140 147 155 160 1708 76 81 86 90 94 100
13 142 151 158 166 172 1839 85 90 95 100 104 111 14 153 161 169 178 184 1'1510 93 9'1 104 110 114 121 15 163 172 180 189 195 20811 102 108 114 120 124 132 16 173 183 I'll 201 207 no12 110 117 123 130 134 143 17 183 19,~ 202 212 219 2321J 119 126 132 139 144 153

14 127 135 141 149 154 164
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TABLE XI
continued
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TABLE XII
Critical values of the Wilcoxon rank sum.

343

a

n l n2 0.10 0.05 0.025 0.01 0.005 0.001

18 I 18
2 30 32 34 36
3 41 45 47 50 52 54
4 52 56 60 63 66 69
5 63 68 72 76 79 84
6 74 80 84 89 92 98
7 85 91 96 102 105 112
8 96 103 108 114 118 126
9 107 114 120 126 131 139

10 118 125 132 139 143 153
11 129 137 143 151 156 166
12 139 148 155 163 169 179
13 150 159 167 175 181 192
14 161 170 178 187 194 206
15 172 182 190 200 206 219
16 182 193 202 212 218 232
17 193 204 213 224 231 245
18 204 215 225 236 243 258

19 1 18 19
2 31 34 36 37 38
3 43 47 50 53 54 57
4 55 59 63 67 69 73
5 67 72 76 80 83 88
6 78 84 89 94 97 103
7 90 96 101 107 111 118
8 101 108 114 120 124 132
9 113 120 126 133 138 146

10 124 132 138 146 151 161
11 13() 144 151 159 104 175
12 147 156 163 172 177 188
13 158 167 175 184 190 202
14 169 179 188 197 203 216
15 181 191 200 210 216 230
16 192 203 212 222 230 244
17 203 214 224 235 242 257
18 214 226 236 248 255 271
19 226 238 248 260 268 284

20 I 19 20
2 33 36 38 39 40
3 45 49 52 55 57 60
4 58 62 66 70 72 77
5 70 75 80 84 87 93
6 82 88 93 98 102 108
7 94 101 106 112 116 124
8 106 113 119 126 130 139
9 118 126 132 140 144 154

10 130 138 145 153 158 168
11 142 151 158 167 172 183
12 154 163 171 180 186 198
13 166 176 184 193 200 212
14 178 188 197 207 213 226
15 190 200 210 220 227 241
16 201 213 222 233 241 255
17 213 225 235 247 254 270
18 225 237 248 260 268 284

nominal IX

0.05 0.025 0.01 0.005

n T (l T (l T IX T (l

5 0 .0312
1 .0625

6 2 .0469 0 .0156
3 .0781 1 .0312

7 3 .0391 2 .0234 0 .0078
4 .0547 3 .0391 1 .0156

8 5 .0391 3 .0195 1 .0078 0 .0039
6 .0547 4 .0273 2 .01 17 1 .0078

9 8 .0488 5 .0195 3 .0098 1 .()()39
9 .0645 6 .0273 4 .0137 2 '<Xl59

10 10 .0420 8 .0244 5 .0098 3 .c)()49
11 .0527 9 .0322 6 .0137 4 .()()68

11 13 .0415 10 .0210 7 .c)()93 5 .cX)49
14 .0508 II .0269 8 .0122 6 .0068

12 17 .0461 13 .0212 9 .0081 7 .lX)46
18 .0549 14 .0261 10 .0105 8 .c)061

13 21 .0471 17 .0239 12 .(X)85 9 .(X)40
22 .0549 18 .0287 13 .01()7 10 .(X)52

14 25 .0453 21 '<)247 15 '<)()83 12 .<X)43
26 .0520 22 .0290 16 .0101 13 '<X)54

15 30 .0473 25 .0240 19 .()()90 15 .(X)42
31 .0535 26 .0277 20 .0108 16 .eX)51

16 35 .0467 29 .0222 23 .0091 19 .eX)46
36 .0523 30 .e)253 24 .0107 20 .(X)55

17 41 .0492 34 .0224 27 .<X)87 23 .<X)47
42 .0544 35 .0253 28 .0101 24 .0055

18 47 .0494 40 .0241 32 '()()91 27 .0045
48 .0542 41 .0269 :13 .0104 28 .(X)52

19 53 .0478 46 .0247 37 .0090 32 .(Xl47
54 .0521 47 .0273 38 .0102 33 .(Xl54

20 60 .0487 52 .0242 43 .(X)96 37 .(X)47
61 .0527 53 .0266 44 .0107 38 .cX)53

No(e This tahlc furnishes Cfllical values for the one-tailed test of significance of the lank sum'!', ohtained in
WdC(l,\On's malched-rair~ signcd-ranks lest Since the c.\ae! proh;lhility level desired cannot he ohlaincd with
inlL'gral critical values of T, two such values and their altendant prohahilltit.:s hrackdillg the desired signficance
levI:! ,He furnished. Thus, to lind the siglllliL'ant 10-;', values for tl ~~ 111 we note the two critICal of T. 37 and JS,
in the tahle. The probabilities correspolldlrlg tn these two values of Tare o.(){)()() and ().()I{)~. Clearly a rank sum
of -I', 17 would have a probahility of less than 0.01 and would be considered significant h~" rhe staled criterion.
hn Iwo-lailt·d lests in which the altcrrutive hypothesis is that the pairs could dill{~r ill cil'her dircdion. douhl<:
the rrohahilitu.:s stated at (he head of thc lahle. For sample sizes" > 59 compute

nln + I lJ .. !Jn1n + 1)(2n + I l
4' 24
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TABLE XII
continued

345

nominal r:t.

0.05 0.025 0.01 0.005

n T r:t. T r:t. T r:t. T r:t.

21 67 .0479 58 .0230 49 .0097 42 .0045
68 .0516 59 .0251 50 .QI08 43 .0051

22 75 .0492 65 .0231 55 .0095 48 .0046
76 .0527 66 .0250 56 .0104 49 .0052

23 83 .0490 73 .0242 62 .0098 54 .0046
84 .0523 74 .0261 63 .0107 55 .()()51

24 91 .0475 81 .0245 69 .0097 61 .0048
92 .0505 82 .0263 70 .0106 62 .0053

25 100 .0479 89 .0241 76 .0094 68 .0048
101 .0507 90 .0258 77 .0101 69 JlO53

26 110 .0497 98 .0247 84 .0095 75 .()()47
111 .0524 99 .0263 85 .0102 76 .0051

27 119 J)477 107 .0246 92 .0093 83 .0048
120 .0502 108 .0260 93 .0100 84 .()()52

28 130 .0496 116 .0239 101 .0096 91 .0048
131 .0521 117 .0252 102 .0102 92 .0051

29 140 .0482 126 .0240 110 .0095 100 JlO49
141 .0504 127 .0253 III .otOI 101 .0053

30 151 .0481 137 .0249 120 .0098 109 .()()50
152 .0502 138 .0261 121 .0104 110 .0053

31 163 .0491 147 .0239 130 J)()l)9 118 .0049
164 .0512 148 .0251 131 .0105 119 JlO52

32 175 .0492 159 .0249 140 .0097 128 .0050
176 .0512 160 .0260 141 .0103 129 .0053

33 187 .0485 170 .0242 151 .0099 138 Jl049
188 .0503 171 .0253 152 .0104 139 .()(l52

34 2()() .0488 182 .0242 162 .0098 148 JlO48
201 .0506 183 .0252 163 .0103 149 .0051

35 213 .0484 195 .0247 173 .0096 159 .0048
214 .0501 196 .0257 174 moo 160 .0051

nominal r:t.

0.05 0.025 0.01 0.005

n T r:t. T r:t. T r:t. T 0:

36 227 .0489 208 .0248 185 .0096 171 .0050
228 .0505 209 .0258 186 .0100 172 .0052

37 241 .0487 221 .0245 198 .0099 182 .0048
242 .0503 222 .0254 199 .0103 183 .0050

38 256 .0493 235 .0247 211 .0099 194 .0048
257 .0509 236 .0256 212 .0104 195 .0050

39 271 .0493 249 .0246 224 .0099 207 .0049
272 .0507 250 .0254 225 .0103 208 .0051

40 286 .0486 264 .0249 238 moo 220 .0049
287 .0500 265 .0257 239 .0104 221 .0051

41 302 .0488 279 .0248 252 .0100 233 .0048
303 .0501 280 .0256 253 .0103 234 .0050

42 319 .0496 294 .0245 266 .0098 247 .0049
320 .0509 295 .0252 267 .0102 248 .0051

43 336 .0498 310 .0245 281 .0098 261 .0048
337 .0511 311 .0252 282 .0102 262 .0050

44 353 .0495 327 .0250 296 .0097 276 .0049
354 .0507 328 .0257 297 mOl 277 .0051

45 371 .0498 343 .0244 312 .0098 291 .0049
372 .0510 344 .0251 313 .0101 292 .0051

46 389 .0497 361 .0249 328 .W98 307 .(Xl50
390 .0508 362 .0256 329 .oJ 01 308 .0052

47 407 Jl490 378 .0245 345 .(Xl99 322 .(Xl48
408 .0501 379 .0251 346 .0102 323 .0050

48 426 .0490 396 Jl244 362 .0099 339 .0050
427 .0500 397 .0251 363 .OlO2 340 .()(l51

49 446 .0495 415 .0247 379 .0098 355 .0049
447 .0505 416 .0253 380 moo 356 .()(l50

50 466 .0495 434 .0247 397 .0098 373 .0050
467 '()506 435 .<J253 398 .0101 374 JXJ51



n. ex 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

II .05 22 .10 33 39 43 48 53 59 60 77 72 75 82 84 89 93 97 102 107 112 121 119124129

.025 .10 .16 44 48 52 58 63 68 77 76 84 87 94 96 102 107 11 1 I 16 123 1.12 131 137 140

.01 .13 40 45 54 59 64 70 77 88 86 91 96 102 106 110 118 122 127 134 143 142 150 154

12 .05 24 30 36 4.1 48 53 60 6.1 66 72 84 81 86 93 96 1110 1118 1Il8 116 120 124 125 144 138

.025 24 .13 40 45 54 56 64 69 72 76 96 84 94 99 104 108 120 120 124 129 134 137 156 150

.01 36 44 50 60 60 68 75 80 86 96 95 104 108 116 119 126 130 140 141 148 149 168 165

13 .05 26 33 .19 45 52 56 62 65 70 75 81 91 89 96 101 lO5 110 114 120 126 130 135 140 145

.025 26 .16 44 47 54 58 65 72 77 84 84 104 100 104 III 114 120 126 1.10 U7 141 146 151 158

.01 39 48 52 60 65 72 78 84 'II 95 117 1Il4 lIS 121 127 131 138 14.1 ISO 156 161 166 In

14 .05 26 .16 42 46 54 63 64 70 74 82 86 89 112 98 106 111 116 121 126 140 138 142 146 ISO

.025 28 39 44 51 58 70 70 76 82 87 94 1O() 112 llIl 116 122 126 U3 1.\8 147 148 154 160 166

.01 42 48 56 64 77 76 84 90 96 104 104 126 12.1 126 134 140 148 152 161 164 170 176 182

15 .05 28 36 44 55 57 62 67 75 80 84 93 96 98 120 114 116123127 135 138 144 149 156 160

.025 30 39 45 55 63 68 74 81 90 94 99 104 110 135 119 129 135 141 150 153 154 163 168 175

.01 42 52 60 69 75 81 90 100 102 108 115 123 135 I.n 142 147 152 160 168 173 179 186 195

16 .05 30 39 48 54 60 64 80 78 84 89 96 III1 106 114 128 124 128 133 140 145 150 157 168 167

.025 32 42 52 59 64 73 80 85 90 96 104 III 116 119 144 136 140 145 156 157 164 169 184 181

.01 45 56 64 72 77 88 94 100 106 116 121 126 133 160 143 154 160 168 173 180 187 2(10 199

17 .05 32 42 48 55 62 68 77 82 89 93 1O() illS I I 1 116 124 136 133 141 146 151 157 163 168 173

.025 34 45 52 60 67 77 80 90 96 1Il2 1Il8 114 122 129 136 153 148 151 160 166 170 179 183 190

.01 48 60 68 73 84 88 99 1Il6 110 119 127 134 142 143 170 164 166 175 180 187 196 203 207

18 .05 34 45 50 60 72 72 80 90 92 97 108 110 116 123 128 133 162 142 152 159 164 170 180 180

.025 36 48 54 65 78 80 86 99 100 107 120 120 121> US 140 148 162 159 166 174 178 184 198 196

.01 51 60 70 84 87 94 108 108 118 126 131 140 147 154 164 180 176 182 189 196 204 216 216

19 .05 36 45 53 61 70 76 82 89 94 102 108 114 121 127 133 141 142 171 160 16.1 169 177 183 187
.025 .18 51 57 66 76 84 90 98 1Il3 111 120 126 133 141 145 151 159 190 169 I 80 185 190 199 205
.01 .18 54 64 71 83 'II 98 107 IU 122 UO U8 148 152 160 166 176 190 187 199 204 209 218 224

20 .05 .18 48 60 65 72 79 88 93 110 107 116 120 126 135 140 146 152 160 180 173 176 184 192 21Xl

.025 40 51 64 75 78 86 96 100 120 116 124 130 U8 ISO 156 160 166 169 2(Xl 180 192 199 208 215

.01 40 57 68 80 88 9.1 104 III 130 127 140 14.1 152 160 168 175 182 187 220 199 212 219 228 235

21 .05 .18 51 59 1>9 75 91 89 99 105 112 120 126 140 138 145 151 159 163 17.\ 189 183 189 198 202
.025 41l 54 6.1 7·1 81 '!H 97 108 116 12.\ 129 1.17 147 15.1 157 166 174 180 180 21 Il 203 2116 2U 220
.oJ 42 57 n 80 90 lOS 107 117 121> 134 141 ISO 11>1 168 17.\ 180 189 199 199 211 2),\ 227 2\7 244

22 .05 40 51 62 71l 78 8·1 94 101 108 121 124 1.1Il 138 14·1 ISO 157 164 169 176 183 1'18 194 20·! 209
.025 42 57 hh 78 86 9h 102 110 118 1.12 U4 141 1-18 154 1M 170 178 185 1'/2 2113 220 214 222 228
.oJ 44 6() 72 8.1 '/2 10.\ 112 122 1.10 143 148 ISh 164 173 180 187 196 204 212 22.\ 242 2.17 242 250

23 .05 42 54 64 72 81l R9 98 106 114 119 125 1.\5 142 149 157 163 170 177 184 189 194 2.10 20S 211,
.025 H hO 69 80 86 98 106 115 124 1.\1 1J7 1·16 15·1 163 169 179 18·1 190 199 206214 2.10 226 237
.oJ ·16 h3 76 87 97 108 115 126 137 142 149 161 170 179 187 1% 20·1 209 JI9 227 2.17 253 249 262

24 05 ·1-1 57 68 7h 90 92 104 111 118 124 144 140 14/, 15h 168 168 180 18.1 1'/2 1'18 20·1 2115 240 225
.025 ·l6 60 72 81 96 1112 112 120 128 137 156 151 1(10 168 184 183 1'18 19'/ 208 21.\ 222 226 264 238
01 48 66 80 90 102 112 128 1J2 140 150 168 1(16 17h 18h 21Xl 203 216 218 228 2.\7 242 249 288 262

25 .05 ·16 60 68 80 88 97 1Il4 114 125 129 138 1-15 151l 160 167 17.\ 181l 187 21X) 202 209 216 225 250
.025 ·18 63 75 90 91> 105 112 123 135 140 ISO 158 Ih6 175 18\ 190 196 205 215 220 228 2:\7 238 275
.01 50 69 8·1 95 107 115 125 135 150 154 165 172 182 195 199 207 211> 22·1 2.\5 244 250 262 262 .llXl
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fABLE XIII
Critical values of the two-sample Kolmogorov-Smirnov statistic.

n2

", ::H' 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 .05 - 16 18 20 22 24 26 26 28 30 32 34 36 38 38 40 42 44 46
.025 2·1 26 28 30 .12 34 36 38 40 40 42 44 46 48
,(11 - 38 40 42 44 46 48 50

3 .05 15 18 21 21 24 27 30 30 .13 36 .'() 39 42 45 45 48 51 51 54 57 60
.025 18 21 24 27 30 30 33 .16 .N .\C~ 12 45 48 51 51 54 57 60 60 63
.01 27 30 33 36 39 42 42 45 48 51 54 57 57 60 63 66 69

4 .05 16 20 20 24 28 28 30 33 .16 .19 42 44 48 48 50 53 60 59 62 64 68 68
.025 20 24 28 28 32 36 36 40 4·1 44 45 52 52 54 57 64 63 66 69 72 75
.01 24 28 32 36 36 40 44 48 48 52 56 60 60 64 68 72 72 76 80 84

.05 15 20 25 24 28 30 35 40 39 43 45 46 55 54 55 60 61 65 69 70 72 76 80

.025 20 25 30 30 32 36 40 44 .15 47 51 55 59 60 65 66 75 74 78 80 81 90

.01 25 30 35 35 40 45 45 50 52 56 60 64 68 70 71 80 80 83 87 90 95

6 .05 18 20 24 30 30 34 39 40 4.1 48 52 54 57 60 62 72 70 72 75 78 80 90 88
'()25 18 24 .10 36 35 .16 42 44 48 54 54 58 63 64 67 78 76 78 81 86 86 96 96
.01 24 ,Vl 36 36 ·10 45 48 54 60 60 64 6'1 72 73 84 83 88 90 92 97 102 107

.05 21 24 28 30 42 40 42 46 48 53 56 6.1 62 64 68 72 76 79 'II 84 89 n 97

.025 21 28 .10 35 42 41 45 49 52 56 58 70 68 73 77 80 84 86 98 96 98 102 105

.01 28 35 36 42 48 49 53 59 no 65 77 75 77 84 87 'II 93 105 103 108 112 115

.05 16 21 28 30 :{4 40 48 46 48 53 60 62 64 67 80 77 80 82 88 89 94 98 104 104

.025 24 28 .\2 36 41 48 48 54 58 6·1 65 70 74 80 80 86 90 96 97 102 106 112 112

.01 32 35 40 48 56 55 60 64 68 72 76 81 88 88 94 98 104 107 112 115 128 125

9 .05 18 24 28 35 39 42 46 54 53 59 63 65 70 75 78 82 90 89 93 99 101 106 111 114
.025 27 32 36 42 45 ·18 63 60 63 69 72 76 81 85 90 99 98 100 108 110 115 120 123
.01 27 36 ·10 45 49 55 63 63 71' 75 78 8·1 90 94 99 108 107 111 117 122 126 132 135

10 .05 20 27 30 40 40 46 48 51 70 flO 66 70 74 80 84 89 92 94 110 105 108 114 118 125
.025 30 36 40 .j.j 49 54 60 70 (,8 72 77 82 90 90 96 J(Xl 103 120 116 118 124 128 115
.01 .10 36 45 48 53 60 6.1 80 77 81l 8·1 'Ill J(Xl 100 106 1118 111 131l 126 130 ]]7 140 150

--~~~~-

/1./0[('" This tahle fUf.nishes IIp[wr critical values of tl l !!.»: the Kolrnogolov-Smirnov test statistic J) multiplied
hy the two sample Sl/t~S n 1 alld "l" Sample si/.cs fl l arc gIven at the left margin of the table, while sample sill'S

til arc given across its top at the heads of the columns. The three values furnished at the intersection of two
,amrlcs ,i,e, rerresent Ihe following Ihree two-Iailed rrohabililles O.OS. Il.02\ and 0.01

For t~,n samples with "I 16 alld 11 2 10, the 5";", critical valuc of Ill'l l /) is :-\4. Any valuc of 11 1")) :-~ X4
will be slglllhcant at J) ~; (Ul5.

\V~cn a onc-sided test is desired. approximall' prohabilitles can be obtained frollt this table by douhling
the nommal _'X values. However. thcse arc not I:xact, since the distribution of cumulativc frcquencies is discrete.

This table was copied from tabk 55 in E S. Pcarson and II. O. Hartley. RUJnlt'lrika Tahles ji,r Slall,\!ician'l,
Vol. II (Cambridgc University Press, London 1972) \',.'ilh permission of the puhlishers.
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TABLE XIII
continued
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TABLE XIV
Critical values for Kendall's rank correlation coefficient,

n 0.10 0.05 0.01

4 1.000 - -

5 0.800 1.000 -

6 0.733 0.867 1.000
7 0.619 0.714 0.905
8 0.571 0.643 0.786
9 0.500 0.556 0.722

10 0.467 0.511 0.644

11 0.418 0.491 0.600
12 0.394 0.455 0.576
13 0.359 0.436 0.564
14 0.363 0.407 0.516
15 0.333 0.390 0.505

16 0.317 0.383 0.483
17 0.309 0.368 0.471
18 0.294 0.346 0.451
19 0.287 0.333 0.439
20 0.274 0.326 0.421

21 0.267 0.314 O.4lO
22 0.264 0.307 0.394
23 0.257 0.296 0.391
24 0.246 0.290 0.377
25 0.240 0.287 0.367

26 0.237 0.280 0.360
27 0.231 0.271 0.356
28 0.228 0.265 0.344
29 0.222 0.261 0.340
30 0.218 0.255 0.333

31 0.213 0.252 0.325
32 0.210 0.246 0.323
33 0.205 0.242 0.314
34 0.201 0.237 0.312
35 0.197 0.234 0.304

36 0.194 0.232 0.302
37 0.192 0.228 0.297
38 0.189 0.223 0.292
39 0.188 0.220 0.287
40 0.185 0.218 0.285

NOle.· ThIS table furnishes (l.!O. 0.05. and (UI) cnncal values for Kendall's rank correlation coeflicient r. The
probabilities are for a two-tailed tesl When a one-tailed test is desired. halve the probabilities at the heads of
the columns.

To test the sif,oificancc of a correlation coctlicicnt, enter the table with the appropriate sample size and
find the appropriate l.:ritical value_ For example, for a sample size of 15, the 5% and 1% critit:al values of T afC

0.390 and 0.505. respectively. Thus. an observed value of OA9X would be considered signilicant at the 5"{, but
not at the 1hI level. Negative correlations an: considered as positive for purposes of this lest. For sample sin's
11 > 40 lise the asymptotic approximation given in Rox 12.\ step 5.

The values in this tahle have been derived from those furnished in table XI of J. V. Bradley, /)/slrihwuHI-Fr('('

Stallsllm{ T"sls (Prentice-Hall. FIl~lew(l(ld ClIfTs. N J. I'lOX) with permission of the author and publIsher
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Index

II (number of groups), 134
II (Y intercept), 232
Ai (random group effect), 14'1, 157
a (parametric value of Y intercept). 233
a significance level, 118
ai (treatment effect), 143
(afi)i) (interaction effect of ith group of factor

A and jth group of factor Bl. 195
A posteriori comparisons, 174
A priori comparisons, 174
Absolute expected frequencies, 57
Acceptance region, 118, 1\9
Added component due to treatment effects,

147 148
Added variance component among groups,

14'1
estimation of, 167··168

Additive coding, 40
Additivity. assumption in analysis of

variance, 214- 216
Adjusted Y values, 258
Allee, W. c., 228, 229, 349
Alternative hypothesis (H I)' 118 126

Analysis of variance:
assumptions of, 211 228

additivity,214216
homogeneity of variances, 213214
independence of errors, 212 - 213
normality, 214
randomness, 212

average sample size (no), 168
computational rule for, 162
introduction to, 133 158
mixed model, 186, 199
Model I, 148, 154 156

a posteriori comparisons for, 174
a priori comparisons for, 174
planned comparisons among means,

173 179
unplanned comparisons among means,

179 181
Model II, 148 150,157 158
partitioning of total sum of squares and

degrees of freedom, 150-154
single-classification, 160 -181.

with unequal sample sizes, 165 168.
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Analysis of variance continued
See also Single-classification analysis

of variance
table, 150-151
two-way, 185-207.

See also Two-way analysis of variance
Angular transformation, 218
Anova. See Analysis of variance
Antimode, 33
Archibald, E. E. A., 16, 18, 349
Arcsine transformation, 218
Arithmetic mean. 28·30
Arithmetic probability graph paper, 86
Array, 16
Association, 312

degree of, 269
lest of. See Test of independence

Assumptions in regression. 233··234
Attributes, 9-10
Average. See Mean
Average variance within groups. 136

b (regression coefficient), 232
by x (regression coefficient of variable Y on

variable Xl. 232
Ii lparametric value for regression

coeflicienl), 233
Ii) (fixed treatment elTeet of factor B on jth

group), 195
Banta. A. M .. 169, 349
Bar diagram, 23
Belt. confidence. 255
Bernoulli, J.. 3
Biased estimator. ,8
Bimodal distrihution. 33, 85
Binomial dislflhullon. 54 M. 2%

clumping in, 58 -60
confidence limits for. 227. '/'able IX. 333
general formula for, 61
parameters of, hO
repubion in. 58 hO

Binomial probahility (p, q). 54
parametric (P. Ii), 60

Bioassay. 2h2
BiologICal statistics. 1
810M computer programs. 25
Biometry, I
Biostatistics. I

history of. 2 4
hivariate normal distribution. 272
Bivariate sampk. 7
Bivariate scattergram. 272
Blakeslee. A. F. 209. 349
Block. B. C, 261. 349
Bonferroni method. 178 17')
Bowen. E. 228. 349
Bwwer. L. P.. 290. 349
Brown. A W. A. 182. 349

INDEX

Brown, F. M., 293. 350
Bufa. L. M., 221. 352

CD (coefficient of dispersion), 69
CT (correction term). 39, 161
'x> (chi-square), 112
X;I"] (critical chi-square at probability

level ex, and degrees of freedom v),
113, Table IV, 324

Calculator, 25
Carter, G. R.. 264. 350
Causation, 257
Central limit theorem, 94
Central tendency. measure of. 28
Character, 7
Chi-square (/). 112
Chi-square distribution, 112-114

sample statistic of (X 2
), 130. 300

Chi-square table, Table I V, 324
Chi-square test, 300-301

of difference between sample and
parametric variance, 129-130

for goodness of fit, 300-301
Class(es), 134

grouping of. 18-23
Class interval. 19
Class limits. implied, II, 19
Class mark, 19
Clumped distribution, 58, 66, 70
Clumping:

as a departure from binomial
distribution, 58

as a departure from Poisson distribution.
66,70

Coding of data. 40 43
additIve, 40
combination. 40
multiplicative. 40

Coellicient:
correlation. See Correlation coefficient
01 determlnati"n. 27h
of dispersion (CD), h9
01 rank correlation. Kendall's (T). 286 290

computation of. Box /2.3. 287 289.
Table X II' . .348

regression. See Regression coellicicnt
of variation ( I I. 43

standard error of. 102. 110
Comhination coding, 40
('ompa risons:

paired, 204 207. 225 228. 277 279.
See also Paired comparisons

tests. multiple, 181
('omputed variahles. 13
Compuler, 25
C"'mtock, W. P.. 29.3, 350
Conditions for normal frequency

distributions. 7h 78

INDEX

Confidence interval, 104
Confidence limits, 103-106, 109-111,

114-115
for iX, 256
for correlation coefficients, Box 12.2,

281-283
of difference between two means, 170, 173,

Box 8.2,169-170
lower (Ld, 104
for J1 Box 6.2, 109
based on normally distributed statistic,

109-111
percentages (or proportions), 227-228

Table IX, 333
of regression coefficients, 254-256
of regression statistics, Box 1/.4,253-254
upper (L 2 ), 104
for variances, 114-115, Box 6.3, lIS

Contagious distribution, 59, 66
Contingency tables, 307
Continuous variables. 9

frequency distributions of, 18-24
Control, statistical, 258
Correction:

for continuity, 305
term (CT), 39, 161-162
Williams'. 304-305. 308

Correlation, 267-290
applications of, 284-286
illusory, 285
between means and ranges, 214
bet ween means and variances, 214
nonsense, 284 - 286
rank, 286-290

computation of, Box /2.3,287-289,
Table X I V, 384

and regression. contrasted. 268 ·270,
Table /2.1.270

significance tests in, 280-284
computation for, Box /2.2,281 ··283

Correlation coefficient(s):
confidence limits for, Box /2.2, 281-283
critical values of, Tahle VII/, 332
product-moment. 270 280

computation of, Box /2.2, 281283
confidence limits for. 284
formula for. 27\

relation with paired comparisons test,
277·279

standard error of (s,), 280
test of dilTerence between, 284. Box 12.2,

281-283
test of significance for, 280 284

computation for, Box 12.2, 281 283
transformation to z, 283, Table X, 338

Covariance. 146, 239, 269, 271
Cowan, I. M., 184, 350
Critical region, 118
Crossley. D. A., 223
Crovello, T. J., 292
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Cumulative normal curve, 79-80, 85,
Table 1I, 322

Curve:
area under, 75
cumulative normal, 79-80, 85
dosage-mortality, 262
empirically fitted, 258
power, 123 - I 24

Curvilinear regression, 246-247, 260

df (degrees of freedom), 103, 107
dy . x (deviation from regression line),

238,241
Dadd, R. H., 313, 350
Dallal, G. E., 190,352
Darwin, C. 3
Data, 2

accuracy of, 10-13
coding of, 40-43
handling of, 24~26
precision of, 10-13
processing of, 25

Davis, E. A., Jr., 264, 350
De Fermat, P., 3
De Moivre, A., 3
Deciles,32
Decker, G. C, 265, 350
Degree of association, 269
Degrees of freedom (df), (v). 38, 298· 301

of a statistic. See the particular statistic
Density, 75
Dependent variable, 232
Dependent variates. comparison of, 258
Derivative of a function. 232
Derived variables, 13 -14
Descriptive statistics. 27 43
Determination, coefficient of. 276
Deviate, 36

normal equivalent, 262
standard, 83
standard normal. l\3

Deviation(s):
from the mean (.1'). 36

sum of, 37, .314 315
from regression (d y x), 240~241

standard, 36 4.\ \19
Dilfercnce:

between two means, 168 173
computation of. Box 8.2. 169 170
confidence limits of. 170. 173
significance of. 170, 172 173
simplified formulas for, 315 .316
standard error of, 173
t test for, computation of, 16l\ 173,

Box 8.2. 169 170
t;, equal to F,. 172 17.1. 207. 316317

between a sample variance and a
parametric variance, testmg
_,_~:.c. ~ .1' l"'ll\ 1'1{\
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Difference continued
between two regression coefficients

256-257 '
between two variances:

computation of, Box 7.1, 142
testing significance of, 142-143

Discontinuous variable, 9
Discrepance, 203
Discrete variables, 9
Dispersion:

coefficient of, 69
statistics of, 28, 34- 43

Distribution:
bimodal, 33. 85
binomial, 54-64 296
bivariate normal 272
chi-square, 1/2-114, TaMe I V, 324
clumped, 58, 66, 70
contagious, 59, 66
F, 138-142, Tah/e V,326
frequency, 14-24
function, cumulative and normal 79
leptokurtic, 85 '
of means, 94 - I 00
multimodal, 33
multinomial, 299, 319
normal, 16, 74-91
platykurtic, 85
Poisson, 64 -71
probability, 47, 56
repulsed, 58-60, 66. 71
Student's I, 106108. TaMe I JI, 323

Distribution-free methods. See
Nonparametric tests

Dobzhansky, T., 44, 158, 350
Dosages, 262
Dosage-mortality curves, 262

f'J (random deviation of thc jth individual
of group i). 155

EDso (median effective dose), 33
Effects:

main, 194
random group, 149, 157
treatment, 143

Ehrlich, P. R., 312
Empirically fitted curves, 25X
Equality of a sample variance and a

parametric variance, 129 130
Error(s):

independence of, 212 2U
mean square, 153
standard. See Standard error
type 1.116-121
type II. 117 125

f'rror rate, experimentwise, 17X
Estimak:

of added variance component, 167 16X

INDEX

of mean, 41, Box 5.1, 88-89
of standard deviation, 41, Box 5.1, 88-89
of value of Y III regression, 237

EstImators:
biased, 38
unbiased, 38, 103

Events, 50
independence of, 52

Expected frequencies, 56-57
absolute, 57
binomial, 56-57
normal,79
Poisson, 68
relative, 56-57

Expected mean squares, 163-164
Expected value, 98

for Y, given X, 237
Explained mean square 251
Explained sum of squa;es, 241
ExtrInSIC hypothesis, 300

~. (observed frequency), 57

I (absolute expected frequencies), 57
Ii} (observed frequency in row i and
, column j), 311
I~" (relative expected frequency), 57
f (vanance ratio), 138142
F, (sample statistics of F distribution) 138
f *,.>,J (critical value of (he F distrib~tion)

141, Tahle V, 326 '
1".,,, (maximum variance ratio), 213,

Tahle VI, 330
I distributIOn, 138- 142, Tah/e V, 326

cntlCal value of (1" ) 141 1'ahlt, V326 ClIV1,~'21" •

.,ample statistics of (F) r38
1" test. one-tailed, 140 ,.
1" test, two-tailed, 141
1".,;" test, 213
Factorial, mathematical operation 61
Firschein, I. L., 44, 158, 350 '
Fisher, R. A., 3, 133, 139, 283
Freedom, dcgrees of, 38, 29X- 30 I
hel, M .. 266. 352
French, A. R.. 210, 350
Frequencies:

absolute expected U\ 57
observed (fl, 57

_ rclative expected (L,), 56 57
hequency distribution, 14 24

computation of median of. 32
of continuous variables. 18- 24, 75 - 76
graphIC test for normality of, Box 5./

88-89 '
L-shaped, 16, 69
meristic, 18
normal. 16, 74-91
preparation of, Box 2.1. 20 21

INDEX

qualitative, 17
quantitative, 17
two-way, 307-308
U-shaped, 16, 33

Frequency polygon, 24
Frohlich. F. W., 261, 350
Function, 231

derivative of, 232
probability density, 75
slope of, 232

G (sample statistic of log likelihood ratio
test),298

Gadi (G-statistic adjusted for continuity), 305
GM y (geometric mean), 31
G test, 297-312

with continuity correction, 305
general expression for, 299, 319
for goodness of fit, single classification,

301-305
computation for, Box 13.1,302-304

of independence, 305· 312
degrees of freedom for, 312

Gabriel, K. R., 180, 181,350
Galton, F" 3
Gartler, S. M., 44. 158, 350
Gauss, K. F., 3
Geissler, A., 63, 64, 350
Geometric mean (GM y ), 31
Goodness of fit tests:

by chi-square, 300 - 30 I
by G test, 301- 305
introduction to. 294 -301
for single classification, 301- 305

computation for. Box 13.1,302 -304
for two classes, 296- 299

Gossctt, W. S., 67. 107,351
Graph papcr:

normal probability, 86
probability, 86
probit, 262

Graphic methods, 85 -91
Graunt, J., 3
Greenwood. M., 70. 350
Grouping of classes, IX 23, Box 2./. 20-21
Groups:

in anova, 134
number of (a), 134
variancc among, 136 -137
variance within. 136

Ho (null hypothesis), 116
H I (alternative hypotbesis), 1/8
H y (harmonic mean). 31
Hammond. D. H.. 14,351
Harmonic mean IH,), 31
Hartley, H. 0., 25
I/eterogeneity among sample means,

143 150

357

Heteroscedasticity,213
Histogram, 24

hanging, 90-91
Homogeneity of variances, 213-214
Homoscedasticity,213
Hunter, P. E.. 81,183,350,351
Hypothesis:

alternative, 118-126
extrinsic. 300
intrinsic, 300
null, 116-126
testing, 1/5~ 130

Illusory correlations, 285
Implied class limits, II, 19
Independence:

assumption in anova, 212-213
of events. 52
test of:

2 x 2 computation, 308-310, Box 13.2,
309

by G, 305-312
R x C, 308, 310
two-way tables in, 305-312

Independent variable, 232
Index, 13
Individual mean square, 153
Individual observations, 7
Interaction. 192 197

sum of squares. 192
Intercept, Y, 232
Interdependence, 269
Interference. 195
Intersection, 50
Intragroup mean square, 153
Intrinsic hypothesis, 300
Item, 7

Johnson, N. K., 131. 350
Johnslon, P. A., 184, 350

k (sample size of a single binomial sample),
55

Karten. I., 209, 351
Kendall's coeflicient of rank correlation (r),

286 290
computation of, Box /2.3. 287 ·289
critical values of. TaMe X I V, 348

Klett, G. W.. 115, 351
Kolmogorov-Smirnov two-sample test,

223 . 225, Box lO.2. 223 224.
Tah/e X III, 346

Koo, V., 2X7, 350
Kosfeld, R. E., 287, 350
Kouskolekas, C. A., 265, 350
Krumwiede, C, 229, 351, 356
Kurtosis. 85
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L (likelihood ratio), 298
L, (lower confidence limit), 104
L 2 (upper confidence limit), 104
LD,o (median lethal dose), 33
Laplace, P. S., 3
Latshaw, W. L., 208, 351
Least squares, 235
Lee, J. A. H., 17, 350
Leinert, 1., 200, 350
Leptokurtic curve, 85
Level, significance, 118-121
Lewis, N., 142, 352
Lewontin, R. C, 313, 350
Likelihood ratio test, 298
Limits:

confidence. See Confidence limits
implied class, II, 19

Linear regression. See Regression
Littlejohn, M. 1., 131,350
Liu, Y. K., 36, 287, 350
Location, statistics of, 28-34
Log likelihood ratio test, 298

sample statistic of (G), 298
Logarithmic transformation, 218, 260

MS (mean square), 151
MS y (mean square due to regression), 248
M S,. x (mean square for deviations from

regression), 248
fl (parametric mean), 38

confidence limits for, Box 6.2, 109
/1, (expected value for variable Y for any

given value of X), 233
fly, (expected value for Yi),255
Main effects, 194
Mann-Whitney sample statistic (U,), 220
Mann-Whitney statistic (V,,",.",,), 222,

TaMe X I, 339
Mann-Whitney V-test, 220 222

computa';on for, Box 10.1,221-222
critical values in, 222, Tahle X 1,339

Mean(s):
arithmetic (Y), 28 30
comparison of:

planned, 173 179
unplanned, 179 181

computation of. 39,,43
from a frequency distribution, Box 3.2,

42
from unordered data, Box 3.1, 41

confidence limits for, 109-111
deviation from ( Yj, 36
difference between two, 168 -173
distribution of, 94100
eljuality of two, 168, 173
estimatcs of, 38
geometric (GM,), 31
graphic estimate of, on probability paper,

87 89. Box 5.1. 88-89

INDEX

harmonic, 31

mean of (n, 136
of Poisson distribution, 68-69
parametric (Il), 38
sample, 38
of a sample, 30
and ranges, correlation between, 211
standard error of, 102
sum of the deviations from, 37, 314-315
t test of the difference between two,

169-173
variance among, 98, 136-137
and variances, correlation between, 214
weighted, 30,98

Mean square(s) (MS), 37, 151
for deiiations from regression (MS y x),

(s,·x),248
error, 153
expected value of, 163-164
explained, 251
individual, 153
intragroup, 153
due to linear regression (MS y), (sD,

248,251
total, 153, 251
unexplained, 251

Measurement variables, 9
Median, 32-33

effective dose (ED,o), 33
lethal dose (LD,o), 33
standard error of, 102

Meredith, H. V., 205, 350
Meristic frequency distribution, 18
Meristic variables, 9
Midrange, 41
Miller, L., 278
Miller, R. L., 26, 183, 35 I
Millis, J., 24, 42, 182,350
Mitchell, CA., 264, 350, 355
Mittler, T. E.. 313, 350, 356
Mixed model two-way anova, 186, 199
Mode, 33 -34
Modell anova, 148, 154- 156
Model I regression:

assumptions for, 233-- 234,269--270
with one Y per X, 235- 243
with several Y's per X, 243-249

Model II anova, 148-150, 157-158
two-way, 185-207

Model" regression, 234 235, 269,270
Mosimann, J. E., 53, 350
Multimodal distributions, 33
Multinomial distributions, 299, 319
Multiple comparisons tests, 181
Multiplicative coding, 40

n (sample size), 29
no (average sample size in analysis of

varian",,) 11\8

INDEX

v (degrees of freedom), 107
Nelson, V. E., 236, 237, 350
Newman, K. J., 205, 350
Newsom, L. D., 265, 351
Nominal variable, 9
Nonparametrie tests, 125, 220-228

in lieu of paired comparisons test,
223-228, Box 10.2,223-224,
Box 10.3, 226

in lieu of regression, 263
in lieu of single classification anova for

two unpaired groups, 221-222,
Box 10.1,220-222

Nonsense correlations, 284-286
Normal curve:

areas of, 80, Tahle l/, 322
cumulative, 79-80, 85
height of ordinate of (Z), 78

Normal deviates, standard, 83
Normal distribution, 16,74-91

applications of, 83 85
bivariate, 272
conditions for, 76- 78
derivation of, 76-78
expected frequencies for, 79
function, 79
properties of, 78- 83

Normal equivalent deviate, 262
Normal probability density function, 78- 83
Normal probability graph paper, 86,

Box 5.1,88
Normal probability scale, 85 ,87
Normality of a frequency distribution,

Box 5./, 88
Normality, testing departures from, 85 -91,

303
Null hypothesis (/1 0 ), 116 126
Number of groups (ai, 134

Observations, IIIdividual, 7
Observed fre'luencies, 57
Olson, E. C., 26, 183, 351
One-tailed FIest, 140
One-tailed tests, 64, 125 126
Ordering tesl, 263 264
Ordway. K, 169

p (hinomial probahility), 54
fJ (paramctrlc binomial prohability), 60
I' (prohability). 48
Paired comparisons, 204 207, 225 228.

277 279
computation of, Box 9.3, 205 206.

Bo\ f(U. 226
( test for, 207

related to correlation, 277 279
with t~ identical to F" 172 173, 207,

316 317
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Parameter(s), 38
of the normal probability density

function, 78
Parametric mean, 38
Parametric product-moment correlation

coefficient, 272
Parametric regression coefficient, 233
Parametric value of Y intercept (ex), 233
Parametric variance, 38
Park, W. H., 229, 351
Partitioning of sums of squares:

in anova, 150-154
with dependent variable, 251, 3 I 8
among groups, 177

Pascal. B., 3
Pascal's triangle, 55
Pearson, E. S., 25, 35 I
Pearson, K .. 3, 270
Percen tages, 13 14

confidence limits of, Table I X, 333
drawbacks of, 14
transformation of, 218

Percentiles, 32
Petty, W., 3
Pfandner. K., 3 I3, 351
Phillips, J. R., 265, 351
Planned comparisons, 173 -179
Platykurtic curve, 85
poisson, S. D., 66
Poisson distribution. 64·71

calculation of expected frequencies,
Box 4./, 67

clumping in. 66, 70
parameters of, 69
repulsion in, 66. 71

Population, 7 8
statistics, 38

Power curve, 12.\ 124
P"wer of a test. 12.1 125
Prediction, 258
Probability (I'). 48 5.'
Prohability density function, 75

normal, 74 9 I
parameters of, 78

Probability distribution. 47. 56
Probability graph paper, 86
Probability scale, 85

normal, 85 87
Probability space, 50
Probit(s), 262

analysis, 262
graph paper. 262
transformation. 262

Product-moment correlall"n coellicient ('i')'

270 280
computation "f, 270 280, lJox /2./,

278 279
formula for, 271
parameter "f (" i')' 272
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Products, sum of, 239, 271
Purves, W., 163

q (binomial probability), 54
q (parametric binomial probability), 60
Qualitative frequency distribution, 17
Quantitative frequency distribution, 17
Quartiles, 32
Quetelet, A., 3
Quintiles, 32

rjO (product-moment correlation
coefficient), 272

R x C test of independence, 308-310
computation for, Box 13.3, 310

P.. (parameter of product-moment
correlation coefficient). 272

Random group effect (A,), 149
Random numbers, 57, 81, Table I, 321
Random sampling. 49, 53, 212
Randomized blocks. 205

computation of, Box 9.3. 205-206
Randomness. assumption in anova, 212
Range. 34-35
Rank correlation, Kendall's coefficient of,

286-290
computation of, Box /2.3,287-289.

Table XIV, 348
Ranked variable, 9
Rates, 13
Ratios, 13 14
Reciprocal transformation, 262
Region:

acceptam;e. 118 119
critical, 118-119
rejection. 118

Regression. linear. 230 264
computation of. 241 243.244 246
and correlation, 268 270, Table /2./, 270
curvilinear, 246 247, 260
equation for, 232, 235-243
explained deviation from (}'j 240 -241
estimate of Y, 237
mean square due to, 248, 251
Model I, 233 -234, 269 270
Model II, 234235, 269 270
with more than one value of Y per X,

243 249
nonparametric, 263 -264
residuals. 259 -260
With single value of Y per X. 235 243
tests of significance in, 250 257
transformations in, 259 263
uncxplained deviation from (d y .,), 238
uscs "f. 257 259

Rcgrcssll)n coellicient (bl. 232
conlidcl1L"c limits for. 254 255. 256
paramctric valul' f"r (/1).2.13

INDEX

significance of, 254, 256
standard error of, 252-253, Box 11.3, 252
test of significance for, 254, 256,

Box 11.4, 253
of variable Yon variable X (by x), 232

Regression line(s), 238
confidence limits of, 255
deviation from (dr· x), 238, 241
difference between two, 256-257

Regression statistics:
computation of, Box 11.1, 242
confidence limits of, Box 11.4,253-254
significance tests for, 253-254,

256-257, Box 11.4, 253-254
standard errors of, Box 11.3, 252, Box 11.4,

253, 255
Rejection region, 118
Relative expected frequencies, 56-57
Remainder sum of squares, 203
Repeated testing of the same individuals,

203-204
Repulsed distribution, 58-60, 66, 71
Repulsion:

as departure from binomial distribution,
58

as departure from Poisson distribution, 71
Residuals in regression, 259-260
Rohlf, F. 1..179.181, 351
Rootogram, hanging, 90-91
Rounding off, 12
Ruffie. J.• 310, 351

s (standard deviation). 38
S2 (sample variance), 38
s~ x (mean square for deviations from

regression), 248
s? (mean square due to linear regression),

251
Sy (estimate of standard error of mean

, of ith sample), !06
s, (standard error for correlation

coetlicient), 280
s~ (sample estimate of added variance

component among groups), 149
.'IS (sum of squares), 37, 151
SS-STP (sum of squares simultaneous test

procedure), 179 181
.'1/ (any statistic), [02, 129
,,' (parametric variance), 38
,,~ (parametric value of added variance

component), 150
Sample. 7

hivariate, 7
mean, .18
size (Iii. 29
space. 49
statistics. 38
variance (s'). 38

INDEX

Sampling, random, 49, 53, 212
Scale, normal probability, 85-87
Scientific laws, description of, 258
Seng, Y. P., 24, 42, 182, 350
Set, 49
Shortest unbiased confidence intervals

for variance, 115, Table Vll, 331
computation of, Box 6.3, 115

Sign test, 227-228
Signed-ranks test, Wilcoxon's, 225-227

computation for, Box 10.3, 226
critical values for, 227, Table Xll, 343

Significance:
of correlation coefficients, Box 12.2,

281-283
of the difference between two means,

168-173
of regression coefficient, 254, 256
of a statistic, 126-129, Box 6.4, 129

Significance levels, 118-121
Significance tests:

in correlation, 280-284, Box 12.2,
281-283

of the deviation of a statistic from its
parameter, 126-129, Box 6.4,129

of regression statistics, Box 11.4. 253
of a sample variance from a parametric

variance, 129-130
Significant digits, 12
Significantly different. 120
Simple event. 50
Single-classification analysis of variance.

160- 181
computational formulas for, 161-162
with equal sample sizes, 162--165, Box 8./.

163-164
for two groups, 168-173. Box 8.2.

169-170
with unequal sample sizes, 165 168,

Table 8./. 166
Sinnott, E. W.. 14,351
Skewness. 85
Slope of a function, 232
Sokal, R. R., 21. 71, 81,179,181.209,219.

244. 290, 351
Sokoloff, A.. 264. 283, 351, 357
Spatially uniform distribution, 66
Square. mean. 37, lSI

explained,251
Square root transformation, 218
Squares:

least, 235
sum of (.'IS) 37.151.

See also Sum of squares
Standard deviate, 83
Standard deviation (s), 36-43

computation of, 39-43
from frequency distribution, Box 3.2, 42
from unordered data, Box 3./. 41

graphic estimate of, 87, Box 5./, 88-89

361

standard error of, 102
Standard error, 101

of coefficient of variation, 102
for common statistics, Box 6.1, 102
of correlation coefficient, 280
of difference between two means, 172,

315-316
of estimated mean in regression, 255
of estimated Y, Y, along regression line,

255
of median, 102
of observed sample mean in regression,

255
of regression coefficient, 252 - 253
of regression statistics, Box 11.3, 252
of sample mean, 102
of standard deviation, 102

Standard normal deviate, 83
Standardized deviate, 83
Statistic(s), 1-2

biological, I
descriptive, 27 -43
of dispersion, 28, 34-43
of location, 28-34
population, 38
sample, 38
testing significance of, Box 6.4, 129

Statistical control, 258-259
Statistical significance, 121

conventional statement of, 127
Statistical tables. See Tables, statistical
Stem-and-Ieaf display. 22-23
Structural mathematical model. 258
Student (W. S. Gossett), 67, 107, 351
Student's / distribution, 106-- [08, Tabl" Ill,

323
Sullivan. R. L., 209
Sum of deviations from the mean, 37.

314315
Sum of products, 239, 271

computational formula for, 241, 317
Sum of squares (.'IS), 37, 151

among groups, 151-152
computational rule for, 162
computational formula for, 152. 315

explained, 241
interaction, 192
partitioning of. 177

in anova, 150- 154
with dependent variable, 251, 318
among groups, 177

remainder, 203
simultaneous test procedure. 179 - [81
total, 150 154
unexplained,241

computational formula for, 243. 318
Sum of two variables. variance of, .1 18
Summation signs, 29
Swanson, C. 0., 208. 351
Synergism, 195
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'>I>I (critical values of Student's distribution
for v degrees of freedom), 108,
Tahle //1, 323

1, (sample statistic of, distributionl, 127
(, equal to F, 172-173,207,316-317
T leritical value of rank sum of Wilcoxon's

signed-ranks test), 227, Table X //,
343

T, Irank sum of Wilcoxon's signed-ranks
test), '227

T (Kendall's codllcient of rank correlation),
286

( distribution, Student's, 106-108
t tables, 108, Table Ill, 3'23
, tC.,t:

for difference between two means,
169--173

cnmputation for, Box 8.2, 169-170
for paired comparisons. 206207

computation for, Bo, C).3, 205 - '206
Tahle(s):

c"ntingency. 307
statistical:

Chi-square distribution, Tah/e I V, 324
Correlation coefllcients, critical valucs,

Tah/e nIl, 33'2
F distribulinn, Tal>le ~', 326
F""" , fahll' V I, 330
Kendall's rank eorrelat ion cocliicient,

Tal>le X I V, 348
K olmogof<lv-Smirnov two-sample

statistiC, Table XIll, 34"
Normal curve, areas 'If, Tahfe II, 32'2
Percentapes, confidence limits,

Tal>l" 1.\ ..133
Randolll digits, T"hl<' I, 3'21
Shortest unbiased conlidence Inlllts for

the variance, Ta/,Ie Jill, 331
I distrihutlon, Student's. Tal>/,· III. J:',
(I, Mann- Whitney statIStic,

Tal,f,- .\'I,1J9
Wilcoxon rank SUlll, '1',,:,/1' .\ II, 34J
c transformation of eprrelation

coellicicnl r, 'l'ahf.. .\', 338
I Wo- hy-t wo freq uenev ..107
two-way frequency, 307 308

T"!,lIL', I' L :'08. 351
Taleh. N, JIO. 3~1

Llle, R. ", 11\ .151
Tesllng, hypothesis, 115 110
Testis)

PI' "ssociatlon, .1 I:'
chi-square..100
"I' departures fr,lll1 normality, 8~ 91
"I' deviation PI'" sl"IISllc ff<l1!1 Its

parallleler, 1:'(, 12'1
of difference helween a sampk v;m;lnee

and ;1 p;lr;nllelrie variance. 129 130
of differenL'e hclween Iwo me;n". I (,S /71

cOlllPnlallon for, Ho, 8.',1(,9 170

INDEX

of difference between two variances,
142-143

computation for. Box 7.1, 142
G,297--312
for goodness of fit, 294-301

for single-classifieation frequency
distributions, 301-305, Box 13.1,
30'2-304

of independence:
R x C computation, 308, 310, Box 13.3,

310
2 x 2 computation, 308-310, Box 13.2,

309
two-way tables, 305-312

K olmogorov-Smirnov two-sample test,
223-225, Box 10.2,223-224,
Table X1Jl, 346

likelihood ratio, 298
log likelihood ratio, 298
Mann-Whitney V, 220-222

eomputation for, Box 10.1,221 222
multiple comparisons, lSI
nonparametrlC, 12\ 220 - '2'28
one-tailed, 64, 125 -126
ordering, 263 264
of paired comparisons, 205 207
power or. 123-125
repeated, of samc individuals, 203 204
sign, 227 22S
of signifieancc:

in corrdalion. 280 '284
for correlation coetlicicnts, BIl\ 12.2,

2X I 283
of the regression eocflIeient, 254,

Bo\ /1-1, '251 254
of a stalislic. Ho, (,-1, 1'2')

two-Iailed, /14,1'22
Wilcoxon's signed-ranks, 225 227

u lmpulallOI1 for. HIl\ /0.3, :''26

critICal value for, 227, '['"hi" Xli, 343
Tholllas, P. A.. 166, 21)0, 351
Tolal mean square, 153
Total sum of squares, 150 154

eomputalilln of, 7i/M· 7./, 13\ Ii/hi" 73­
144

'!'ransfllrmat lonts):
angular, 218
In anova, 216 '219
arcsine, 218
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parametrie value of (il), 233

r values, adjusted, '25H
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