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Preface to the Dover Edition

We are pleased and honored to see the re-issue of the second edition of our Introduc-
tion to Biostatistics by Dover Publications. On reviewing the copy, we find there
is little in it that needs changing for an introductory textbook of biostatistics for an
advanced undergraduate or beginning graduate student. The book furnishes an intro-
duction to most of the statistical topics such students are likely to encounter in their
courses and readings in the biological and biomedical sciences.

The reader may wonder what we would change if we were to write this book anew.
Because of the vast changes that have taken place in modalities of computation in the
last twenty years, we would deemphasize computational formulas that were designed
for pre-computer desk calculators (an age before spreadsheets and comprehensive
statistical computer programs) and refocus the reader’s attention to structural for-
mulas that not only explain the nature of a given statistic, but are also less prone to
rounding error in calculations performed by computers. In this spirit, we would omit
the equation (3.8) on page 39 and draw the readers’ attention to equation (3.7) instead.
Similarly, we would use structural formulas in Boxes 3.1 and 3.2 on pages 41 and 42,
respectively; on page 161 and in Box 8.1 on pages 163/164, as well as in Box 12.1
on pages 278/279.

Secondly, we would put more emphasis on permutation tests and resampling methods.
Permutation tests and bootstrap estimates are now quite practical. We have found this
approach to be not only easier for students to understand but in many cases preferable
to the traditional parametric methods that are emphasized in this book.

Robert R. Sokal
F. James Rohlf

November 2008



Preface

The favorable reception that the first edition of this book received from teachers
and students encouraged us to prepare a second edition. In this revised edition,
we provide a thorough foundation in biological statistics for the undergraduate
student who has a minimal knowledge of mathematics. We intend Introduction
to Biostatistics to be used in comprehensive biostatistics courses, but it can also
be adapted for short courses in medical and professional schools; thus, we
include examples from the health-related sciences.

We have extracted most of this text from the more-inclusive second edition
of our own Biometry. We believe that the proven pedagogic features of that
book, such as its informal style, will be valuable here.

We have modified some of the features from Biometry, for example, in
Introduction to Biostatistics we provide detailed outlines for statistical compu-
tations but we place less emphasis on the computations themselves. Why?
Students in many undergraduate courses are not motivated to and have few
opportunities to perform lengthy computations with biological research ma-
terial; also, such computations can easily be made on electronic calculators
and microcomputers. Thus, we rely on the course instructor to advise students
on the best computational procedures to follow,

We present material in a sequence that progresses from descriptive statistics
to fundamental distributions and the testing of clementary statistical hypothescs;
we then proceed immediately to the analysis of variance and the familiar  test
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{which is treated as a special case of the analysis of variance and relegated to
several sections of the book). We do this deliberately for two reasons: (1) since
today’s biologists all need a thorough foundation in the analysis of variance,
students should become acquainted with the subject early in the course; and (2)
if analysis of variance is understood early, the need to use the ¢ distribution is
reduced. (One would still want to use it for the setting of confidence limits and
in a few other special situations.) All ¢ tests can be carried out directly as anal-
yses of variance. and the amount of computation of these analyses of variance
is generally equivalent to that of ¢ tests.

This larger second edition includes the Kolgorov-Smirnov two-sample test,
nonparametric regression, stem-and-leaf diagrams, hanging histograms, and the
Bonferroni method of multiple comparisons. We have rewritten the chapter on
the analysis of frequencies in terms of the G statistic rather than y2, because the
former has been shown to have more desirable statistical properties. Also, be-
cause of the availability of logarithm functions on calculators, the computation
of the G statistic is now easier than that of the earlier chi-square test. Thus, we
reorient the chapter to emphasize log-likelihood-ratio tests. We have also added
new homework exercises.

We call special. double-numbered tables “boxes.” They can be used as con-
venient guides for computation because they show the computational methods
for solving various types of biostatistical problems. They usually contain all
the steps necessary to solve a problem—from the tnitial setup to the final result.
Thus, students familiar with material in the book can use them as quick sum-
mary reminders of a technique.

We found in teaching this course that we wanted students to be able to
refer to the material now in these boxes. We discovered that we could not cover
even half as much of our subject if we had to put this material on the black-
board during the lecture, and so we made up and distributed boxe< and asked
students to refer to them during the lecture. Instructors who use this book may
wish to use the boxes in a similar manner.

We emphasize the practical applications of statistics to biology in this book;
thus, we deliberately keep discussions of statistical theory to a minimum. De-
rivations are given for somce formulas, but these arc consigned to Appendix Al,
where they should be studied and reworked by the student. Statistical tables
to which the reader can refer when working through the methods discussed in
this book are found in Appendix A2.

We are grateful to K. R. Gabriel, R. C. Lewontin, and M. Kabay for their
extensive comments on the second edition of Biometry and to M. D. Morgan,
E. Russek-Cohen, and M. Singh for comments on an early draft of this book.
We also appreciate the work of our secretaries, Resa Chapey and Cheryl Daly,
with preparing the manuscripts, and of Donna DiGiovanni, Patricia Rohlf, and
Barbara Thomson with proofrcading.

Robert R. Sokal
F. James Rohlf
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CHAPTER 1

Introduction

This chapter sets the stage for your study of biostatistics. In Section 1.1, we
define the field itself. We then cast a necessarily brief glance at its historical
development in Section 1.2. Then in Section 1.3 we conclude the chapter with
a discussion of the attitudes that the person trained in statistics brings to
biological research.

1.1 Some definitions

We shall define biostatistics as the application of statistical methods to the so-
lution of biological problems. The biological problems of this definition are thosc
arising in the basic biological sciences as well as in such applied areas as the
health-related sciences and the agricultural sciences. Biostatistics is also called
biological statistics or biometry.

The definition of biostatistics leaves us somewhat up in the air—*statistics”
has not been defined. Statistics 1s a science well known by name even to the
layman. The number of definitions you can find for it is limited only by the
number of books you wish to consult. We might define statistics in its modern
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sense as the scientific study of numerical data based on natural phenomena. All
parts of this definition are important and deserve emphasis:

Scientific study: Statistics must meet the commonly accepted criteria of
validity of scientific evidence. We must always be objective in presentation and
evaluation of data and adhere to the general ethical code of scientific method-
ology, or we may find that the old saying that “figures never lie, only statisticians
do” applies to us.

Data: Statistics generally deals with populations or groups of individuals;
hence it deals with quantities of information, not with a single datum. Thus, the
measurement of a single animal or the response from a single biochemical test
will generally not be of interest.

Numerical: Unless data of a study can be quantified in one way or another,
they will not be amenable to statistical analysis. Numerical data can be mea-
surements (the length or width of a structure or the amount of a chemical in
a body fluid, for example) or counts (such as the number of bristles or teeth).

Natural phenomena: We use this term in a wide sense to mean not only all
those events in animate and inanimate nature that take place outside the control
of human beings, but also those evoked by scientists and partly under their
cgnlrol, as in experiments. Different biologists will concern themselves with
different levels of natural phenomena: other kinds of scientists, with yet different
ones. But all would agree that the chirping of crickets, the number of peas in
a pod, and the age of a woman at menopause are natural phenomena. The
heartbeat of rats in response to adrenalin, the mutation rate in maize after
trradiation, or the incidence or morbidity in patients treated with a vaccine
may still be considered natural, even though scientists have interfered with the
phenomenon through their intervention. The average biologist would not con-
sider the number of stereo sets bought by persons in different states in a given
year to be a natural phenomenon. Sociologists or human ecologists, however,
might so consider it and deem it worthy of study. The qualification “natural
phenomena™ is included in the definition of statistics mostly to make certain
that the phenomena studied are not arbitrary ones that are entirely under the
will and control of the researcher, such as the number of animals employed in
an cxperiment.,

The word “statistics™ is also used in another, though related, way. It can
be the plural of the noun statistic, which refers to any one of many computed
or estimated statistical quantities, such as the mean. the standard deviation, or
the correlation coeflicient. Each one of these is a statistic.

1.2 The development of biostatistics

Modern statistics appears to have developed from two sources as far back as
the seventeenth century. The first source was political science; a form of statistics
developed as a quantitive description of the various aspects of the affairs of
a government or state (hence the term “statistics™). This subject also became
known as political arithmetic. Taxes and insurance caused people to become
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interested in problems of censuses, longevity, and mortality. Such considerations
assumed increasing importance, especially in England as the country prospered
during the development of its empire. John Graunt (1620-1674) and William
Petty (1623-1687) were early students of vital statistics, and others followed in
their footsteps.

At about the same time, the second source of modern statistics developed:
the mathematical theory of probability engendered by the interest in games
of chance among the leisure classes of the time. Important contributions to
this theory were made by Blaise Pascal (1623-1662) and Pierre de Fermat
(1601-1665), both Frenchmen. Jacques Bernoulli (1654-1705), a Swiss, laid the
foundation of modern probability theory in Ars Conjectandi. Abraham de
Moivre (1667-1754), a Frenchman living in England, was the first to combine
the statistics of his day with probability theory in working out annuity values
and to approximate the important normal distribution through the expansion
of the binomial.

A later stimulus for the development of statistics came from the science of
astronomy, in which many individual observations had to be digested into a
coherent theory. Many of the famous astronomers and mathematicians of the
eighteenth century, such as Pierre Simon Laplace {1749-1827) in France and
Karl Friedrich Gauss (1777-1855) in Germany, were among the leaders in this
field. The latter’s lasting contribution to statistics is the development of the
method of least squares.

Perhaps the earliest important figure in biostatistic thought was Adolphe
Quetelet (1796-1874), a Belgian astronomer and mathematician, who in his
work combined the theory and practical methods of statistics and applied them
to problems of biology, medicine. and sociology. Francis Galton (1822-1911),
a cousin of Charles Darwin, has been called the father of biostatistics and
eugenics. The inadequacy of Darwin’s genetic theories stimulated Galton to try
to solve the problems of heredity. Galton’s major contribution to biology was
his application of statistical methodology to the analysis of biological variation,
particularly through the analysis of variability and through his study of regres-
sion and correlation in biological measurements. His hope of unraveling the
laws of genctics through these procedures was in vain. He started with the most
difficult material and with the wrong assumptions. However, his methodology
has become the foundation for the application of statistics to biology.

Karl Pearson (1857-1936), at University College, London, became inter-
ested in the application of statistical methods to biology, particularly in the
demonstration of natural selection. Pearson’s interest came about through the
influence of W. F. R. Weldon (1860-1906), a zoologist at the same institution.
Weldon, incidentally, is credited with coining the term “biomctry” for the type
of studies he and Pearson pursued. Pearson continued in the tradition of Galton
and laid the foundation for much of descriptive and correlational statistics.

The dominant figure in statistics and biometry in the twentieth century has
been Ronald AL Fisher (1890 - 1962). His many contributions to statistical theory
will become obvious even to the cursory reader of this book.
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Statistics today is a broad and extremely active field whose applications
touch almost every science and even the humanities. New applications for sta-
tistics are constantly being found, and no one can predict from what branch
of statistics new applications to biology will be made.

1.3 The statistical frame of mind

A brief perusal of almost any biological journal reveals how pervasive the use
of statistics has become in the biological sciences. Why has there been such a
marked increase in the use of statistics in biology? Apparently, because biol-
ogists have found that the interplay of biological causal and response variables
does not fit the classic mold of nineteenth-century physical science. In that
century, biologists such as Robert Mayer, Hermann von Helmholtz, and others
tried to demonstrate that biological processes were nothing but physicochemi-
cal phenomena. In so doing, they helped create the impression that the experi-
mental methods and natural philosophy that had led to such dramatic progress
in the physical sciences should be imitated fully in biology.

Many biologists, even to this day, have rctained the tradition of strictly
mechanistic and deterministic concepts of thinking (while physicists, interest-
ingly enough, as their science has become more refined, have begun to resort
to statistical approaches). In biology, most phenomena are affected by many
causal factors, uncontrollable in their variation and often unmdentifiable. Sta-
tistics 1s needed to measure such variable phenomena, to determine the error
of measurement, and to ascertain the reality of minute but important differences.

A misunderstanding of these principles and relationships has given rise to
the attitude of some biologists that if differences induced by an experiment, or
observed by nature, are not clear on plain inspection (and therefore are in need
of statistical analysis), they arc not worth investigating. There are few legitimate
fields of inquiry, however, in which, from the nature of the phenomena studied,
statistical investigation is unnecessary.

Statistical thinking is not really different from ordinary disciplined scientific
thinking, in which we try to quantify our observations. In stalistics we express
our degree of belief or disbelief as a probability rather than as a vague, general
statement. For example, a statement that individuals of species A are larger
than those of specics B or that women suffer more often from disease X than
do men is of a kind commonly made by biological and medical scientists. Such
statements can and should be more precisely expressed in quantitative form.

In many ways the human mind is a remarkable statistical machine, absorb-
ing many facts from the outside world, digesting these, and regurgitating them
in simple summary form. From our experiecnce we know certain cvents to occur
frequently, others rarcly. “Man smoking cigarette” 1s a frequently observed
cvent, “Man shpping on banana peel,” rare. We know from experience that
Japancse arc on the average shorter than Englishmen and that Egyptians are
on the average darker than Swedes. We associate thunder with lightning almost
always, flics with garbage cans in the summer frequently, but snow with the
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southern Californian desert extremely rarely. All such knowledge comes to us
as a result of experience, both our own and that of others, which we learn
about by direct communication or through reading. All these facts have been
processed by that remarkable computer, the human brain, which furnishes an
abstract. This abstract is constantly under revision, and though occasionally
faulty and biased, it is on the whole astonishingly sound; it is our knowledge
of the moment.

Although statistics arose to satisfy the needs of scientific research, thg dgve}—
opment of its methodology in turn affected the sciences in which statistics is
applied. Thus, through positive feedback, statistics, created to serve the ne.eds
of natural science, has itself affected the content and methods of the biological
sciences. To cite an example: Analysis of variance has had a tremendous effect
in influencing the types of experiments researchers carry out. The whole field of
quantitative genetics, one of whose problems is the separation of enviroqmeptal
from genetic effects, depends upon the analysis of variance for its reallzatlop,
and many of the concepts of quantitative genetics have been directly built
around the designs inherent in the analysis of variance.



CHAPTER 2

Data in Biostatistics

In Section 2.1 we explain the statistical meaning of the terms “sample™ and
“population,” which we shall be using throughout this book. Then, in Section
2.2, we come to the types of observations that we obtain from biological research
material;, we shall see how these correspond to the different kinds of variables
upon which we perform the various computations in the rest of this book. In
Section 2.3 we discuss the degree of accuracy necessary for recording data and
the procedure for rounding ofl figures. We shall then be ready to consider in
Section 2.4 certain kinds of denved data frequently used in biological science—-—
among them ratios and indices-—and the peculiar problems of accuracy and
distribution they present us. Knowing how to arrange data in frequency distri-
butions i1s important because such arrangements give an overall impression of
the gencral pattern of the variation present in a sample and also facilitate further
computational procedures. Frequency distributions, as well as the presentation
of numerical data, are discussed in Section 2.5, In Section 2.6 we briefly describe
the computational handling of data.
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2.1 Samples and populations

We shall now define a number of important terms necessary for an under-
standing of biological data. The data in biostatistics are generally based on
individual observations. They are observations or measurements taken on the
smallest sampling unit. These smallest sampling units frequently, but not neces-
sarily, are also individuals in the ordinary biological sense. If we measure weight
in 100 rats, then the weight of each rat is an individual observation; the hundred
rat weights together represent the sample of observations, defined as a collection
of individual observations selected by a specified procedure. In this instance, one
individual observation (an item) ts based on one individual in a biological
sense—that is, one rat. However, if we had studied weight in a single rat over
a period of time, the sample of individual observations would be the weights
recorded on one rat at successive times. If we wish to measure temperature
in a study of ant colonies, where cach colony is a basic sampling unit, each
temperature reading for one colony is an individual observation, and the sample
of observations is the temperatures for all the colonies considered. 1f we consider
an estimate of the DNA content of a single mammalian sperm cell to be an
individual observation, the sample of observations may be the estimates of DNA
content of all the sperm cells studied in one individual mammal.

We have carefully avoided so far specifying what particular variable was
being studied, because the terms “individual obscrvation™ and “sample of ob-
servations” as used above define only the structure but not the nature of the
data in a study. The actual property measured by the individual observations
1s the character, or variable. The more common term employed in general sta-
tistics is “variable.” However, in biology the word “character™ 1s frequently used
synonymously. More than one variable can be measured on each smallest
sampling unit. Thus, in a group of 25 mice we might measure the blood pH
and the erythrocyte count. Each mouse (a biological individual) is the smallest
sampling unit, blood pH and red cell count would be the two variables studied,
the pH readings and cell counts are individual observations, and (wo samples
of 25 observations (on pH and on erythrocyte count} would result. Or we might
speak of a bivariate sumple of 25 observations, each referring to a pH reading
paired with an erythrocyte count.

Next we define population. The biological definition of this term is well
known. It refers to all the individuals of a given species (perhaps of a given
life-history stage or scx) found in a circumscribed arca at a given time. In
statistics, population always means the totality of individual observations about
which inferences are to be made, existing anywhere in the world or at least within
a definitely specified sampling arca limited in space and time. If you take five
men and study the number of leucocytes in their peripheral blood and you
arc prepared to draw conclusions about all men from this sample of five, then
the population from which the sample has been drawn represents the leucocyte
counts of all extant males of the species Homo sapiens. If, on the other hand,
you restrict yourself to a more narrowly specified sample, such as five male
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Chinese, aged 20, and you are restricting your conclusions to this particular
group, then the population from which you are sampling will be leucocyte
numbers of all Chinese males of age 20.

A common misuse of statistical methods is to fail to define the statistical
population about which inferences can be made. A report on the analysis of
a sample from a restricted population should not imply that the results hold
in general. The population in this statistical sense is sometimes referred to as
the universe.

A population may represent variables of a concrete collection of objects or
creatures, such as the tail lengths of all the white mice in the world, the leucocyte
counts of all the Chinese men in the world of age 20, or the DNA content of
all the hamster sperm cells in existence: or it may represent the outcomes of
experiments, such as all the heartbeat frequencies produced in guinea pigs by
injections of adrenalin. In cases of the first kind the population is generally
finite. Although in practice it would be impossible to collect, count, and examine
all hamster sperm cells, all Chinese men of age 20, or all white mice in the world,
these populations are in fact finite. Certain smaller populations, such as all the
whooping cranes in North America or all the recorded cases of a rare but easily
diagnosed disease X, may well lie within reach of a total census. By contrast,
an experiment can be repeated an infinite number of times (at least in theory).
A given experiment, such as the administration of adrenalin to guinea pigs,
could be repeated as long as the experimenter could obtain material and his
or her health and patience held out. The sample of experiments actually per-
formed is a sample from an infinitc number that could be performed.

Some of the statistical methods to be developed later make a distinction
between sampling from finitc and from infinite populations. However, though
populations are theoretically finite in most applications in biology, they arc
generally so much larger than samples drawn from them that they can be con-
sidered de facto infinite-sized populations.

2.2 Variables in biostatistics

Each biological discipline has its own set of variables, which may include con-
ventiondl morphological measurements; concentrations of chemicals in body
fluids; rates of certain biological processes; frequencies of certain events, as in
penetics, epidemiology, and radiation biology: physical readings of optical or
electronic machinery used in biological research; and many more.

We have already referred to biological variables in a general way, but we
have not vet delined them. We shall define a variable as a property with respect
to which individuals in a sample differ in some ascertainable way. If the property
does not differ within a sample at hand or at feast among the samples being

studied, it cannot he of statistical interest. Length, height, weight, number of

teeth, vitamin C content, and genotypes are examples of variables in ordinary.
genetically and phenotypically diverse groups of organisms. Warm-bloodedness
i a group of mammals is not, since mammals are all alike mn this regard.
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although body temperature of individual mammals would, of course, be a
variable.
We can divide variables as follows:

Variables

Measurement variables
Continuous variables
Discontinuous variables

Ranked variables

Attributes

Meusurement variables are those measurements and counts that are expressed
numerically. Measurement variables are of two kinds. The first kind consists of
continuous variables, which at least theoretically can assume an infinite number
of values between any two fixed points. For example, between the two length
measurements 1.5 and 1.6 cm there are an infinite number of lengths that could
be measured if one were so inclined and had a precise enough method of
calibration. Any given reading of a continuous variable, such as a length of
1.57 mm, 1s therefore an approximation to the exact reading, which in practice
is unknowable. Many of the variables studied in biology arc continuous vari-
ables. Examples are lengths, areas, volumes, weights, angles, temperatures,
periods of time, percentages, concentrations, and rates.

Contrasted with continuous variables are the discontinuous variables, also
known as meristic or discrete variubles. These are variables that have only cer-
tain fixed numerical values, with no intermediate values possible in between.
Thus the number of segments in a certain insect appendage may be 4 or 5 or
6 but never 5% or 4.3. Examples of discontinuous variables are numbers of a
given structure (such as scgments, bristles, teeth, or glands), numbers of ollspring,
numbers of colonics of microorganisms or animals, or numbers of plants in a
given quadrat.

Some vanables cannot be measured but at least can be ordered or ranked
by their magnitude. Thus, in an experiment one might record the rank order
of emergence of ten pupac without specifying the exact time at which cach pupa
emerged. In such cascs we code the data as a ranked variable, the order of
emergence. Special methods for dealing with such vanables have been devel-
oped. and several are furnished in this book. By expressing a variable as a scries
of ranks, such as 1, 2, 3, 4. 5, we do not imply that the difference in magnitude
between, say, ranks | and 2 is identical to or even proportional to the dil-
ference between ranks 2 and 3.

Variables that cannot be measured but must be expressed qualitatively are
called ateributes, or nominal variables. These are all properties. such as black
or white, pregnant or not pregnant, dead or alive, male or female. When such
attributes are combined with frequencies, they can be treated statistically. Of
80 mice, we may, for instance, state that four were black, two agouti, and the
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rest gray. When attributes are combined with frequencies into tables suitable
for statistical analysis, they are referred to as enumeration data. Thus the enu-
meration data on color in mice would be arranged as follows:

Color Frequency
Black 4
Agouti 2
Gray 74
Total number of mice 80

In some cases attributes can be changed into measurement variables if this is
desired. Thus colors can be changed into wavelengths or color-chart values.
Certain other attributes that can be ranked or ordered can be coded to be-
come ranked variables. For example, three attributes referring to a structure
as “poorly developed,” “well developed,” and “hypertrophied” could be coded
1, 2, and 3.

A term that has not yet been explained 1s variate. In this book we shall use
it as a single reading, score, or observation of a given variable. Thus, if we have
measurements of the length of the tails of five mice, tail length will be a con-
tinuous variable, and each of the five readings of length will be a variate. In
this text we identify variables by capital letters, the most common symbol being
Y. Thus Y may stand for tail length of mice. A variate will refer to a given
length measurement; Y; is the measurement of tail length of the ith mouse, and
Y, is the measurement of tail length of the fourth mouse in our sample.

2.3 Accuracy and precision of data

“Accuracy” and “precision” are used synonymously in everyday specch, but in
statistics we define them more rigorously. Accuracy is the closeness of a measured
or computed value to its true value. Precision s the closeness of repeated measure-
ments. A biased but sensitive scale might yield imaccurate but precise weight. By
chance, an insensitive scale might result in an accurate reading, which would,
however, be imprecise. since a repeated weighing would be unlikely to yield an
cqually accurate weight. Unless there is bias in a measuring instrument, precision
will lcad to accuracy. We need therefore mainly be concerned with the former.

Precise variates are usually, but not necessarily, whole numbers. Thus, when
we count four eggs i a nest, there is no doubt about the exact number of cggs
in the nest if we have counted correctly: it 1s 4, not 3 or 5, and clearly it could
not be 4 plus or minus a fractional part. Meristic, or discontinuous, variables are
generally measured as exact numbers. Seemingly, continuous variables derived
from meristic ones can under certain conditions also be exact numbers. For
instance, ratios between exact numbers are themselves also exact. If in a colony
of animals there are 18 females and 12 males, the ratio of females to males (a

. - "
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Most continuous variables, however, are approximate. We mean by this
that the exact value of the single measurement, the variate, is unknown and
probably unknowable. The last digit of the measurement stated should imply
precision; that is, it should indicate the limits on the measurement scale between
which we believe the true measurement to lie. Thus, a length measurement of
12.3 mm implies that the true length of the structure lies somewhere between
12.25 and 12.35 mm. Exactly where between these {iﬁblied limits the real length
is we do not know. But where would a true measurement of 12.25 fall? Would
it not equally likely fall in either of the two classes 12.2 and 12.3—clearly an
unsatisfactory state of affairs? Such an argument is correct, but when we record
a number as either 12.2 or 12.3, we imply that the decision whether to put 1t
into the higher or lower class has already been taken. This decision was not
taken arbitrarily, but presumably was based on the best available measurement.
If the scale of measurement is so precise that a value of 12.25 would clearly
have been recognized, then the measurement should have been recorded
originally to four significant figures. Implied limits, therefore, always carry one
more figure beyond the last significant one measured by the observer.

Hence, it follows that if we record the measurement as 12.32, we are implying
that the true value lies between 12.315 and 12.325. Unless this is what we mean,
there would be no point in adding the last decimal figure to our original mea-
surements. If we do add another figure, we must imply an increase in precision.
We see, therefore, that accuracy and precision in numbers are not absolute con-
cepts, but are relative. Assuming there is no bias, a number becomes increasingly
more accurate as we are able to write more significant figures for it (increase its
precision). To illustrate this concept of the relativity of accuracy, consider the
following three numbers:

Implied limits

193 192.5 1935
192.8 192.75 -192.85
192.76 192.755 192.765

We may imagine these numbers to be recorded measurements of the same struc-
ture. Let us assume that we had extramundane knowledge that the true length
of the given structure was 192.758 units. If that were so, the threec measurements
would increasc in accuracy from the top down, as the interval between their
implied limits decreased. You will note that the implied limits of the topmost
measurement are wider than those of the one below it, which in turn are wider
than those of the third measurement.

Meristic variates, though ordinarily exact, may be recorded approximately
when large numbers are involved. Thus when counts are reported to the nearest
thousand, a count of 36,000 insccts in a cubic meter of soil, for example, implies
that the true number varies somewhere from 35,500 to 36,500 insects.

To how many significant figures should we record measurements? If we array

$thho cammlas e vrrdar f v aemitieda e tho crmralloact temdivrsdsral 44 tha loemact
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one, an easy rule to remember is that the number of unit steps from the smallest
to the largest measurement in an array should usually be between 30 and 300.
Thus, if we are measuring a series of shells to the nearest millimeter and the
largest is 8 mm and the smallest is 4 mm wide, there are only four unit steps
between the largest and the smallest measurement. Hence, we should measure
our shells to one more significant decimal place. Then the two extreme measure-
ments might be 8.2 mm and 4.1 mm, with 41 unit steps between them (counting
the last significant digit as the unit); this would be an adequate number of unit
steps. The reason for such a rule is that an error of 1 in the last significant digit
of a reading of 4 mm would constitute an inadmissible error of 257%, but an error
of 1 in the last digit of 4.1 is less than 2.5%. Similarly, if we measured the height
of the tallest of a series of plants as 173.2 cm and that of the shortest of these
plants as 26.6 cm, the difference between these limits would comprise 1466 unit
steps (of 0.1 ¢cm), which are far too many. It would therefore be advisable to
record the heights to the nearest centimeter, as follows: 173 cm for the tallest
and 27 cm for the shortest. This would yield 146 unit steps. Using the rule we
have stated for the number of unit steps, we shall record two or three digits for
most measurements.

The last digit should always be significant; that is, it should imply a range
for the true measurement of from half a “unit step” below to half a “unit step”
above the recorded score, as illustrated earlier. This applies to all digits, zero
included. Zeros should therefore not be written at the end of approximate num-
bers to the right of the decimal point unless they are meant to be significant
digits. Thus 7.80 must imply the limits 7.795 to 7.805. If 7.75 to 7.85 is implied,
the measurement should be recorded as 7.8.

When the number of significant digits s to be reduced. we carry out the
process of rounding off numbers. The rules for rounding off are very simple. A
digit to be rounded off is not changed if it is followed by a digit less than 5. If
the digit to be rounded off is followed by a digit greater than 5 or by 5 followed
by other nonzero digits, it s increased by 1. When the digit to be rounded off
is followed by a 5 standing alone or a 5 followed by zeros, it is unchanged if it
is cven but increased by 1if it is odd. The reason for this last rule is that when
such numbers arc summed in a long series, we should have as many digits
raised as are being lowered, on the average; these changes should thercfore
balance out. Practice the above rules by rounding off the following numbers to
the indicated number of significant digits:

Number Significant digits desired Answer
20.58 2 27
133.7137 5 133.71
0.03725 3 0.0372
0.03715 3 0.0372
18,316 2 18.000
17.3476 3 17.3
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Most pocket calculators or larger computers round off their displays using
a different rule: they increase the preceding digit when the following digit is a
5 standing alone or with trailing zeros. However, since most of the machines
usable for statistics also retain eight or ten significant figures internally, the
accumulation of rounding errors is minimized. Incidentally, if two calculators
give answers with slight differences in the final (least significant) digits, suspect
a different number of significant digits in memory as a cause of the disagreement.

2.4 Derived variables

The majority of variables in biometric work are observations recorded as direct
measurements or counts of biological material or as readings that are the output
of various types of instruments. However, there 1s an important class of variables
in biological research that we may call the derived or computed variables. These
are generally based on two or more independently measured variables whose
relations are expressed in a certain way. We are referring to ratios, percentages,
concentrations, indices, rates, and the like.

A ratio expresses as a single value the relation that two variables have, one
to the other. In its simplest form, a ratio is expressed as in 64:24, which may
represent the number of wild-type versus mutant individuals, the number of
males versus females, a count of parasitized individuals versus those not para-
sitized, and so on. These examples imply ratios based on counts. A ratio based
on a continuous variable might be similarly cxpressed as 1.2:1.8, which may
represent the ratio of width to length in a sclerite of an insect or the ratio
between the concentrations of two minerals contained in water or soil. Ratios
may also be expressed as fractions; thus, the two ratios above could be expressed
as $% and }2. However, for computational purposes it is more useful to express
the ratio as a quotient. The two ratios cited would therefore be 2.666 ... and
0.666 . . ., respectively. These are purc numbers, not expressed in measurement
units of any kind. It is this form for ratios that we shall consider further.
Percentages are also a type of ratio. Ratios, percentages, and concentrations
are basic quantities in much biological rescarch, widely used and generally
familiar.

An index 18 the ratio of the value of one variable to the value of a so-called
standard one. A well-known example of an index in this sense is the cephalic
index in physical anthropology. Conccived in the wide sense, an index could
be the average of two measurements—either simply, such as 4(length of 4 +
length of B), or in weighted fashion, such as [(2 x length of A) + length of B].

Rates are important in many experimental fields of biology. The amount
of a substance liberated per unit weight or volume of biological material, weight
gain per unit time, reproductive rates per unit population size and time (birth
rates), and death rates would fall in this category.

The use of ratios and percentages is deeply ingrained in scientific thought.
Often ratios may be the only meaningful way to interpret and understand cer-
tain types of biological problems. If the biological process being investigated
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operates on the ratio of the variables studied, one must examine this ratio to
understand the process. Thus, Sinnott and Hammond (1935) found that inheri-
tance of the shapes of squashes of the species Cucurbita pepo could be inter-
preted through a form index based on a length-width ratio, but not through
the independent dimensions of shape. By similar methods of investigation, we
should be able to find selection affecting body proportions to exist in the evolu-
tion of almost any organism.

There are several disadvantages to using ratios. First, they are relatively
inaccurate. Let us return to the ratio +:4 mentioned above and recall from the
previous section that a measurement of 1.2 implies a true range of measurement
of the variable from 1.15 to 1.25; similarly, a measurement of 1.8 implies a range
from 1.75 to 1.85. We realize, therefore, that the true ratio may vary anywhere
from {42 to 143 or from 0.622 to 0.714. We note a possible maximal error of
4.2% if 1.2 is an original measurement: (1.25 — 1.2)/1.2; the corresponding maxi-
mal error for the ratio i1s 7.0%: (0.714 — 0.667)/0.667. Furthermore, the best
estimate of a ratio is not usually the midpoint between its possible ranges. Thus,
in our example the midpoint between the implied limits is 0.668 and the ratio
based on +:% i5 0.666 . . . ; while this is only a slight difference, the discrepancy
may be greater in other instances.

A second disadvantage to ratios and percentages is that they may not be
approximately normally distributed (see Chapter 5} as required by many statis-
tical tests. This difficulty can frequently be overcome by transformation of the
variable (as discussed in Chapter 10). A third disadvantage of ratios is that
in using them one loses information about the relationships between the two
variables except for the information about the ratio itself.

2.5 Frequency distributions

If we were to samplc a population of birth weights of infants, we could represent
each sampled measurement by a point along an axis denoting magnitude of
birth weight. This is llustrated in Figure 2.1A, for a sample of 25 birth weights.
If we sample repeatedly from the population and obtain 100 birth weights, we
shall probably have to place some of these points on top of other points in
order to record them all correctly (Figure 2.1B). As we continue sampling ad-
ditional hundreds and thousands of birth weights (Figure 2.1C and D), the
assemblage of poiats will continue 10 increase in size but will assume a fairly
definite shape. The outline of the mound of points approximates the distribution
of the variable. Remember that a continuous variable such as birth weight can
assume an infimty of values between any two points on the abscissa. The refine-
ment of our measurements will determine how fine the number of recorded
divisions between any two points along the axis will be.

The distribution of a variable is of considerable biological interest. If we
find that the distribution 1s asymmetrical and drawn out 1 one direction, it tells
us that there is, perhaps, selection that causes organisms to fall preferentially
in one of the tails of the distribution, or possibly that the scale of measurement
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chosen is such as to bring about a distortion of the distribution. If; in a sample
of immature insects, we discover that the measurements are bimodally distrib-
uted (with two peaks), this would indicate that the population is dimorphic.
This means that different species or races may have become intermingled in
our sample. Or the dimorphism could have arisen from the presence of both
sexes or of different instars.

There are several charactenstic shapes of frequency distributions. The most
common is the symmetrical bell shape (approximated by the bottom graph in
Figure 2.1), which is the shape of the normal frequency distribution discussed
in Chapter 5. There are also skewed distributions (drawn out more at one tail
than the other), L-shaped distributions as in Figure 2.2, U-shaped distributions,
and others, all of which impart significant information about the relationships
they represent. We shall have more to say about the implications of various
types of distributions in later chapters and scctions.

After researchers have obtained data in a given study, they must arrange
the data in a form suitable for computation and interpretation. We may assume
that variates arc randomly ordered initially or are in the order in which the
measurements have been taken. A simple arrangement would be an array of
the data by order of magnitude. Thus. for example, the variates 7, 6, 5, 7. 8. 9,
6, 7,4, 6,7 could be arrayed in order of decreasing magnitude as follows: 9. 8,
7.7,7.7. 6,6, 6,5 4. Where there are some variates of the same value, such as
the 6’s and 7's in this fictitious example, a time-saving device might immediately
have occurred to you  namely, to list a frequency for cach of the recurring
variates; thus: 9, 8, 7(4 x ). 6(3 x ), 5. 4. Such a shorthand notation is one way to
represent a frequency distribution, which is simply an arrangement of the classes
of variates with the frequency of cach class indicated. Conventionally, a fre-
quency distribution s stated i tabular form; for our example, this 1s done as
follows:
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The above is an example of a quantitative frequency distribution, since Y is
clearly a measurement variable. However, arrays and frequency distributions
need not be limited to such variables. We can make frequency distributions of
attributes, called qualitative frequency distributions. In these, the various classes
are listed in some logical or arbitrary order. For example, in genetics we might
have a qualitative frequency distribution as follows:

Phenotype !

A-— 86

aa 32

This tells us that there are two classes of individuals, those identifed by the 4 —
phenotype, of which 86 were found, and those comprising the homozygote re-
cessive aa, of which 32 were seen in the sample.

An example of a more extensive qualitative frequency distribution is given
in Table 2.1, which shows the distribution of melanoma (a type of skin cancer)
over body regions in men and women. This table tells us that the trunk and
limbs are the most frequent sites for melanomas and that the buccal cavity, the
rest of the gastrointestinal tract, and the genital tract are rarely afflicted by this

TABLE 2.1

Two qualitative frequency distributions. Number of cases of
skin cancer (melanoma) distributed over body regions of
4599 men and 4786 women.

Observed frequency

Men Women
Anatomic site f /
Head and neck 949 645
Trunk and limbs 3243 3645
Buccal cavity 8 1
Rest of gastrointestinal tract 5 21
Genital tract 12 93
Eye 382 371
Total cases 4599 4786

Source. Data from [ ee (1982)
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TABLE 2.2

A meristic frequency distribution.
Number of plants of the sedge Carex
Afacca found in 500 quadrats.

No. of plants Observed
per quadrat frequency
0 181
i 118
2 97
3 54
4 32
5 9
6 h)
7 3
8 1
Total 500

Source: Data from Archibald (1950).

type of cancer. We often encounter other examples of qualitative frequency
distributions in ecology in the form of tables, or species lists, of the inhabitants
of a sampled ecological area. Such tables catalog the inhabitants by species or
at a higher taxonomic level and record the number of specimens observed for
each. The arrangement of such tables is usually alphabetical, or it may follow
a special convention, as in some botanical species lists.

A quantitative frequency distribution based on meristic variates is shown
in Table 2.2. This is an example from plant ccology: the number of plants per
quadrat sampled is listed at the left in the variable column: the observed fre-
quency is shown at the right.

Quantitative frequency distributions based on a continuous variable are
the most commonly employed frequency distributions; you should become
thoroughly familiar with them. An example is shown in Box 2.1. Tt is based on
25 femur lengths measured in an aphid population. The 25 readings are shown
at the top of Box 2.1 in the order in which they were obtained as measurements.
(They could have been arrayed according to their magnitude.) The data are
next set up in a frequency distribution. The variates increase in magnitude by
unit steps of 0.1. The frequency distribution is preparcd by entering each variate
in turn on the scale and indicating a count by a conventional tally mark. When
all of the items have been tallied in the corresponding class, the tallies are con-
verted into numerals indicating frequencies in the next column. Their sum is
indicated by X f.

What have we achicved in summarizing our data? The original 25 variates
are now represented by only 15 classes. We find that variates 3.6, 3.8, and 4.3
have the highest frequencies. However, we also note that there are several classes,
such as 3.4 or 3.7. that are not represented by a single aphid. This gives the
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entire frequency distribution a drawn-out and scattered appearance. The reason
for this 1s that we have only 25 aphids, too few to put into a frequency distribu-
tion with 15 classes. To obtain a more cohesive and smooth-looking distribu-
tion, we have to condense our data into fewer classes. This process I1s known
as grouping of classes of frequency distributions; it is illustrated in Box 2.1 and
described in the following paragraphs.

We should realize that grouping individual variates into classes of wider
range is only an extension of the same process that took place when we obtained
the initial measurement. Thus, as we have seen in Section 2.3, when we measure
an aphid and record its femur length as 3.3 units, we imply thereby that the
true measurement lies between 3.25 and 3.35 units, but that we were unable to
measure to the second decimal place. In recording the measurement initially as
3.3 units, we estimated that it fell within this range. Had we estimated that it
exceeded the value of 3.35, for example, we would have given it the next higher
score, 3.4. Therefore, all the measurecments between 3.25 and 3.35 were in fact
grouped into the class identified by the class mark 3.3. Our class interval was
0.1 units. If we now wish to make wider class intervals, we are doing nothing
but extending the range within which measurements arc placed into one class.

Reference to Box 2.1 will make this process clear. We group the data twice
in order to impress upon the reader the flexibility of the process. In the first
example of grouping. the class interval has been doubled in width; that 1s, it
has been made to equal 0.2 units. If we start at the lower end, the implied class
limits will now bc from 3.25 to 3.45, the limits for the next class from 345 to
3.65, and so forth.

Our next task is to find the class marks. This was quite simple in the fre-
quency distribution shown at the left side of Box 2.1, in which the original mea-
surcments were usced as class marks. However, now we are using a class interval
twice as wide as before, and the class marks are calculated by taking the mid-
point of the new class intervals. Thus, to find the class mark of the first class,
we take the midpoint between 3.25 and 3.45. which turns out to be 3.35. We
note that the class mark has one more decimal place than the original measure-
ments. We should not now be led to belicve that we have suddenly achieved
greater precision. Whenever we designate a class interval whosce last significant
digit is even (0.2 in this case), the class mark will carry one more decimal place
than the original measurcments. On the right side of the table in Box 2.1 the
data arc grouped once again, using a class interval of 0.3. Because of the odd
last significant digit, the class mark now shows as many decimal places as the
original variates, the midpoint between 3.25 and 3.55 being 3.4.

Once the implied class limits and the class mark for the lirst class have
been correctly found, the others can be written down by inspection without
any special computation. Simply add the class interval repeatedly to cach of
the values. Thus, starting with the lower limit 3.25, by adding 0.2 we obtan
3.45.3.65. 385, and so Torth; similarly, for the class marks, we obtain 3.35, 3.55,
3.75, and so forth. Tt should be obvious that the wider the class intervals, the
more compact the data become but also the less precise. However, looking at
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BOX 2.1

Preparation of frequency distribution and grouping into fewer classes with wider class intervals.

Twenty-five femur lengths of the aphid Pemphigus. Measurements are in mm x 1071,

Original measurements

3.8 36 43 35 43

33 4.3 39 43 38

39 44 3.8 47 36

4.1 44 4.5 3.6 38

44 4.1 36 42 39

Grouping into 8 classes Grouping into 5 classes
Original frequency distribution of interval 0.2 of interval 0.3
Implied Tally Implied Class Tally Implied Class  Tally
limits Y marks  f limits mark  marks  f limits mark  marks f

3.25-3.35 33 | 1 3.25-3.45 335 | 1 3.25-3.55 34 || 2
3.35-345 34 0
345-355 35 | 1 345-365 355 W 5
3.55-3.65 36 H 4 3.55-3.85 37 j,Hﬂ I} 8
3.65-3.75 37 0 3.65~3.85 375 || ” 4
375-385 38 ||| 4
3.85-395 39 H 3 3.85-4.05 395 HI 3 3.85-4.15 a0 Y 5
395-4.05 40 0
4.05-4.15 4.1 [l 2 4.05-4.25 415 | | | 3
4.15-4.25 42 | 1 4.15-445 43 J,H‘]' ] H 8
4.25-4.35 43 HH 4 4.25-445 435 M| 7
435-445 44 HI 3
4.45-4.55 4.5 | 1 4.45-4.65 455 [ i 4.45-4.75 4.6 ! I 2
4.55-4.65 46 0
4.65-4.75 4.7 | 1 4.65-4.85 475 | _1_ N
L 25 25 2

Source: Data from R. R. Sokal.

Histogram of the original frequency distribution shown above and of the grouped distributionA with 5 classes. ?.int: be?aw
abscissa shows class marks for the grouped frequency distribution. Shaded bars represent original frequency distribution;
hollow bars represent grouped distribution.

For a detailed account of the process of grouping, see Section 2.5.
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the frequency distribution of aphid femur lengths in Box 2.1, we notice that the
initial rather chaotic structure is being simplified by grouping. When we group
the frequency distribution into five classes with a class interval of 0.3 units, it
becomes notably bimodal (that is, it possesses two peaks of frequencies).

In setting up frequency distributions, from 12 to 20 classes should be estab-
lished. This rule need not be slavishly adhered to, but it should be employed
with some of the common sense that comes from experience in handling statis-
tical data. The number of classes depends largely on the size of the sample
studied. Samples of less than 40 or 50 should rarely be given as many as 12
classes, since that would provide too few frequencies per class. On the other
hand, samples of several thousand may profitably be grouped into more than
20 classes. If the aphid data of Box 2.1 need to be grouped, they should probably
not be grouped into more than 6 classes.

If the original data provide us with fewer classes than we think we should
have, then nothing can be done if the variable is meristic, since this is the nature
of the data in question. However, with 4 continuous variable a scarcity of classes
would indicate that we probably had not made our measurements with sufficient
precision. If we had followed the rules on number of significant digits for mea-
surements stated in Section 2.3, this could not have happened.

Whenever we come up with more than the desired number of classes, group-
ing should be undertaken. When the data are meristic, the impled limits of
continuous variables are meaningless. Yet with many meristic variables, such
as a bristle number varying from a low of 13 to a high of 81, it would probably
be wise to group the variates into classes, each containing several counts. This
can best be done by using an odd number as a class interval so that the class
mark representing the data will be a whole rather than a fractional number.
Thus. if we were to group the bristle numbers 13. 14, 15, and 16 into one class,
the class mark would have to be 14.5, a meaningless value in terms of bristle
number. It would therefore be better (o use a class ranging over 3 bristles or
5 bristles, giving the integral value 14 or 15 as a class mark.

Grouping data into requency distributions was necessary when compu-
tations were done by pencil and paper. Nowadays even thousands of variates
can be processed etficiently by computer without prior grouping. However, fre-
quency distributions are still extremely useful as a tool for data analysis. This
is especially true in an age in which it is all too casy for a researcher to obtain
a numerical result from a computer program without cever really examining the
data for outlicrs or for other ways in which the sample may not conform to
the assumptions of the statistical methods.

Rather than using tally marks to set up a frequency distribution, as was
done in Box 2.1, we can employ Tukey’s stem-and-leaf display. This technique
is an improvement, since it not only results in a frequency distribution of the
variates of a sample but also permits casy checking of the variates and ordering
them into an array (neither of which is possible with tally marks). This (echnique
will therefore be useful in computing the median of a sample (sec Section 3.3)

and in computing various tests that require ordered arrays of the sample variates
fomnmn Contamneme 1TNT and 1 ]
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To learn how to construct a stem-and-leaf display, let us look ahead to
Table 3.1 in the next chapter, which lists 15 blood neutrophil counts. The un-
ordered measurements are as follows: 4.9, 4.6, 5.5, 9.1, 16.3, 12.7, 6.4, 7.1, 2.3,
3.6, 18.0, 3.7, 7.3, 4.4, and 9.8. To prepare a stem-and-leaf display, we scan the
variates in the sample to discover the lowest and highest leading digit or digits.
Next, we write down the entire range of leading digits in unit increments to
the left of a vertical line (the “stem”™), as shown in the accompanying illustration.
We then put the next digit of the first variate (a “leaf™) at that level of the stem
corresponding to its leading digit(s). The first observation in our sample is 4.9.
We therefore place a 9 next to the 4. The next variate is 4.6. It is entered by
finding the stem level for the leading digit 4 and recording a 6 next to the 9
that is already there. Similarly, for the third variate, 5.5, we record a 5 next to
the leading digit 5. We continue in this way until all 15 variates have been
entered (as “leaves”) in sequence along the appropriate leading digits of the stem.
The completed array is the equivalent of a frequency distribution and has the
appearance of a histogram or bar diagram (see the illustration). Moreover, it
permits the efficient ordering of the variates. Thus, from the completed array
it becomes obvious that the appropriate ordering of the 15 variates is 2.3, 3.6,
3.7.44,46,49, 55,64, 7.1,73.9.1.9.8, 12.7, 16.3, 18.0. The median can easily
be read off the stem-and-leaf display. It is clearly 6.4. For very large samples,
stem-and-leaf displays may become awkward. In such cases a conventional
frequency distribution as in Box 2.1 would be preferable.

Completed array

Step | Step2 ... Step7 L. {(Step 15)
2 2 2 203

3 3 3 3|67
419 4 |96 4| 96 41964
5 5 515 515

6 6 6| 4 6|4

7 7 7 7113
S ¥

9 9 901 9| I8
10 10 10 10

11 11 11 11

12 12 1217 127
13 13 13 13

14 14 14 14

15 15 ) 15

16 16 163 16 |3
17 17 17 |7

18 18 18 1810

When the shape of a frequency distribution is of particular interest, we may
wish 1o present the distribution in graphic form when discussing the results.
This is generally done by means of frequency diagrams, of which there are two
common types. For a distribution of meristic data we employ a har diagram,
o I, . N
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the variable (in our case, thc number of plants per quadrat), and the ordinate
represents the frequencies. The important point about such a diagram is that
the bars do not touch each other, which indicates that the variablc is not con-
tinuous. By contrast, continuous variables, such as the frequency distribution
of the femur lengths of aphid stem mothers, are graphed as a histogram. In a
histogram the width of each bar along the abscissa represents a class interval
of the frequency distribution and the bars touch each other to show that the
actual limits of the classes are contiguous. The midpoint of the bar corresponds
to the class mark. At the bottom of Box 2.1 are shown histograms of the fre-
quency distribution of the aphid data, ungrouped and grouped. The height of
each bar represents the frequency of the corresponding class.

To illustrate that histograms are appropriate approximations to the con-
tinuous distributions found in nature, we may take a histogram and make the
class intervals more narrow, producing more classes. The histogram would then
clearly have a closer fit to a continuous distribution. We can continue this pro-
cess until the class intervals become infinitesimal in width. At this point the
histogram becomes the continuous distribution of the variable.

Occasionally the class intervals ol a grouped continuous frequency distri-
bution arc unequal. For instance, in a frequency distribution of ages we might
have more detail on the dillerent ages of young individuals and less accurate
identification of the ages of old individuals. In such cases, the class intervals
for the older age groups would be wider, those for the younger age groups, nar-
rower. In representing such data, the bars of the histogram are drawn with
dilferent widths.

Figure 2.3 shows another graphical mode of representation of a frequency
distribution of a continuous variable (in this case, birth weight in infants). As
we shall see Tater the shapes of distributions seen in such frequency polygons
can reveal much about the biological situations affecting the given variable.

2.6 The handling of data

Data must be handled skillfully and expeditiously so that statistics can be prac-
ticed successfully. Readers should thercfore acquaint themselves with the var-

o I R T Y .t
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In this book we ignore “pencil-and-paper” short-cut methods for computa-
tions, found in carlier textbooks of statistics, since we assume that the student
has access to a calculator or a computer. Some statistical methods are very
easy to use because special tables exist that provide answers for standard sta-
tistical problems; thus, almost no computation is involved. An example is
Finney’s table, a 2-by-2 contingency table containing small frequencies that is
used for the test of independence (Pearson and Hartley, 1958, Table 38). For
small problems, Finney’s table can be used in place of Fisher’s method of finding
exact probabilities, which is very tedious. Other statistical tcchniques are so
easy to carry out that no mechanical aids are needed. Some are inherently
simple, such as the sign test (Section 10.3). Other methods are only approximate
but can often serve the purpose adequately; for example, we may sometimes
substitutc an casy-to-evaluate median (defined in Section 3.3) for the mean
{described in Sections 3.1 and 3.2) which requires computation.

We can use many new types of equipment to perform statistical computa-
tions—many more than we could have when Introduction to Biostutistics was
first published. The once-standard clectrically driven mechanical desk calculator
has completely disappeared. Many new electronic devices, from small pocket
calculators to larger desk-top computers, have replaced it. Such devices are so
diverse that we will not try to survey the field here. Even if we did, the rate of
advance in this arca would be so rapid that whatever we might say would soon
become obsolete.

We cannot really draw the line between the more sophisticated electronic
calculators, on the one hand, and digital computers. There 1s no abrupt increasc
in capabilitics between the more versatile programmable calculators and the
simpler microcomputers, just as there is none as we progress from microcom-
puters to minicomputers and so on up to the large computers that one associates
with the central computation center of a large university or rescarch laboratory.
All can perform computations automatically and be controlled by a set of
detailed instructions prepared by the user. Most of these devices, including pro-
grammable small calculators, are adequate for all of the computations described
in this book, cven for large sets of data.

The material in this book consists of relatively standard statistical
computations that arc available in many statistical programs. BIOMstat* is
a statistical software package that includes most of the statistical methods
covered i this book.

The use of modern data processing procedures has one mherent danger.
One can all too casily cither feed i erroncous data or choose an inappropriate
program. Uscrs must sclect programs carefully to ensure that those programs
perform the desired computations, give numerically rehable results, and are as
free from error as possible. When using a program for the first time, onc should
test it using data from textbooks with which one is familiar. Some prograins

* For information or to order. contact Exeter Sottware. Website:htp://www.exctersoltware.com. F-mail:
sales@exctersottware.com. These progriams are compatible with Windows XPand Vista.
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are notorious because the programmer has failed to guard against excessive
rounding errors or other problems. Users of a program should carefully check
the data being analyzed so that typing errors are not present. In addition, pro-
grams should help users identify and remove bad data values and should provide
them with transformations so that they can make sure that their data satisfy
the assumptions of various analyses.

Exercises

21

22

24
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2.7
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Round the following numbers to three significant figures: 106.55, 0.06819, 3.0495,
7815.01, 2.9149, and 20.1500. What are the implied limits before and after round-
ing? Round these same numbers to one decimal place.

ANS. For the first value: 107; 106.545-106.555; 106.5-107.5; 106.6
Differentiate between the following pairs of terms and give an example of each.
(a) Statistical and biological populations. (b) Variate and individual. (¢) Accuracy
and precision {repeatability). (d) Class interval and class mark. (e} Bar diagram
and histogram. () Abscissa and ordinate.

Given 200 measurements ranging from 1.32 to 2.95 mm, how would you group
them into a frequency distribution? Give class limits as well as class marks.
Group the following 40 measurements ol interorbital width of a sample of do-
mestic pigeons into a {requency distribution and draw its histogram (data from
Olson and Miller, 1958). Measurements are in millimetcrs.

12.2 129 11.8 19 11.6 11.4 123 12.2 11.8 11.8
10.7 1.5 1.3 11.2 11.6 119 133 11.2 10.5 1.1
12.1 1.9 104 10.7 10.8 11.0 11.9 10.2 10.9 1.6
10.8 116 10.4 10.7 12.0 124 11.7 11.8 13 1.t

How precisely should you measure the wing length of a species of mosquitoes
in a study of geographic variation if the smallest specimen has a length of about
2.8 mm and the largest a length ol about 3.5 mm?

Transform the 40 measurements in Exercise 2.4 into common logarithms (use a
table or calculator) and make a frequency distribution of these transformed
variates. Comment on the resulting change in the pattern of the frequency dis-
tribution from that found before.

For the data of Tables 2.1 and 2.2 identify the individual observations, samples,
populations. and variables.

Make a stem-and-lcaf display of the data given in Excrcise 2.4.

The distribution of ages of striped bass captured by hook and line from the East
River and the Hudson River during 1980 were reported as follows (Young, 1981):

Age /
| 13
2 49
3 96
4 28
S 16
6 &

Show this distribution in the form of a bar diagram.

CHAPTER 3

Descriptive Statistics

An carly and fundamental stage in any science 1s the dc.scriplivc‘ stage. Until
phenomena can be accurately described, an analysis of their causes 18 p_rcmature.
The question “What?” comes before “How?” Unless we know something al?ou(
the usual distribution of the sugar content of blood in a population of guinea
pigs, as well as its fluctuations from day to day and within days, we .shaII be
unable to ascertain the effect of a given dose of a drug upon this variable. In
a sizable sample it would be tedious to obtain our knowledge of the material
by contemplating each individual observation. We need some form of summary
to permit us to deal with the data in manageable form, as well as to be able
to share our findings with others in scientific talks and publications. A his-
togram or bar diagram of the frequency distribution would be one type of
summary. However, for mosl purposes, a numerical summary 1s needed to
describe concisely, yet accurately, the properties of the observed frequency
distribution. Quantities providing such a summary are called descriptive sta-
tistics. This chapter will introduce you to some of them and show how they
are computed.

Two kinds of descriptive statistics will be discussed in this chapter: statistics
of location and statistics of dispersion. The statistics of location (also known as
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measures of central tendency) describe the position of a sample along a given
dimension representing a variable. For example, after we measure the length of
the animals within a sample, we will then want to know whether the animals
are closer, say, to 2 cm or to 20 cm. To express a representative value for the
sample of observations—for the length of the animals—we use a statistic of
location. But statistics of location will not describe the shape of a frequency
distribution. The shape may be long or very narrow, may be humped or U-
shaped, may contain two humps, or may be markedly asymmetrical. Quanti-
tative measures of such aspects of frequency distributions are required. To this
end we need to define and study the statistics of dispersion.

The arithmetic mean, described in Section 3.1, is undoubtedly the most
important single statistic of location, but others (the geometric mean, the
harmonic mean, the median, and the mode) are briefly mentioned in Sections
3.2, 3.3, and 3.4. A simple statistic of dispersion (the range) is briefly noted in
Section 3.5, and the standard deviation, the most common statistic for describing
dispersion, is explained in Section 3.6. Our first encounter with contrasts be-
tween sample statistics and population parameters occurs in Section 3.7, in
connection with statistics of location and dispersion. In Section 3.8 there is a
description of practical methods for computing the mean and standard devia-
tion. The coefficient of variation (a statistic that permits us to compare the
relative amount of dispersion in different samples) is explained in the last section
(Section 3.9).

The techniques that will be at your disposal after you have mastered this
chapter will not be very powerful in solving biological problems, but they will
be indispensable tools for any further work in biostatistics. Other descriptive
statistics, of both location and dispersion, will be taken up in later chapters.

An important note: We shall first encounter the use of logarithms in this
chapter. To avoid confusion, common logarithms have been consistently ab-
breviated as log, and natural logarithms as In. Thus, log x means log,, x and
In x means log, x.

3.1 The arithmetic mean

The most common statistic of location is familiar to everyone. It is the arithmetic
mean, commonly called the mean or average. The mean is calculated by summing
all the individual observations or items of a sample and dividing this sum by
the number of items in the sample. For instance, as the result of a gas analysis
in a respirometer an investigator obtains the following four readings of oxygen
percentages and sums them:

14.9
10.8
12.3
233

Sum = ()17?
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The investigator calculates the mean oxygen percentage as the sum of the four
jitems divided by the number of items. Thus the average oxygen percentage is

Mean = 843 = 15325%

Calculating a mean presents us with the opportunity for learning statistical
symbolism. We have already seen (Section 2.2) that an individual observation
is symbolized by Y;, which stands for the ith observation in the sample. Four
observations could be written symbolically as follows:

Y, Y, Y, Y,

We shall define n, the sample size, as the number of items in a sample. In this
particular instance, the sample size n is 4. Thus, in a large sample, we can
symbolize the array from the first to the nth item as follows:

Y, Yoo Y,

When we wish to sum items, we use the following notation:

H

i=n

Y=Y+ + - +7Y

I
—

i

The capital Greek sigma, X, simply means the sum of the items indicated. The
i = 1 means that the items should be summed, starting with the first one and
ending with the nth one, as indicated by the i = n above the X. The subscript
and superscript are necessary to indicate how many items should be summed.
The “i = ” in the superscript is usually omitted as superfluous. For instance, if
we had wished to sum only the first threc items, we would have written £7_, Y.
On the other hand, had we wished to sum all of them except the first onc, we
would have written X7_, Y.. With some exceptions (which will appear in later
chapters), it is desirable to omit subscripts and superscripts, which generally
add to the apparent complexity of the formula and, when they are unnecessary,
distract the student’s attention from the important relations expressed by the
formula. Below are seen increasing simplifications of the complete summation
notation shown at the extreme left:

V=3 %=Yy=yv=yy

i=n

i=

The third symbol might be interpreted as meaning, “Sum the Y,’s over all
available values of i This is a frequently used notation, although we shall
not employ it in this book. The next, with n as a superscript, tells us to sum n
items of Y: note that the i subscript of the Y has been dropped as unncces-
sary. Finally, the simplest notation is shown at the right. It mercly says sum
the Y's. This will be the form we shall use most frequently: if a summation sign
precedes a variable, the summation will be understood to be over n items (all
the items in the sample) unless subscripts or superscripts specifically tell us
otherwise.
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We shall use the symbol Y for the arithmetic mean of the variable Y. Its
formula is ‘written as follows:

o2l _lyy (3.1)
n n
This formula tells us, “Sum all the (n) items and divide the sum by n."

"The mean of a sample is the center of gravity of the observations in the sample.
If you were to draw a histogram of an observed frequency distribution on a
sheet of cardboard and then cut out the histogram and lay it flat against a
blackboard, supporting it with a pencil beneath, chances are that it would be
out of balance, toppling to either the left or the right. If you moved the sup-
porting pencil point to a position about which the histogram would exactly
balance, this point of balance would correspond to the arithmetic mean.

We often must compute averages of means or of other statistics that may
differ in their reliabilities because they are based on different sample sizes. At
other times we may wish the individual items to be averaged to have different
weights or amounts of influence. In all such cases we compute a weighted
average. A general formula for calculating the weighted average of a set of
values Y, is as follows:

Vo= z":" w. Y,
S,

where n variates, each weighted by a factor w,, are being averaged. The values
of ¥, in such cases are unlikely to represent variates. They are more likely to
be sample means Y, or some other statistics of different reliabilities.

The simplest case in which this arises is when the Y, are not individual
variates but are means. Thus, if the following three means are based on differing
sample sizes, as shown,

(3.2)

¥ n,
3.85 12
5.21 25
4.70 ¥

their weighted average will be

_(I2)3.85) + (25(5.21) + (8)4.70) 21405 ;

v 12425+ 8 = 45 A0
Note that in this example, computation of the weighted mean is exactly equiv-
alent to adding up all the original measurements and dividing the sum by the
total number of the measurements. Thus, the sample with 25 observations,
having the highest mean, will influence the weighted average in proportion to
1S s17¢.
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3.2 Other means

We shall see in Chapters 10 and 11 that variables are sometimes transformed
into their logarithms or reciprocals. If we calculate the means of such trans-
formed variables and then change the means back into the original scale, these
means will not be the same as if we had computed the arithmetic means of the
original variables. The resulting means have received special names in statistics.
The back-transformed mean of the logarithmically transformed variables is
called the geometric mean. It is computed as follows:

1
GM, = antilog - Y log Y (3.3)
n

which indicates that the geometric mean GM is the antilogarithm of the mean
of the logarithms of variable Y. Since addition of logarithms is equivalent to
multiplication of their antilogarithms, there is another way of representing this
quantity; it is

GM, = J/Y,Y,Y, - Y, (3.4)

The geometric mean permits us to become familiar with another operator
symbol: capital pi, I1, which may be read as “product.” Just as £ symbolizes
summation of the items that follow it, so Il symbolizes the multiplication of
the items that follow it. The subscripts and superscripts have exactly the same
meaning as in the summation case. Thus, Expression (3.4) for the geometric
mean can be rewritten more compactly as follows:

GM, = Jﬂ Y, (3.4a)
i=1

The computation of the geometric mean by Expression (3.4a) is quite tedious.
In practice, the gcometric mean has to be computed by transforming the variates
into logarithms.

The rectprocal of the arithmetic mean of reciprocals is called the harmonic
mean, If we symbolize it by H,, the formula for the harmonic mean can be
written in concise form (without subscripts and superscripts) as

. 3.5
H, Ly (3:5)

You may wish to convince yourself that the gcometric mean and the harmonic
mean of the four oxygen percentages are 14.65% and 14.09%, respectively. Un-
less the individual items do not vary, the geometric mean is always less than
the arithmetic mean, and the harmonic mean is always less than the geometric
mean.

Some beginners in statistics have difficulty in accepting the fact that mea-
sures of location or central tendency other than the arithmetic mean are per-
missible or even desirable. They feel that the arithmetic mean is the “logical”
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average. and that any other mean would be a distortion. This whole problem
relates to the proper scale of measurement for representing data; this scale is
not always the linear scale familiar to everyone, but is sometimes by preference
a logarithmic or reciprocal scale. If you have doubts about this question, we
shall try to allay them in Chapter 10, where we discuss the reasons for trans-
forming variables.

3.3 The median

The median M is a statistic of location occasionally useful in biological research.
[t is defined as that value of the variable (in an ordered array) that has an equal
number of items on either side of it. Thus, the median divides a frequency dis-
tribution into two halves. In the following sample of five measurements,

14,15, 16, 19, 23

M = 16, since the third observation has an equal number of observations on
both sides of it. We can visualize the median easily if we think of an array
from largest to smallest—for example, a row of men lined up by their heights.
The median individual will then be that man having an equal number of men
on his right and left sides. His height will be the median height of the sam-
ple considered. This quantity is easily evaluated from a sample array with
an odd number of individuals. When the number in the sample is even, the
median is conventionally calculated as the midpoint between the (n/2)th and
the [(n/2) + 1]th variate. Thus, for the sample of four measurements

14, 15, 16, 19

the median would be the midpoint between the second and third items, or 15.5.

Whenever any one valuc of a variate occurs more than once, problems may
develop in locating the median. Computation of the median item becomes more
involved because all the members of a given class in which the median item is
located will have the same class mark. The median then is the (7/2)ih variate
in the frequency distribution. It is usually computed as that point between the
class limits of the median class where the median individual would be located
(assumung the individuals in the class were evenly distributed).

The median is just one of a family of statistics dividing a frequency dis-
tribution into equal areas. It divides the distribution into two halves. The three
quartiles cut the distribution at the 25, 50, and 75% points—that is, at points
dividing the distribution into first, second, third, and fourth quarters by arca
{and frequencies). The second quartile is, of course, the median. {There are also
quintiles, deciles. and percentiles, dividing the distribution into 5. 10, and 100
cqual portions, respectively.)

Mcdians arc most often used for distributions that do not conform to the
standard probability models, so that nonparametric methods (sec Chapter 10)
must be used. Sometimes the median is a more representative measure of loca-
tion than the arithmetic mean. Such instances almost always involve asymmetric
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distributions. An often quoted example from economics would be a suitable
measure of location for the “typical” salary of an employee of a corporation.
The very high salaries of the few senior executives would shift the arithmetic
mean, the center of gravity, toward a completely unrepresentative value. The
median, on the other hand, would be little affected by a few high salaries; it
would give the particular point on the salary scale above which lie 50% of the
salaries in the corporation, the other half being lower than this figure.

In biology an example of the preferred application of a median over the
arithmetic mean may be in populations showing skewed distribution, such as
weights. Thus a median weight of American males 50 years old may be a more
meaningful statistic than the average weight. The median is also of importance
in cases where it may be difficult or impossible to obtain and measure all the
items of a sample. For example, suppose an animal behaviorist is studying
the time it takes for a sample of animals to perform a certain behavioral step.
The variable he is measuring is the time from the beginning of the experiment
until each individual has performed. What he wants to obtain is an average
time of performance. Such an average time, however, can be calculated only
after records have been obtained on all the individuals. It may take a long time
for the slowest amimals to complete their performance, longer than the observer
wishes to spend. (Some of them may never respond appropriately, making the
computation of a mean impossible.) Therefore, a convenient statistic of location
to describe these animals may be the median time of performance. Thus, so
long as the observer knows what the total sample size is, he need not have
measurements for the right-hand tail of his distribution. Simmlar examples would
be the responses to a drug or poison in a group of individuals (the median
lethal or effective dose. LDs, or EDg,) or the median time for a mutation to
appear i a number of lines of a species.

3.4 The mode

The mode refers (o the value represented by the greatest number of individuals.
When seen on a frequency distribution, the mode is the value of the variable
at which the curve peaks. In grouped frequency distributions the mode as a
point has little meaning. [t usually suffices to dentfy the modal class. [n biology,
the mode does not have many applications.

Distributions having two peaks (cqual or unequal in height) are called
bimodal; those with more than two peaks are multimodal. In those rare dis-
tributions that are U-shaped, we refer to the low pont at the middle of the
distribution as an antimode.

In evaluating the relative merits of the arithimetic mean, the median, and
the mode, a number of considerations have to be kept in mind. The mean is
generally preferred in statistics, sinee it has a smaller standard crror than other
statistics of location (see Section 6.2), it is easier (o work with mathematically,
and 1t has an additional desirable property (explained in Scetion 6.1y it will
tend to be normally distributed cven if the original data are not. The mean is
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FIGURE 3.1

An asymmetrical frequency distribution (skewed to the right) showing location of the mean, median,
and mode. Percent butterfat in 120 samples of milk (from a Cunadian cattle breeders’ record book).

markedly affected by outlying observations; the median and mode are not. The
mean is generally more sensitive to changes in the shape of a frequency distri-
bution, and 1f it is desired to have a statistic reflecting such changes, the mean
may be preferred.

In symmetrical, unimodal distributions the mean, the median, and the mode
arc all identical. A prime example of this is the well-known normal distribution
of Chapter 5. In a typical asymmetrical distribution, such as the one shown in
Figure 3.1, the relative positions of the mode, median, and mean are generally
these: the mean is closest to the drawn-out tail of the distribution, the mode 15
farthest, and the median is between these. An easy way to remember this sc-
quence is to recall that they occur in alphabetical order from the longer tail of
the distribution.

3.5 The range

We now turn to measures of dispersion. Figure 3.2 demonstrates that radically
different-looking distributions may possess the identical arithmetic mean. It s

thaorofives oahvranie that ot lhoe e f . iy Aictethitinee aaand o Coa il
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Frequency

FIGURE 3.2 o .
Three frequency distributions having identical means and sample sizes but differing in dispersion

pattern.

Onc simple mecasurc of dispersion is the range, which is delined as the
difference between the largest and the smallest items in a sample. Thus, the range
of the four oxygen percentages listed carher (Section 3.1) 1s

Range = 23.3 — 108 = 12.5%
and the range of the aphid femur lengths (Box 2.1) is
Range = 4.7 — 3.3 = 1.4 units of 0.1 mm
Since the range is a measure of the span of the vartates along the scale of the
variable, it is in the same units as the original measurements. The range is
clearly affected by cven a single outlying value and for this reason is only a
roneh estimate of the disnersion ol all the items in the samole.
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3.6 The standard deviation

We desire that a measure of dispersion take all items of a distribution into

consideration, weighting each item by its distance from the center of the distri-

bution. We shall now try to construct such a statistic. In Table 3.1 we show a

sample of 15 blood neutrophil counts from patients with tumors. Column (1)

shows the variates in the order in which they were reported. The computation

gf the mean is shown below the table. The mean neutrophil count turns out to
e 7.713.

The distance of each variate from the mean is computed as the following

deviation:
y=Y-Y

Each individual deviation, or deviate, is by convention computed as the indi-
vidual observation minus the mean, Y — Y, rather than the reverse, ¥ — Y.
Deviates are symbolized by lowercase letters corresponding to the capital letters
of the variables. Column (2) in Table 3.1 gives the deviates computed in this
manner.

We now wish to calculate an average deviation that will sum all the deviates
and divide them by the number of deviates in the sample. But note that when

TABLE 3.1

The standard deviation. Long method, not recommended for
hand or calculator computations but shown here to illus-
trate the meaning of the standard deviation. The data are
blood neutrophil counts (divided by 1000) per microliter, in
15 patients with nonhematological tumors.

(/) ) (3)

Y y=Y—-Y y?
49 —2.81 79148
4.6 —3.11 9.6928
5.5 —2.21 4.8988
9.1 1.39 1.9228
16.3 8.59 73.7308
12.7 4.99 24,8668
6.4 —1.31 1.7248
7.1 -0.61 0.3762
23 —5.41 29.3042
3.6 —4.11 169195
18.0 10.29 105.8155
37 —4.01 16.1068
73 —0.41 0.1708
44 —-3.31 10.9782
9.8 2.09 4.3542
Total 1157 0.05 308.7770

Mean Y':Z‘y - II17'-—-7.713
17 15

Chrviw.e IR EETTRPCT R EPERATOR B
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we sum our deviates, negative and positive deviates cancel out, as is shown
by the sum at the bottom of column (2); this sum appears to be unequal to
zero only because of a rounding error. Deviations from the arithmetic mean
always sum to zero because the mean is the center of gravity. Consequently,
an average based on the sum of deviations would also always equal zero. You
are urged to study Appendix Al.1, which demonstrates that the sum of deviations
around the mean of a sample is equal to zero.

Squaring the deviates gives us column (3) of Table 3.1 and enables us to
reach a result other than zero. (Squaring the deviates also holds other mathe-
matical advantages, which we shall take up in Sections 7.5 and 11.3.) The sum
of the squared deviates (in this case, 308.7770) is a very important quantity in
statistics. It is called the sum of squares and is identified symbolically as Zy?.
Another common symbol for the sum of squares is SS.

The next step is to obtain the average of the n squared deviations. The
resulting quantity is known as the variance, or the mean square:

Ty 3087770
n 15

Variance = 20.5851

The variance is a measure of fundamental importance in statistics, and we
shall employ it throughout this book. At the moment, we need only remember
that because of the squaring of the deviations, the variance is expressed in
squared units. To undo the effect of the squaring, we now take the positive
square root of the variance and obtain the standard deviation:

Standard deviation = +\/§h = 45371
n

Thus, standard deviation is again expressed in the original units of measure-
ment, since it is a square root of the squarcd units of the variance.

An important note: The technique just learned and illustrated in Table 3.1
1s not the simplest for direct computation of a variance and standard deviation.
However, it is often used in computer programs, where accuracy of computa-
tions is an important consideration. Alternative and simpler computational
mcthods are given in Section 3.8.

The obscrvant rcader may have noticed that we have avoided assigning
any symbol to either the variance or the standard deviation. We shall explain
why in the next section.

3.7 Sample statistics and parameters

Up to now we have calculated statistics from samples withoul giving too much
thought to what these statistics represent. When correctly calculated, a mean
and standard deviation will always be absolutely true measures of location and
dispersion for the samples on which they are based. Thus, the true mean of the
four oxygen percentage readings in Section 3.1 is 15.325%. The standard devia-
tion of the 15 neutrophil counts is 4.537. However, only rarely in biology (or
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only as descriptive summaries of the samples we have studied. Almost always we
are interested in the populations from which the samples have been taken. What
we want to know is not the mean of the particular four oxygen precentages,
but rather the true oxgyen percentage of the universe of readings from which
the four readings have been sampled. Similarly, we would like to know the true
mean neutrophil count of the population of patients with nonhematological
tumors, not merely the mean of the 15 individuals measured. When studying
dispersion we generally wish to learn the true standard deviations of the popu-
lations and not those of the samples. These population statistics, however, are
unknown and (generally speaking) are unknowable. Who would be able to col-
lect all the patients with this particular disease and measure their neutrophil
counts? Thus we need to use sample statistics as estimators of population statis-
tics or parameters.

It is conventional in statistics to use Greek letters for population parameters
and Roman letters for sample statistics. Thus, the sample mean Y estimates p,
the parametric mean of the population. Similarly, a sample variance, symbolized
by 52, estimates a parametric variance, symbolized by o2. Such estimators should
be unbiased. By this we mean that samples (regardless of the sample size) taken
from a population with a known parameter should give sample statistics that,
when averaged, will give the parametric value. An estimator that does not do
so is called biased.

The samplc mean Y is an unbiased estimator of the parametric mean p.
However, the sample variance as computed in Section 3.6 is not unbiased. On
the average, it will underestimate the magnitude of the population variance a?.
To overcome this bias, mathematical statisticians have shown that when sums
of squares are divided by n — I rather than by n the resulting sample vartances
will be unbiased estimators of the population variance. For this rcason, it is
customary to compute variances by dividing the sum of squares by n — 1. The
formula for the standard deviation s thercfore customarily given as follows:

2.0 (3.6)

In the neutrophil-count data the standard deviation would thus be computed as

30K8.7770
5= 14 = 4.6963

We note that this value is slightly larger than our previous estimate of 4.537.
Of course, the greater the sample size, the less diflerence there will be between
division by n and by # - 1. However, regardless of sample size, 11 1s good
practice to divide a sum of squares by n — 1 when computing a variance or
standard deviation. It may be assumed that when the symbol s is encountered,
it refers to a variance obtained by division of the sum of squares by the degrees
of freedom, as the quantity n -~ 1 is generally referred to.

Division of the sum of squares by i is appropriate only when the interest
of the investigator 1s limited to the sample at hand and to its variance and
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standard deviation as descriptive statistics of the sample. This would be in
contrast to using these as estimates of the population parameters. There are
also the rare cases in which the investigator possesses data on the entire popu-
lation; in such cases division by n is perfectly justified, because then the inves-
tigator is not estimating a parameter but is in fact evaluating it. Thus the
variance of the wing lengths of all adult whooping cranes would be a parametric
value; similarly, if the heights of all winners of the Nobel Prize in physics had
been measured, their variance would be a parameter since it would be based
on the entire population.

3.8 Practical methods for computing mean and standard deviation

Three steps are necessary for computing the standard deviation: (1) find X y2,
the sum of squares; (2) divide by n — 1 to give the variance; and (3) take the
square root of the variance to obtain the standard deviation. The procedure
used to compute the sum of squares in Section 3.6 can be expressed by the
following formula:

Yy =Y - ) (3.7)

This formulation explains most clearly the meaning of the sum of squares, al-
though it may be inconvenient for computation by hand or calculator, since
one must first compute the mean before one can square and sum the deviations,
A quicker computational formula for this quantity is

: ., Yy
Yr=Yyr - L” g (3.8)

Let us see exactly what this formula represents. The first term on the right side
of the cquation, £Y?2, is the sum of all individual Y’s, cach squarced, as follows:

IREER ST ER SRR

When referred to by name, £Y? should be called the “sum of Y squared™ and
should be carefully distinguished from T y?, “the sum ol squares of Y.” These
names are unfortunate, but they are too well established to think of amending
them. The other quantity in Expression (3.8) is (£Y)?/n. It is often called the
correction term (CT). The numerator of this term is the squarc of the sum of the
Y’s; that is, all the Y's are first summed. and this sum is then squared. In general,
this quantity is different from Y2, which first squares the Y’s and then sums
them. These two terms arc identical only il all the Y's arc equal. If you are not
certain about this, you can convince yourself of this fact by calculating these
two quantities for a few numbers.

The disadvantage of Expression (3.8) is that the quantitics X Y2and (2Y)*/n
may both be quite large, so that accuracy may be lost in computing their dil-
ference unless one takes the precaution of carrying sufficient significant figures.

Why is Expression (3.8) identical with Expression (3.7)? The proofl of this
identity is very simple and is given in Appendix A1.2. You are urged to work
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through it to build up your confidence in handling statistical symbols and
formulas.

It is sometimes possible to simplify computations by recoding variates into
simpler form. We shall use the term additive coding for the addition or sub-
traction of a constant (since subtraction is only addition of a negative number).
We shall similarly use multiplicative coding to refer to the multiplication or
division by a constant (since division is multiplication by the reciprocal of the
divisor). We shall use the term combination coding to mean the application of
both additive and multiplicative coding to the same set of data. In Appendix
A1.3 we examine the consequences of the three types of coding in the com-
putation of means, variances, and standard deviations.

For the case of means, the formula for combination coding and decoding 1s
the most generally applicable one. If the coded variable is Y. = D(Y + C), then

5 Y
Y=2-cC
D

where C is an additive code and D is a multiplicative code.

On considering the effects of coding variates on the values of variances and
standard deviations, we find that additive codes have no effect on the sums of
squares, variances, or standard deviations. The mathematical proof is given in
Appendix Al.3, but we can see this intuitively, because an additive code has
no eflect on the distance of an item from its mean. The distance from an item
of 15 to its mean of 10 would be 5. If we were to code the variates by sub-
tracting a constant of 10, the item would now be 5 and the mean zcro. The
difference between them would still be 5. Thus, if only additive coding is em-
ployed, the only statistic in need of decoding is the mean. But multiplicative
coding does have an effect on sums of squares, variances, and standard devia-
tions. The standard deviations have to be divided by the multiplicative code,
Just as had to be donc for the mean. However, the sums of squares or variances
have to be divided by the multiplicative codes squared, because they are squared
terms, and the multiplicative factor becomes squared during the operations. In
combination coding the additive code can be ignored.

When the data are unordered, the computation of the mean and standard
deviation proceeds as in Box 3.1, which is based on the unordered neutrophil-
count data shown in Table 3.1. We chose not to apply coding to these data,
since it would not have simplified the computations appreciably.

When the data arc arrayed in a frequency distribution, the computations
can be made much simpler. When computing the statistics, you can often avoid
the need for manual entry of large numbers of individual variates if you first
set up a frequency distribution. Sometimes the data will come to you already
in the form of a frequency distribution, having been grouped by the researcher.

The computation of Y and s from a frequency distribution is illustrated in
Box 3.2. The data are the birth weights of male Chinese children, first encountered
in Figure 2.3. The calculation is simplified by coding to remove the awkward
class marks. This is done by subtractine 59.5. the lowest class mark of the array.
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BOX 3.1
Calculation of ¥ and s from unordered data.

Neutrophil counts, unordered as shown in Table 3.1.

Computation

n=15
ZY= 1157

?=%ZY=Iﬂ3
Y ¥?= 120121

oy EV
pr-gr-&k

15.7)
= 1201.21 — a 115 )
= 308.7773

o Xy 3087773
n—1 14
= 22,056

The resulting class marks are values such as 0, 8, 16, 24, 32, and so on. They
are then divided by 8, which changes them to 0, 1, 2, 3, 4, and so on, which is
the desired format. The details of the computation can be learned from the box.

When checking the results of calculations, it 1s frequently useful (o have
an approximate mcthod for estimating statistics so that gross crrors in compu-
tation can be detected. A simple method for estimating the mean is to average
the largest and smallest observation to obtain the so-called midrange. For the
neutrophil counts of Table 3.1, this value s (2.3 + 18.0)/2 = 10.15 (nol a very
good estimate). Standard deviations can be estimated from ranges by appro-
priate division of the range, as follows:

For samples of Divide the range by

10
30
100
500
1000

(o N« NRVIRP SN 8]

N
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|

BOX 3.2
Calculation of ¥, s, and V from a frequency distribution.

Birth weights of male Chinese in ounces.

3] %] (&f]
Class mark Coded class mark
Y f Y.
59.5 2 0
67.5 6 1
75.5 39 2
83.5 385 3
91.5 888 4
99.5 1729 5
107.5 2240 6
1155 2007 7
123.5 1233 8
1315 641 9
139.5 201 10
1475 74 11
155.5 14 12
163.5 5 13
171.5 1 14
9465 = n

Source: Millis and Seng (1954).

Computation Coding and decoding
. \ Code: Y. = Y — 59.5
Y fY. = 59,629 ode: ¥, = ——a—
¥, = 6.300 To decode ¥.: ¥ = 8Y, + 59.5
Y SY? = 402,987 =504 + 59.5
e Sy = 109.9 oz
CT = ‘9’)_ = 375,659.550
n

Y=Y Y}~ CT=2132745

2
2= %fll - 2888

5. = 1.6991 To decode s..s = 8s, = 13.593 oz

s 13.593
3 = 129770100 = 12.369%
V=3 x100="1575 "
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The range of the neutrophil counts is 15.7. When this value is divided by 4, we
get an estimate for the standard deviation of 3.925, which compares with the
calculated value of 4.696 in Box 3.1. However, when we estimate mean and
standard deviation of the aphid femur lengths of Box 2.1 in this manner, we
obtain 4.0 and 0.35, respectively. These are good estimates of the actual values
of 4.004 and 0.3656, the sample mean and standard deviation.

3.9 The coefficient of variation

Having obtained the standard deviation as a measure of the amount of variation
in the data, you may be led to ask, “Now what?” At this stage in our com-
prehension of statistical theory, nothing really useful comes of the computations
we have carried out. However, the skills just learned are basic to all later statis-
tical work. So far, the only use that we might have for the standard deviation
is as an estimate of the amount of variation in a population. Thus, we may
wish to compare the magnitudes of the standard deviations of similar popula-
tions and see whether population 4 is more or less variable than population B.

When populations differ appreciably in their means, the direct comparison
of their variances or standard dcviations is less uscful, since larger organisms
usually vary more than smaller one. For instance, the standard deviation of
the tail lengths of elephants is obviously much greater than the entire tail length
of 2 mouse. To compare the relative amounts of variation in populations having
different means, the coefficient of variation, symbolized by V (or occasionally
CV), has been developed. This is simply the standard deviation expressed as a
percentage of the mean. Its formula is

po 3 100 (3.9)
Y
For example, the coefficient of variation ol the birth weights in Box 3.2 is
12.37%, as shown at the bottom of that box. The coeflicient of variation is
independent of the unit of measurement and is expressed as a percentage.
Coeflicients of variation are used when one wishes to compare the variation
of two populations without considering the magnitude of their means. (It 1s
probably of little interest to discover whether the birth weights of the Chinese
children are more or less variable than the femur lengths of the aphid stem
mothers. However, we can calculate V for the latter as (0.3656 x 100)/4.004 =
9.13%. which would suggest that the birth weights arc more variable.) Often,
we shall wish to test whether a given biological sample is more variable for one
character than for another. Thus, for a sample of rats, is body weight more
variable than blood sugar content? A second, frequent type of comparison,
especially in systematics, is among different populations for the same character.
Thus, we may have measured wing length in samples of birds from several
localitics. We wish 1o know whether any one of these populations is more vari-
able than the others. An answer to this question can be obtained by examining
the coellicients of variation of wing length in these samples.
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Exercises
31 Find Y, s, V, and the median for the following data (mg of glycine per mg of
creatinine in the urine of 37 chimpanzees; from Gartler, Firschein, and Dob-
zhansky, 1956). ANS. ¥ = 0.115, s = 0.10404.
008 018 05 055 135 052 077 026 440 300
025 036 043 Joo 120 110 100 350 100 .300
011 060 070 050 080 .110 110 .120  .133  .100
Q00 155 370 019 100 100 116
32 Find the mean, standard deviation, and coeflicient of variation for the pigeon
data given in Exercise 2.4. Group the data into ten classes, recompute Y and s,
and compare them with the results obtained from ungrouped data. Compute
the median for the grouped data.
33 The following are percentages of butterfat from 120 registered three-year-old
Ayrshire cows selected at random from a Canadian stock record book.
(a) Calculate Y, s, and V directly [rom the data. ~
(b) Group the data in a frequency distribution and again calculate Y, s, and V.
Compare the results with those of (a). How much precision has been lost by
grouping? Also calculate the median.
432 424 4.29 4.00
396 448 3.89 4.02
3.74 442 4.20 3.87
4.10 4.00 4.33 3.81
433 4.16 3.88 481
423 4.67 3.74 4.25
428 4.03 4.42 4.09
4.15 4.29 4.27 4.38
4.49 4.05 3.97 432
4.67 4.11 4.24 5.00
4.60 4.38 372 399
4.00 4.46 4.82 391
4.71 3.96 3.66 4.10
4.38 4.16 377 440
4.06 4.08 3.66 4.70
3.97 397 4.20 441
431 370 3.83 424
4.30 4.17 397 4.20
4.51 3.86 4.36 4.18
4.24 4.05 4.05 3.56
394 3.89 4.58 399
4.17 3.82 3.70 433
4.06 3.89 4.07 358
393 4.20 3.89 4.60
4.38 4.14 4.66 3.97
422 347 392 491
395 4.38 4.12 4.52
435 391 4.10 4.09
4.09 4.34 4.09 4.88
4.2% 398 386 4.58
34 What cffect would adding a constant 5.2 to all observations have upon the

numerical values of the following statistics: Y. s, V, average deviation, median,
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3.6

3.7
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mode, range? What would be the effect of adding 5.2 and then multiplying the
sums by 8.0? Would it make any difference in the above statistics if we multiplied
by 8.0 first and then added 5.2?

Estimate 1 and o using the midrange and the range (see Section 3.8) for the data
in Exercises 3.1, 3.2, and 3.3. How well do these estimates agree with the esti-
mates given by Y and s? ANS. Estimates of u and o for Exercise 3.2 are 0.224
and 0.1014.

Show that the equation for the variance can also be written as

Using the striped bass age distribution given in Exercise 2.9, compute the fo]-
lowing statistics: Y, s2, s, ¥, median, and mode. ANS. Y = 3.043, s2 = 1.2661,
s = 1.125, V = 36.987%, median = 2.948, mode = 3.

Use a calculator and compare the results of using Equations 3.7 and 3.8 to
compute s> for the following artificial data sets:

(@ 1,2,3,4,5

(b) 9001, 9002, 9003, 9004, 9005

(c) 90001, 90002, 90003, 90004, 90005

(d) 900001, 900002, 900003, 900004, 900005

Compare your results with those of one or more computer programs. What is
the correct answer? Explain your results.



CHAPTER 4

Introduction to Probability
Distributions: The Binomial and
Poisson Distributions

In Section 2.5 we first encountered frequency distributions. For example, Table
2.2 shows a distribution lor a meristic, or discrete (discontinuous), variable, the
number of sedge plants per quadrat. Examples of distributions for continuous
variables are the femur lengths of aphids in Box 2.1 and the human birth weights
in Box 3.2. Each of these distributions informs us about the absolute frequency
of any given class and permits us to computate the relative frequencies of any
class of variable. Thus, most of the quadrats contained either no sedges or one
or two plants. In the 139.5-0z class of birth weights, we find only 201 out of
the total of 9465 babies recorded; that is, approximately only 2.1% of the infants
are in that birth weight class.

We realize, of course, that these frequency distributions are only samples
from given populations. The birth weights, for example, represent a population
of male Chinese infants from a given geographical area. But if we knew our
sample to be representative of that population, we could make all sorts of pre-
dictions based upon the sample frequency distribution. For instance, we could
say that approximately 2.1% of male Chinese babies born in this population
should weigh between 135.5 and 143.5 oz at birth. Similarly, we might say that
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the probability that the weight at birth of any one baby in this population will
be in the 139.5-0z birth class is quite low. If all of the 9465 weights were mixed
up in a hat and a single one pulled out, the probability that we would pull out
one of the 201 in the 139.5-0z class would be very low indeed—only 2.1%. It
would be much more probable that we would sample an infant of 107.5 or
115.5 oz, since the infants in these classes are represented by frequencies 2240
and 2007, respectively. Finally, if we were to sample from an unknown popula-
tion of babies and find that the very first individual sampled had a birth weight
of 170 oz, we would probably reject any hypothesis that the unknown population
was the same as that sampled in Box 3.2. We would arrive at this conclusion
because in the distribution in Box 3.2 only one out of almost 10,000 infants
had a birth weight that high. Though it is possible that we could have sampled
from the population of male Chinese babies and obtained a birth weight of 170
oz, the probability that the first individual sampled would have such a value
is very low indeed. It seems much more reasonable to suppose that the unknown
population from which we are sampling has a larger mean that the one sampled
in Box 3.2.

We have used this empirical frequency distribution to make certain predic-
tions (with what frequency a given event will occur) or to make judgments and
decisions (is it likely that an infant of a given birth weight belongs to this
population?). In many cases in biology, however, we shall make such predictions
not from empirical distributions, but on the basis of theoretical considerations
that in our judgment are pertinent. We may feel that the data should be distrib-
uted in a certain way because of basic assumptions about the nature of the
forces acting on the example at hand. If our actually observed data do not
conform sufficiently to the values expected on the basis of these assumptions,
we shall have serious doubts about our assumptions. This is a common use of
frequency distributions in biology. The assumptions being tested generally lead
to a theoretical frequency distribution known also as a probability distribution.
This may be a simple two-valued distribution, such as the 3:1 ratio in a
Mendelian cross; or it may be a more complicated function, as it would be if
we were trying to predict the number of plants in a quadrat. If we find that
the observed data do not fit the expectations on the basis of theory, we are
often led to the discovery of some biological mechanism causing this deviation
from expectation. The phenomena of linkage in genetics, of preferential mating
between different phenotypes in animal behavior, of congregation of animals
at certain favored places or, conversely, their territorial dispersion are cases in
point. We shall thus make use of probability theory to test our assumptions
about the laws of occurrence of certain biological phenomena. We should point
out to the reader, however, that probability theory underlies the entire structure
of statistics, since, owing to the nonmathematical orientation of this book, this
may not be entirely obvious.

In this chapter we shall first discuss probability, in Section 4.1, but only to
the extent necessary for comprehension of the sections that follow at the intended
level of mathematical sophistication. Next, in Section 4.2, we shall take up the
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binomial frequency distribution, which is not only important in certain types
of studies, such as genetics, but also fundamental to an understanding of the
various kinds of probability distributions to be discussed in this book.

The Poisson distribution, which follows in Section 4.3, is of wide applicability
in biology, especially for tests of randomness of occurrence of certain events.
Both the binomial and Poisson distributions are discrete probability distribu-
tions. The most common continuous probability distribution is the normal
frequency distribution, discussed in Chapter 5.

4.1 Probability, random sampling, and hypothesis testing

We shall start this discussion with an example that is not biometrical or
biological in the strict sense. We have often found it pedagogically effective to
introduce new concepts through situations thoroughly familiar to the student,
even if the example is not relevant to the general subject matter of biostatistics.

Let us betake ourselves to Matchless University, a state institution
somewhere between the Appalachians and the Rockies. Looking at its enrollment
figures, we notice the following breakdown of the student body: 70% of the
students are American undergraduates (AU) and 26% are American graduate
students (AG); the remaining 4% are from abroad. Of these, 1% are foreign
undergraduates (FU) and 3% are foreign graduate students (FG). In much of
our work we shall use proportions rather than percentages as a useful convention.
Thus the enrollment consists of 0.70 AU’s, 0.26 AG’s, 0.01 FU’s, and 0.03 FG’s.
The total student body, corresponding to 100%, is therefore represented by the
figure 1.0.

If we were to assemble all the students and sample 100 of them at random,
we would intuitively expect that, on the average, 3 would be foreign graduate
students. The actual outcome might vary. There might not be a single FG
student among the 100 sampled, or there might be quite a few more than 3.
The ratio of the number of forcign graduate students sampled divided by the
total number of students sampled might therefore vary from zero to considerably
greater than 0.03. If we increased our sample size to 500 or 1000, it is less likely
that the ratio would fluctuate widcly around 0.03. The greater the sample taken,
the closer the ratio of FG students sampled to the total students sampled will
approach 0.03. In fact, the probability of sampling a foreign student can be
defined as the limit as sample size keeps increasing of the ratio of foreign students
to the total number of students sampled. Thus, we may formally summarize
the situation by stating that the probability that a student at Matchless
University will be a foreign graduate student is P[FG] = 0.03. Similarly, the
probability of sampling a foreign undergraduate is P[FU] = 0.01, that of
sampling an American undergraduate is | AU | = 0.70, and that for American
graduate students, P[AG] = 0.26.

Now let us imagine the following experiment: We try to sample a student
at random from among the student body at Matchless University. This is not
as casy a task as might be imagined. If we wanted to do this operation physically,
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we would have to set up a collection or trapping station somewhere on campus.
And to make certain that the sample was truly random with respect to the
entire student population, we would have to know the ecology of students on
campus very thoroughly. We should try to locate our trap at some station
where each student had an equal probability of passing. Few, if any, such places
can be found in a university. The student union facilities are likely to be
frequented more by independent and foreign students, less by those living in
organized houses and dormitories. Fewer foreign and graduate students might
be found along fraternity row. Clearly, we would not wish to place our trap
near the International Club or House, because our probability of sampling a
foreign student would be greatly enhanced. In front of the bursar’s window we
might sample students paying tuition. But those on scholarships might not be
found there. We do not know whether the proportion of scholarships among
foreign or graduate students is the same as or different from that among the
American or undergraduate students. Athletic events, political rallies, dances,
and the like would all draw a differential spectrum of the student body; indeed,
no easy solution seems in sight. The time of sampling is equally important, in
the seasonal as well as the diurnal cycle.

Those among the readers who are interested in sampling organisms from
nature will already have perceived parallel problems in their work. If we were
to sample only students wearing turbans or saris, their probability of being
foreign students would be almost 1. We could no longer speak of a random
sample. In the familiar ecosystem of the university these violations of proper
sampling procedure are obvious to all of us, but they are not nearly so obvious
in real biological instances where we are unfamiliar with the true nature of the
environment. How should we proceed to obtain a random sample of leaves
from a tree, of insects from a field, or of mutations in a culture? In sampling
at random, we are attempting to permit the frequencies of various events
occurring in nature to be reproduced unalteredly in our records; that is, we
hope that on the average the frequencies of these events in our sample will be
the same as they are in the natural situation. Another way of saying this is that
in a random sample every individual in the population being sampled has an
equal probability of being included in the sample.

We might go about obtaining a random sample by using records repre-
senting the student body, such as the student directory, selecting a page from
it at random and a name at random from the page. Or we could assign an
an arbitrary number to each student, write each on a chip or disk, put these
in a large container, stir well, and then pull out a number.

Imagine now that we sample a single student physically by the trapping
method, after carefully planning the placement of the trap in such a way as to
make sampling random. Wkat are the possible outcomes? Clearly, the student
could be either an AU, AG, FU or FG. The set of these four possible outcomes
exhausts the possibilities of this experiment. This set, which we can represent
as {AU, AG, FU, FG} is called the sample space. Any single trial of the experiment
described above would result in only one of the four possible outcomes (elements)
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in the set. A single element in a sample space is called a simple event. It is
distinguished from an event, which is any subset of the sample space. Thus, in
the sample space defined above {AU}, {AG}, {FU}, and {FG} are each sim-
ple events. The following sampling results are some of the possible events:
{AU, AG, FU}, {AU, AG, FG}, {AG, FG}, {AU, FG}, ... By the definition of
“event,” simple events as well as the entire sample space are also events. The
meaning of these events should be clarified. Thus {AU, AG, FU} implies being
either an American or an undergraduate, or both.

Given the sampling space described above, the event A = {AU, AG} en-
compasses all possible outcomes in the space yielding an American student.
Similarly, the event B = {AG, FG} summarizes the possibilities for obtaining
a graduate student. The intersection of events A and B, written A N B, describes
only those events that are shared by A and B. Clearly only AG qualifies, as
can be seen below:

A = {AU, AG)
B=  {AG,FG}

Thus, A N B is that event in the sample space giving rise¢ to the sampling of an
American graduate student. When the intersection of two events is empty, as
in BN C, where C = {AU, FU}, events B and C are mutually exclusive. Thus
there is no common element in these two events in the sampling space.

We may also define events that are unions of two other events in the sample
space. Thus A U B indicates that A or B or both A and B occur. As defined
above, A U B would describe all students who are either American students,
graduate students, or American graduate students.

Why are we concerned with defining sample spaces and events? Because
these concepts lead us to useful definitions and operations regarding the
probability of various outcomes. If we can assign a number p, where 0 < p < 1,
to each simple event in a sample space such that the sum of these p’s over.all
simple events in the space equals unity, then the space becomes a (ﬁmtc)
probability space. In our example above, the following numbers were associated
with the appropriate simple events in the sample space:

(AU, AG, FU, FG}
{0.70, 0.26, 0.01, 0.03}

Given this probability space, we are now able to make statements .rcgarding
the probability of given cvents. For cxample, what is the probability that a
student sampled at random will be an American graduate student? Clearly, it
is P[{AG}] = 0.26. What is the probability that a student is cither American
or a graduate student? In terms of the events defined carlier, this is
P|AUB] = P[{AU, AG}] + P[{AG, FG}] — P|{AG}]
=096 + 029 - 0.26
=099
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We subtract P[{AG}] from the sum on the right-hand side of the equation
because if we did not do so it would be included twice, once in P[A] and once
in P[B], and would lead to the absurd result of a probability greater than 1.

Now let us assume that we have sampled our single student from the student
body of Matchless University and that student turns out to be a foreign graduate
student. What can we conclude from this? By chance alone, this result would
happen 0.03, or 3%, of the time—not very frequently. The assumption that
we have sampled at random should probably be rejected, since if we accept the
hypothesis of random sampling, the outcome of the experiment is improbable.
Please note that we said improbable, not impossible. It is obvious that we could
have chanced upon an FG as the very first one to be sampled. However, it is
not very likely. The probability is 0.97 that a single student sampled will be a
non-FG. If we could be certain that our sampling method was random (as
when drawing student numbers out of a container), we would have to decide
that an improbable event has occurred. The decisions of this paragraph are all
based on our definite knowledge that the proportion of students at Matchless
University is indeed as specified by the probability space. If we were uncertain
about this, we would be led to assume a higher proportion of foreign graduate
students as a consequence of the outcome of our sampling experiment.

We shall now extend our experiment and sample two students rather than
just one. What are the possible outcomes of this sampling experiment? The new
sampling space can best be depicted by a diagram (Figure 4.1) that shows the
set of the 16 possible simple events as points in a lattice. The simple events are
the following possible combinations. Ignoring which student was sampled first,
they are (AU, AU), (AU, AG), (AU, FU), (AU, FG), (AG, AG), (AG, FU),
(AG, FG), (FU, FU), (FU, FG), and (FG, FG).

0.03 1'G . . . .
0.0210 0.0078 0.0003 ).0009
S 001 U [ . . °
—g 0.0070 0.00206 .0001 0.000:3
—é
3026 AG o . ) °
o 01820 0.0676 0.0026 0.0078
o
0.70 AU . . . .
G.1900 0. 1820 0.0070 0.0210
AU AG et [
0.70 0.26 0.01 0.003
I7iest student
HFIGURE 4.1

Sample space for sampling two students [rom Matchless University.
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What are the expected probabilities of these outcomes? We know the
expected outcomes for sampling one student from the former probability space,
but what will be the probability space corresponding to the new sampling space
of 16 elements? Now the nature of the sampling procedure becomes quite im-
portant. We may sample with or without replacement: we may return the first
student sampled to the population (that is, replace the first student), or we may
keep him or her out of the pool of the individuals to be sampled. If we do not
replace the first individual sampled, the probability of sampling a foreign
graduate student will no longer be exactly 0.03. This is easily seen. Let us assume
that Matchless University has 10,000 students. Then, since 3% are foreign
graduate students, there must be 300 FG students at the university. After
sampling a foreign graduate student first, this number is reduced to 299 out of
9999 students. Consequently, the probability of sampling an FG student now
becomes 299/9999 = 0.0299, a slightly lower probability than the value of
0.03 for sampling the first FG student. If, on the other hand, we return the
original foreign student to the student population and make certain that the
population is thoroughly randomized before being sampled again (that is, give
the student a chance to lose him- or herself among the campus crowd or, in
drawing student numbers out of a container, mix up the disks with the numbers
on them), the probability of sampling a second FG student is the same as
before—0.03. In fact, if we keep on replacing the sampled individuals in the
original population, we can sample from it as though it were an infinite-sized
population.

Biological populations are, of course, finite, but they are frequently so large
that for purposes of sampling experiments we can consider them effectively
infinite whether we replace sampled individuals or not. After all, even in this
relatively small population of 10,000 students, the probability of sampling a
second foreign graduate student (without replacement) is only minutely different
from 0.03. For the rest of this section we shall consider sampling to be with
replacement, so that the probability level of obtaining a foreign student does
not change.

There 1s a second potential source of difficulty in this design. We have to
assume not only that the probability of sampling a second foreign student is
equal to that of the first, but also that it is independent of it. By independence
of events we mean that the probability that one event will occur is not affected
by whether or not another event has or has not occurred. In the case of the
students, if we have sampled one foreign student, is it more or less likely that a
second student sampled in the same manner will also be a foreign student? Inde-
pendence of the events may depend on where we sample the students or on the
method of samphing. If we have sampled students on campus, it is quite likely that
the events are not independent; that is, if one foreign student has been sampled,
the probability that the second student will be foreign is increased, since forcign
students tend to congregate. Thus, at Matchless University the probability that
a student walking with a foreign graduate student is also an FG will be greater
than 0.03.
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Events D and E in a sample space will be defined as independent whenever
P[D ~E] = P[D]P[E]. The probability values assigned to the sixteen points
in the sample-space lattice of Figure 4.1 have been computed to satisfy the
above condition. Thus, letting P[D] equal the probability that the first student
willbe an AU, thatis, P[{AU,AU,, AU,AG,, AU,FU,, AU,FG,}],and letting
P[E] equal the probability that the second student will be an FG, that is,
P[{AU,FG,, AG FG,, FU,FG,, FG,FG,}], we note that the intersection
DN E is {AU,FG,}. This has a value of 0.0210 in the probability space of
Figure 4.1. We find that this value is the product P[{AU}]P[{FG}] = 0.70 x
0.03 = 0.0210. These mutually independent relations have been deliberately
imposed upon all points in the probability space. Therefore, if the sampling
probabilities for the second student are independent of the type of student
sampled first, we can compute the probabilities of the outcomes simply as the
product of the independent probabilities. Thus the probability of obtaining two
FG students is P[{FG}]P[{FG}] = 0.03 x 0.03 = 0.0009.

The probability of obtaining one AU and one FG student in the sample
should be the product 0.70 x 0.03. However, it is in fact twice that proba-
bility. It is easy to see why. There is only one way of obtaining two FG
students, namely, by sampling first one FG and then again another FG. Sim-
ilarly, there is only one way to sample two AU students. However, sampling
one of each fype of student can be done by sampling first an AU and then an
FG or by sampling first an FG and then an AU. Thus the probability is
2P[{AU}]P[{FG}] =2 x 0.70 x 0.03 = 0.0420.

If we conducted such an experiment and obtain a sample of two FG students,
we would be led to the following conclusions. Only 0.0009 of the samples (155
of 1% or 9 out of 10,000 cases) would be expected to consist of two foreign
graduate students. It is quite improbable to obtain such a result by chance
alone. Given P[{FG}] = 0.03 as a fact, we would therefore suspect that sampling
was not random or that the events were not independent (or that both as-
sumptions---random sampling and independence of cvents—were incorrect).

Random sampling is sometimes confused with randomness in nature. The
former is the faithful representation in the sample of the distribution of the
events in nature; the latter is the independence of the events in nature. The first
of thesc generally is or should be under the control of the experimenter and is
related to the strategy of good sampling. The sccond generally describes an
innate property of the objects being sampled and thus is of greater biological
interest. The confusion between random sampling and independence of events
arises because lack of either can yield observed frequencies of events differing
from expectation. We have already seen how lack of independence in samples
of foreign students can be interpreted from both points of view in our illustrative
example from Matchless University.

The above account of probability is adequate for our present purposes but
far too sketchy to convey an understanding of the field. Readers interested in
extending their knowledge of the subject are referred to Mosimann (1968) for
a simple introduction.
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4.2 The binomial distribution

For purposes of the discussion to follow we shall simplify our sample space to
consist of only two elements, foreign and American students, and ignore whether
the students are undergraduates or graduates; we shall represent the sample
space by the set {F, A}. Let us symbolize the probability space by {p, q}, where
p = P[F], the probability that the student is foreign, and ¢ = P[A], the prob-
ability that the student is American. As before, we can compute the probability
space of samples of two students as follows:

(FF, FA, AA}
{P%, 2pq, 4%}

If we were to sample three students independently, the probability space of
samples of three students would be as follows:

{FFF, FFA, FAA, AAA)}
{ p’, 3p’q, 3pq*, ¢° }

Samples of three foreign or three American students can again be obtained in
only one way, and their probabilities are p> and g3, respectively. However, in
samples of three there are three ways of obtaining two students of one kind
and one student of the other. As before, if A stands for American and F stands
for foreign, then the sampling sequence can be AFF, FAF, FFA for two foreign
students and one American. Thus the probability of this outcome will be 3p2q.
Similarly, the probability for two Americans and one foreign student is 3pg2.

A convenient way to summarize these results is by means of the binomial
expansion, which is applicable to samples of any size from populations in which
objects occur independently in only two classes-—students who may be foreign
or American, or individuals who may be dead or alive, male or female, black
or white, rough or smooth, and so forth. This is accomplished by expanding
the binomial term (p + g)*, where k equals sample size, p equals the probability
of occurrence of the first class, and ¢ equals the probability of occurrence of
the second class. By definition, p + g = 1; hence ¢ is a function of p: g = 1 — p.
We shall expand the expression for samples of k from 1 to 3:

For samplesof 1,(p+q)' =p + g
For samples of 2, (p + q)* = p* + 2pq + ¢*
For samples of 3, (p + q)* = p* + 3p’q + 3pq* + ¢°

It will be seen that these expressions yield the same probability spaces
discussed previously. The coeflicients (the numbers before the powers of p and
q) express the number of ways a particular outcome is obtained. An easy method
for evaluating the coefficients of the expanded terms of the binomial expression
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is through the use of Pascal’s triangle:

3 31
1 4 6 4 1
1 5 10 10 5 1

w»moh W -
—

Pascal’s triangle provides the coefficients of the binomial expression—that is,
the number of possible outcomes of the various combinations of events. For
k =1 the coefficients are 1 and 1. For the second line (k = 2), write 1 at the
left-hand margin of the line. The 2 in the middle of this line is the sum of the
values to the left and right of it in the line above. The line is concluded with a
1. Similarly, the values at the beginning and end of the third line are 1, and
the other numbers are sums of the values to their left and right in the line
above; thus 3 is the sum of 1 and 2. This principle continues for every line. You
can work out the coefficients for any size sample in this manner. The line for
k = 6 would consist of the following coefficients: 1, 6, 15, 20, 15, 6, 1. The p
and q values bear powers In a consistent pattern, which should be easy to
imitate for any value of k. We give it here for k = 4

p*a® + p’q' + p’q* + p'a® + p°q*
The power of p decreases from 4 to 0 (k to 0 in the general case) as the power
of g increases from 0 to 4 (0 to k in the general case). Since any value to the
power 0 is 1 and any term to the power 1 is simply itself, we can simplify this

expression as shown below and at the same time provide it with the coefficients
from Pascal’s triangle for the case k = 4

p* +4pq + 6p*¢° + 4pg’ + ¢*
Thus we are able to write down almost by inspection the expansion of the
binomial to any reasonable power. Let us now practice our newly learned ability
to expand the binomial.

Suppose we have a population of insects, exactly 40% of which are infected
with a given virus X. If we take samples of k = 5 insects each and examine each
insect separately for presence of the virus, what distribution of samples could
we expect if the probability of infection of each insect in a sample were
independent of that of other insects in the sample? In this case p = 04, the
proportion infected, and g = 0.6, the proportion not infected. It is assumed that
the population is so large that the question of whether sampling is with or
without replacement is irrelevant for practical purposes. The expected propor-
tions would be the expansion of the binomial:

(p+ g =(04+06)°
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With the aid of Pascal’s triangle this expansion is
{p’ + 5p*q + 10p°¢* + 10p°¢> + Spq* + 4°}
or
(0.4)° + 5(0.4)%(0.6) + 10(0.4)%(0.6)> + 10(0.4)*(0.6)* + 5(0.4Y0.6)* + (0.6)°

representing the expected proportions of samples of five infected insects, four
infected and one noninfected insects, three infected and two noninfected insects,
and so on.

The reader has probably realized by now that the terms of the binomial
expansion actually yield a type of frequency distribution for these different
outcomes. Associated with each outcome, such as “five infected insects,” there
is a probability of occurrence—in this case (0.4)° = 0.01024. This is a theoretical
frequency distribution or probability distribution of events that can occur in two
classes. It describes the expected distribution of outcomes in random samples
of five insects from a population in which 40% are infected. The probability
distribution described here is known as the binomial distribution, and the bino-
mial expansion yields the expected frequencies of the classes of the binomial
distribution.

A convenient layout for presentation and computation of a binomial
distribution is shown in Table 4.1. The first column lists the number of infected
insects per sample, the second column shows decreasing powers of p from p*
to p° and the third column shows increasing powers of ¢ from ¢° to ¢°. The
binomial coeflicicnts from Pascal’s triangle are shown in column (4). The relative

TABLE 4.1
Expected frequencies of infected insects in samples of 5 insects sampled from an infinitely large
population with an assumed infection rate of 40°%.

0)]

Number of (5) ©)
infected 2) (3) Relative Absolute (7)
insects Powers Powers (4) expected expected Observed
per sample of of Binomial frequencies frequencies [frequencies
Y p=04 q =06 coefficients frel "
5 0.01024 1.00000 1 0.01024 24.8 29
4 0.02560 0.60000 5 0.07680 186.1 197
3 0.06400 0.36000 10 0.23040 558.3 535
2 0.16000 0.21600 10 0.34560 8374 817
! 0.40000 0.12960 5 0.25920 628.0 643
0 1.00000 0.07776 I 0.07776 188.4 202
SforY f(=n 100000 24230 2423
Z Y 2.00000 4846.1 4815
Mean 2.00000 2.00004 1.98721
Standard deviation 1.09545 1.09543 1.11934
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expected frequencies, which are the probabilities of the various outcomes, are
shown in column (5). We label such expecred frequencies f,.;. They are simply
the product of columns (2), (3), and (4). Their sum is equal to 1.0, since the
events listed in column (1) exhaust the possible outcomes. We see from column
(5) in Table 4.1 that only about 1% of samples are expected to consist of 5
infected insects, and 25.9% are expected to contain |1 infected and 4 noninfected
insects. We shall test whether these predictions hold in an actual experiment.

Experiment 4.1. Simulate the sampling of infected insects by using a table of random
numbers such as Table I in Appendix Al. These are randomly chosen one-digit numbers
in which each digit O through 9 has an equal probability of appearing. The numbers
are grouped in blocks of 25 for convenience. Such numbers can also be obtained from
random number keys on some pocket calculators and by means of pseudorandom
number-generating algorithms in computer programs. (In fact, this entire experiment
can be programmed and performed automatically—even on a small computer.) Since
there is an equal probability for any one digit to appear, you can let any four digits
(say, 0, 1, 2, 3) stand for the infected insects and the remaining digits (4, 5,6, 7, 8, 9)
stand for the noninfected insects. The probability that any one digit selected from the
table will represent an infected insect (that is, will be a 0, 1, 2, or 3) is therefore 40%, or
0.4, since these are four of the ten possible digits. Also, successive digits are assumed to
be independent of the values of previous digits. Thus the assumptions of the binomial
distribution should be met in this experiment. Enter the table of random numbers at
an arbitrary point (not always at the beginning!) and look at successive groups of five
digits, noting in each group how many of the digits are 0, 1, 2, or 3. Take as many
groups of five as you can find time to do, but no fewer than 100 groups.

Column (7) in Table 4.1 shows the results of one such experiment during
one year by a biostatistics class. A total of 2423 samples of five numbers were
obtained from the table of random numbers; the distribution of the four digits
simulating the percentage of infection is shown in this column. The obscrved
frequencics are labeled f. To calculate the expected frequencies for this actual
example we multiplied the relative frequencies _f:c, of column (5) times n = 2423,
the number of samples taken. This results in absolute expected frequencies,
labeled f, shown in column (6). When we compare the observed frequencics in
column (7) with the expected frequencies in column (6) we note general agreement
between the two columns of figures. The two distributions are also illustrated
in Figure 4.2. If the observed frequencies did not fit expected frequencies, we
might believe that the lack of fit was due to chance alone. Or we might be led
to reject one or more of the following hypotheses: (1) that the truc proportion
of digits 0, 1, 2, and 3 is 0.4 (rejection of this hypothesis would normally not
be reasonable, for we may rely on the fact that the proportion of digits 0, 1. 2,
and 3 in a table of random numbers is 0.4 or very close (o it); (2) that sampling
was at random; and (3) that events were independent.

These statements can be reinterpreted in terms of the original infection
model with which we started this discussion. If, instead of a sampling experiment
of digits by a biostatistics class, this had been a real sampling experiment of
insects, we would conclude that the insects had indeed been randomly sampled
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Bar diagram of observed and expected frequencies given in Table 4.1.

and that we had no evidence to reject the hypothesis that the proportion of
infected insects was 40%. If the observed frequencies had not fitted the expected
frequencies, the lack of fit might be attributed to chance, or to the conclusion
that the true proportion of infection was not 0.4: or we would have had to
reject one or both of the following assumptions: (1) that sampling was at random
and (2) that the occurrence of infected insects in these samples was independent.

Experiment 4.1 was designed to yield random samples and independent
events. How could we simulate a sampling procedure in which the occurrences
of the digits 0, 1, 2, and 3 were not independent? We could, for example, instruct
the sampler to sample as indicated previously, but, every time a 3 was found
among the first four digits of a sample, to replace the following digit with
another one of the four digits standing for infected individuals. Thus, once a 3
was found, the probability would be 1.0 that another one of the indicated digits
would be included in the sample. After repeated samples, this would result in
higher frequencies of samples of two or more indicated digits and in lower
frequencies than expected (on the basis of the binomial distribution) of samples
of one such digit. A variety of such different sampling schemes could be devised.
It should be quite clear to the reader that the probability of the second event's
occurring would be different from that of the first and dependent on it.

How would we interpret a large departure of the observed frequencies from
expectation? We have not as yet learned techniques for testing whether observed
frequencies differ from those expected by more than can be attributed to chance
alone. This will be taken up in Chapter 13. Assume that such a test has been
carried out and that it has shown us that our observed frequencies are
significantly different from expectation. Two main types of departure from ex-
pectation can be characterized: (1) clumping and (2) repulsion, shown in fictitious
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TABLE 4.2
Artificial distributions to itlustrate clumping and repulsion. Expected frequencies from Table 4.1.

(N )] €]

Number of Absolute Clumped 4 (5) 6)
infected insects expected (contagious) Deviation Repulsed Deviation
per sample Jrequencies  Jrequencies from frequencies from

S/ expectation J/ expectation
5 248 47 + 14 —
4 186.1 227 + 157 -
3 558.3 558 0 548 —
2 8374 663 - 943 +
1 628.0 703 + 618 —
0 188.4 225 + 143 -
Yjorn 24230 2423 2423.0
z Y 4846.1 4846 4846
Mean 2.00004 2.00000 2.00000
Standard deviation 1.09543 1.20074 1.01435

examples in Table 4.2. In actual examples we would have no a priori notions
about the magnitude of p, the probability of one of the two possible outcomes.
In such cases it is customary to obtain p from the observed sample and to
calculate the expected frequencies, using the sample p. This would mean that
the hypothesis that p is a given value cannot be tested, since by design the
expected frequencies will have the same p value as the observed frequencies.
Therefore, the hypotheses tested arc whether the samples are random and the
events independent.

The clumped frequencies in Table 4.2 have an excess of observations at the
tails of the frequency distribution and consequently a shortage of observations
at the center. Such a distribution is also said to be contagious. (Remember that
the total number of items must be the same in both observed and expected fre-
quencies in order to make them comparable.) In the repulsed frequency distri-
bution there are more observations than expected at the center of the distribution
and fewer at the tails. These discrepancies are most easily seen in columns (4)
and (6) of Table 4.2, where the deviations of observed from expected frequencies
are shown as plus or minus signs.

What do these phenomena imply? In the clumped frequencics, more samples
were entirely infected (or largely infected), and similarly, more samples were cn-
tirely noninfected (or largely noninfected) than you would expect if proba-
bilities of infection were independent. This could be duc to poor sampling design.
If, for example, the investigator in collecting samples of five insects always
tended to pick out like ones—that is, infected ones or noninfected ones-—then
such a result would likely appcar. But if the sampling design is sound, the
results become more interesting. Clumping would then mean that the samples
of five are in some way related. so that if one insect is infected, others in the
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same sample are more likely to be infected. This could be true if they come
from adjacent locations in a situation in which neighbors are easily infected.
Or they could be siblings jointly exposed to a source of infection. Or possibly
the infection might spread among members of a sample between the time that
the insects are sampled and the time they are examined.

The opposite phenomenon, repulsion, is more difficult to interpret bio-
logicalty. There are fewer homogeneous groups and more mixed groups in such
a distribution. This involves the idea of a compensatory phenomenon: if some
of the insects in a sample are infected, the others in the sample are less likely
to be. If the infected insects in the sample could in some way transmit im-
munity to their associates in the sample, such a situation could arise logically,
but it is biologically improbable. A more reasonable interpretation of such a
finding is that for each sampling unit, there were only a limited number of
pathogens available; then once several of the insects have become infected, the
others go free of infection, simply because there is no more infectious agent.
This is an unlikely situation in microbial infections, but in situations in which
a limited number of parasites enter the body of the host, repulsion may be
more reasonable.

From the expected and observed frequencies in Table 4.1, we may calculate
the mean and standard deviation of the number of infected insects per sample.
These values are given at the bottom of columns (5), (6), and (7) in Table 4.1.
We note that the means and standard deviations in columns (5) and (6) are
almost identical and differ only trivially because of rounding errors. Column (7),
being a sample from a population whose parameters are the same as those of
the expected frequency distribution in column (5) or (6), differs somewhat. The
mean is slightly smaller and the standard deviation is slightly greater than in
the expected frequencies. If we wish to know the mean and standard deviation
of expected binomial frequency distributions, we need not go through the com-
putations shown in Table 4.1. The mean and standard deviation of a binomial
frequency distribution are, respectively,

p=kp o =1kpy

Substituting the values k = 5, p = 0.4, and q = 0.6 of the above example, we
obtain s = 2.0 and ¢ = 1.095.45, which are identical to the values computed
from column (5) in Table 4.1. Note that we use the Greek parametric notation
here because 2 and o are parameters of an expected frequency distribution, not
sample statistics, as are the mean and standard deviation in column (7). The
proportions p and ¢ are parametric values also, and strictly speaking, they
should be distinguished from sample proportions. In fact, in later chapters we
resort to p and § for parametric proportions (rather than n, which convention-
ally is used as the ratio of the circumference to the diameter of a circle). Here,
however, we prefer to keep our notation simple. If we wish to express our
variable as a proportion rather than as a count-—that is, to indicate mean
incidence of infection in the insccts as 0.4, rather than as 2 per sample of 5 we
can use other formulas for the mean and standard deviation in a binomial
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distribution:

It is interesting to look at the standard deviations of the clumped and
replused frequency distributions of Table 4.2. We note that the clumped distri-
bution has a standard deviation greater than expected, and that of the repulsed
one is less than expected. Comparison of sample standard deviations with their
expected values is a useful measure of dispersion in such instances.

We shall now employ the binomial distribution to solve a biological prob-
lem. On the basis of our knowledge of the cytology and biology of species A,
we expect the sex ratio among its offspring to be 1:1. The study of a litter in
nature reveals that of 17 offspring 14 were females and 3 were males. What
conclusions can we draw from this evidence? Assuming that p, (the probability
of being a female offspring) = 0.5 and that this probability is independent among
the members of the sample, the pertinent probability distribution is the binpmial
for sample size k = 17. Expanding the binomial to the power 17 is a formidable
task, which, as we shall see, fortunately need not be done in its entirety. How-
ever, we must have the binomial coeflicients, which can be obtained either from
an expansion of Pascal’s triangle (fairly tedious unless once obtained and stored
for future use) or by working out the expected frequencies for any given class of
Y from the general formula for any term of the binomial distribution

C(k, Y)p¥q* ¥ (4.1)

The expression C(k, Y) stands for the number of combinations that can be
formed from k items taken Y at a time. This can be evaluated as k!/[ Yi(k — Y)'],
where ! means “factorial.” In mathematics k factorial is the product of all the
integers from 1 up to and including k. Thus, 5! =1 x 2 x 3 x 4 x 5 = 120. By
convention, 0! = 1. In working out fractions containing factorials, note that any
factorial will always cancel against a higher factorial. Thus 5!/3! = (5 x 4 x 3!)/
3! =5 x 4. For example, the binomial coefficient for the expected frequency
of samples of 5 items containing 2 infected insccts is C(5, 2) = 5!/2!13! =
(5 x 4)/2 = 10.

The setup of the example is shown in Table 4.3. Decreasing powers of p.
from p!” down and increasing powers of g, are computed (from power 0 to
power 4). Since we require the probability of 14 females, we note that for the
purposes of our problem, we need not proceed beyond the term for 13 females
and 4 males. Calculating the relative expected frequencies in column (6), we
note that the probability of 14 females and 3 males is 0.005,188,40, a very small
value. If we add to this value all “worse” outcomes—that is, all outcomes that
are even more unlikcly than 14 females and 3 males on the assumption of a
1:1 hypothesis—we obtain a probability of 0.006,363,42, still a very small value.
{In statistics, we often need to calculate the probability of observing a deviation
as large as or larger than a given value.)
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TABLE 4.3
Some expected frequencies of males and females for samples of 17 offspring on the assumption that
the sex ratio is 1:1 [p, = 0.5, q; = 0.5 (p, + 45 = 0.5+ 0.5)'"].

(0] (2) (3 4 (5) {6)

Relative

expected

Binomial Sfrequencies

X9 33 P 43 coefficients frar
17 — 0.000,007,63 1 1 0.000,007,63
16 1 0.000,015,26 0.5 17 0.000,129.71
15 2 000003052 025 136 0.001,037,68 [ 0-006-363.42
14 3 0.000,061,04 0.125 680 0.005,188,40
13 4 0.000,122,07 0.0625 2380 0.018,15791

On the basis of these findings one or more of the following assumptions is
unlikely: (1) that the true sex ratio in species A is 1:1, (2) that we have sampled
at random in the sense of obtaining an unbiased sample, or (3) that the sexes
of the offspring are independent of one another. Lack of independence of events
may mean that although the average sex ratio is 1:1, the individual sibships, or
litters, are largely unisexual, so that the offspring from a given mating would
tend to be all (or largely) females or all (or largely) males. To confirm this
hypothesis, we would need to have more samples and then examine the distri-
bution of samples for clumping, which would indicate a tendency for unisexual
sibships.

We must be very precise about the questions we ask of our data. There
are really two questions we could ask about the sex ratio. First, are the sexes
unequal in frequency so that females will appear more often than males? Second,
are the sexes unequal in frequency? It may be that we know from past experience
that in this particular group of organisms the males are never more frequent
than females; in that case, we need be concerned only with the first of these
two questions, and the reasoning followed above is appropriate. However, if we
know very little about this group of organisms, and if our question is simply
whether the sexes among the offspring are unequal in frequency, then we have
to consider both tails of the binomial frequency distribution; departures from
the 1:1 ratio could occur in either direction. We should then consider not only
the probability of samples with 14 females and 3 males (and all worse cases) but
also the probability of samples of 14 males and 3 females (and all worse cases
in that direction). Since this probability distribution is symmetrical (because
p. = q, = 0.5), we simply double the cumulative probability of 0.006,363,42 ob-
tained previously, which results in 0.012,726,84. This new value is still very small,
making it quite unlikely that the true sex ratio is 1:1.

This is your first experience with one of the most important applications of
statistics —hypothesis testing. A formal introduction to this field will be deferred
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until Section 6.8. We may simply point out here that the two approaches fol-
lowed above are known appropriately as one-tailed tests and two-tailed tests,
respectively. Students sometimes have difficulty knowing which of the two tests
to apply. In future examples we shall try to point out in each case why a one-
tailed or a two-tailed test is being used.

We have said that a tendency for unisexual sibships would result in a
clumped distribution of observed frequencies. An actual case of this nature is a
classic in the literature, the sex ratio data obtained by Geissler (1889) from
hospital records in Saxony. Table 4.4 reproduces sex ratios of 6115 sibships of
12 children each from the more extensive study by Geissler. All columns of the
table should by now be familiar. The expected frequencies were not calculated
on the basis of a 1:1 hypothesis, since it is known that in human populations
the sex ratio at birth is not 1:1. As the sex ratio varies in different human
populations, the best estimate of it for the population in Saxony was simply
obtained using the mean proportion of males in these data. This can be obtained
by calculating the average number of males per sibship (¥ = 6.230,58) for the
6115 sibships and converting this into a proportion. This value turns out to be
0.519,215. Consequently, the proportion of females = 0.480,785. In the devia-
tions of the observed frequencies from the absolute expected frequencies shown
in column (9) of Table 4.4, we notice considerable clumping. There are many
more instances of families with all male or all female children (or nearly so)
than independent probabilities would indicate. The genetic basis for this is not
clear, but it is evident that there are some families which “run to girls” and
similarly those which “run to boys.” Evidence of clumping can also be seen from
the fact that s? is much larger than we would expect on the basis of the binomial
distribution (6% = kpq = 12(0.519,215)0.480,785 = 2.995,57).

There is a distinct contrast between the data in Table 4.1 and those in
Table 4.4. In the insect infection data of Table 4.1 we had a hypothetical propor-
tion of infection based on outside knowledge. In the sex ratio data of Table 4.4
we had no such knowledge; we used an empirical value of p obtained from the
data, rather than a hypothetical value external to the data. This is a distinction
whose importance will become apparent later. In the sex ratio data of Table 4.3,
as in much work in Mendelian genetics, a hypothetical value of p is used.

4.3 The Poisson distribution

In the typical application of the binomial we had relatively small samples
(2 students, 5 insects, 17 offspring, 12 siblings) in which two alternative states
occurred at varying frequencies (American and foreign, infected and nonin-
fected, male and female). Quite frequently, however, we study cases in which
sample size k is very large and one of the events (represented by probability g) is
very much more frequent than the other (represented by probability p). We have
seen that the expansion of the binomial (p + g)* is quite tiresome when k is
large. Suppose you had to expand the expression (0.001 + 0.999)!°°°. In such
cases we are generally interested in one tail of the distribution only. This is the
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Sex ratios in 6115 sibships of twelve in Saxony.
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0.999,998

s? = 3.489,85

6.230,58
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Source: Geissler (1889).
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tail represented by the terms
p°q", C(k, 1)p'q*~", Clk, 2)p*q" ™2, Clk, 3)p°q“ 3, ...

The first term represents no rare events and k frequent events in a sample of k
events. The second term represents one rare event and k — 1 frequent events.
The third term represents two rare events and k — 2 frequent events, and so
forth. The expressions of the form C(k, i) are the binomial coefficients, repre-
sented by the combinatorial terms discussed in the previous section. Although
the desired tail of the curve could be computed by this expression, as long as
sufficient decimal accuracy is maintained, it is customary in such cases to
compute another distribution, the Poisson distribution, which closely approxi-
mates the desired results. As a rule of thumb, we may use the Poisson distribu-
tion to approximate the binomial distribution when the probability of the rare
event p is less than 0.1 and the product kp (sample size x probability) is less
than 5.

The Poisson distribution is also a discrete frequency distribution of the
number of times a rare event occurs. But, in contrast to the binomial distribu-
tion, the Poisson distribution applies to cases where the number of times that
an event does not occur is infinitely large. For purposes of our treatment here,
a Poisson variable will be studied in samples taken over space or time. An
example of the first would be the number of moss plants in a sampling quadrat
on a hillside or the number of parasites on an individual host; an example of a
temporal sample is the number of mutations occurring in a genetic strain in the
time interval of one month or the reported cases of influenza in one town
during one week. The Poisson variable Y will be the number of events per
sample. It can assume discrete values from 0 on up. To be distributed in Poisson
fashion the variable must have two properties: (1) Its mean must be small relative
to the maximum possiblc number of events per sampling unit. Thus the event
should be “rare.” But this means that our sampling unit of space or time must
be large enough to accommodate a potentially substantial number of events.
For example, a quadrat in which moss plants are counted must be large enough
that a substantial number of moss plants could occur there physically if the
biological conditions were such as to favor the development of numerous moss
plants in the quadrat. A quadrat consisting of a 1-cm square would be far too
small for mosses to be distributed in Poisson fashion. Similarly, a time span
of 1 minute would be unrealistic for reporting new influenza cases in a town,
but within 1 week a great many such cases could occur. (2) An occurrence of the
event must be independent of prior occurrences within the sampling unit. Thus,
the presence of one moss plant in a quadrat must not enhance or diminish the
probability that other moss plants are developing in the quadrat. Similarly, the
fact that one influenza case has been reported must not affect the probability
of reporting subsequent influenza cases. Events that meet these conditions (rare
and random events) should be distributed in Poisson fashion.

The purpose of fitting a Poisson distribution to numbers of rare events in
nature is to test whether the events occur independently with respect to each
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other. If they do, they will follow the Poisson distribution. If the occurrence of
one event enhances the probability of a second such event, we obtain a clumped,
or contagious, distribution. If the occurrence of one event impedes that of a
second such event in the sampling unit, we obtain a repulsed, or spatially or
temporally uniform, distribution. The Poisson can be used as a test for random-
ness or independence of distribution not only spatially but also in time, as some
examples below will show.

The Poisson distribution is named after the French mathematician Poisson,
who described it in 1837. It is an infinite series whose terms add to 1 (as must
be true for any probability distribution). The series can be represented as

2 4

1 M }1_ ‘u u /_lr

et et et Bt 4ot T e’

4.2)

where the terms are the relative expected frequencies corresponding to the fol-
lowing counts of the rare event Y:

0’ ]’ 2! 35 4, PEEEEEN r,

Thus, the first of these terms represents the relative expected frequency of
samples containing no rare event; the second term, one rare event; the third
term, two rare events; and so on. The denominator of each term contains e”,
where ¢ is the base of the natural, or Napierian, logarithms, a constant whose
value, accurate to 5 decimal places, is 2.718,28. We recognize p as the parametric
mean of the distribution; it is a constant for any given problem. The exclamation
mark after the coefficient in the denominator means “factorial,” as explained
in the previous section.

One way to learn more about the Poisson distribution is to apply it to an
actual case. At the top of Box 4.1 is a well-known result from the carly statistical
literature based on the distribution of yeast cells in 400 squares of a hemacyto-
meter, a counting chamber such as 1s used in making counts of blood cells and
other microscopic objects suspended in liquid. Column (1) lists the number of
yeast cells observed in each hemacytometer square, and column (2) gives the
observed frequency—the number of squares containing a given number of yeast
cells. We note that 75 squares contained no yeast cells, but that most squares
held either 1 or 2 cells. Only 17 squares contained 5 or more yeast cells.

Why would we expect this frequency distribution to be distributed in
Poisson fashion? We have herc a relatively rare event, the frequency of yeast
cells per hemacytometer square, the mean of which has been calculated and
found to be 1.8. That is, on the average there are 1.8 cells per square. Relative
to the amount of space provided in each square and the number of cells that
could have come to rest in any one square, the actual number found is low
indeed. We might also expect that the occurrence of individual yeast cells in a
squarc is independent of the occurrence of other yeast cells. This is a commonly
encountered class of application of the Poisson distribution.

The mean of the rare event is the only quantity that we need to know to
calculate the relative expected frequencies of a Poisson distribution. Since we do
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BOX 4.1

Calculation of expected Poisson frequencies.

Yeast cells in 400 squares of a hemacytometer: ¥= 1.8 cells per square; n = 400

squares sampled.
N 2) (&)] @
Number of Observed Absolute Deviation from
cells per square frequencies expected frequencies expectation
Y f s
0 75 66.1 +
1 103 119.0 -
2 121 107.1 +
3 54 64.3 -
4 30 289 +
5 13 104 +
6 2 31 -
7 1317 0.8 14.5 + >+
8 0 0.2 -
9 1 0.0 +
400 3999

Source: “Student” (1907).

Computational steps

Flow of computation based on Expression (4.3) multiplied by n, since we wish

to obtain absolute expected frequencies, 1.

1. Find &' in a table of exponentials or compute it using an exponential key:

ef = '8 = 60496
;N _ 400
2Jo=F =046
3 fi=fof =661218)
. L, ¥ 1.8
4 fo=fi5 =119.02(—é—)=
A A ? 18
A A ? 18
6. 4='~faz ==6427(--"{*)
I 1.8
1. fs= 43 = (—5“)
;Y ~1041( 8
8. fs -fs'ﬁ' 6

i

= 66.12

119.02

107.11

64.27

2892

]

= 1041

= 312
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. Y .
9-f7=f6—7— =3.12(3§) = 080

7
10. fy = f.,«;f = o.so(fﬁ)

e) = o8
Total 399.95
f+ and beyond 0.05

At step 3 enter ¥ as a constant multiplier. Then multiply it by n/e’ (quantity 2).

At each subsequent step multiply the result of the previous step by ¥ and then
divide by the appropriate integer.

|

not know the parametric mean of the yeast cells in this problem, we employ an
estimate (the sample mean) and calculate expected frequencies of a Poisson
distribution with x4 equal to the mean of the observed frequency distribution
of Box 4.1. It is convenient for the purpose of computation to rewrite Expres-
sion (4.2) as a recursion formula as follows:

PO Y . _
f,-:f,,l<7> fori=1,2,..., where f, = ¢ ¥ (4.3)

Note first of all that the parametric mean g has been replaced by the sample
mean Y. Each term developed by this recursion formula is mathematically
exactly the same as its corresponding term in Expression (4.2). It is important
to make no computational error, since in such a chain multiplication the cor-
rectness of each term depends on the accuracy of the term before it. Expression
(4.3) yields relative expected frequencics. If, as is more usual, absolute expected
frequencies are desired, simply set the first term on to nfe", where n is the number
of samples, and then proceed with the computational steps as before. The actual
computation is illustrated in Box 4.1, and the expected frequencies so obtained
are listed in column (3) of the frequency distribution.

What have we learned from this computation? When we compare the
observed with the expected frequencies, we notice quite a good fit of our ob-
served frequencies to a Poisson distribution of mean 1.8, although we have not
as yet learned a statistical test for goodness of fit (this will be covered in Chap-
ter 13). No clear pattern of deviations from expectation is shown. We cannot
test a hypothesis about the mean, because the mean of the expected distribu-
tion was taken from the sample mean of the observed variates. As in the bino-
mial distribution, clumping or aggregation would indicate that the probability
that a second yeast cell will be found in « square is not independent of the pres-
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ence of the first one, but is higher than the probability for the first cell. This
would result in a clumping of the items in the classes at the tails of the distri-
bution so that there would be some squares with larger numbers of cells than ex-
pected, others with fewer numbers.

The biological interpretation of the dispersion pattern varies with the
problem. The yeast cells seem to be randomly distributed in the counting
chamber, indicating thorough mixing of the suspension. Red blood cells, on the
other hand, will often stick together because of an electrical charge unless the
proper suspension fluid is used. This so-called rouleaux effect would be indi-
cated by clumping of the observed frequencies.

Note that in Box 4.1, as in the subsequent tables giving examples of the
application of the Poisson distribution, we group the low frequencies at one
tail of the curve, uniting them by means of a bracket. This tends to simplify
the patterns of distribution somewhat. However, the main reason for this group-
ing is related to the G test for goodness of fit (of observed to expected frequen-
cies), which is discussed in Section 13.2. For purposes of this test, no expected
frequency f should be less than 5.

Before we turn to other examples, we need to learn a few more facts about
the Poisson distribution. You probably noticed that in computing expected
frequencies, we needed to know only one parameter—the mean of the distri-
bution. By comparison, in the binomial distribution we needed two parameters,
p and k. Thus, the mean completely defines the shape of a given Poisson distri-
bution. From this it follows that the variance is some function of the mean. In
a Poisson distribution, we have a very simple relationship between the two:
u = o2, the variance being equal to the mean. The variance of the number of
yeast cells per square based on the observed frequencies in Box 4.1 equals 1.965,
not much larger than the mean of 1.8, indicating again that thc ycast cells arc
distributed in Poisson fashion, hence randomly. This relationship between vari-
ance and mean suggests a rapid test of whether an observed frequency distribu-
tion is distributed in Poisson fashion even without fitting expected frequencics
to the data. We simply compute a coefficient of dispersion

\‘2

CD ==
Y

This value will be near 1 in distributions that are essentially Poisson distribu-
tions, will be >1 in clumped samples, and will bec <1 in cases of repulsion. In
the yeast cell example, CD = 1.092.

The shapes of five Poisson distributions of diffcrent mecans arc shown in
Figure 4.3 as frequency polygons (a frequency polygon is formed by the linc
connecting successive midpoints in a bar diagram). We notice that for the low
value of p = 0.1 the frequency polygon is extremely L-shaped, but with an
increase in the value of u the distributions become humped and cventually
nearly symmetrical.

We conclude our study of the Poisson distribution with a consideration of
two examples. The first example (Table 4.5) shows the distribution of a number
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Relative expected frequency

0 2 4 6 8 10 12 14 16 18

Number of rare events per sample

FIGURE 4.3
Frequency polygons of the Poisson distribution for various values of the mean.

of accidents per woman from an accident record of 647 women working in a
munitions factory during a five-week period. The sampling unit is one woman
during this period. The rare event is the number of accidents that happened
to a woman in this period. The coefficient of dispersion is 1.488, and this is
clearly reflected in the observed frequencies, which are greater than expected in
the tails and less than expected in the center. This relationship is easily seen in
the deviations in the last column (observed minus expected frequencies) and
shows a characteristic clumped pattern. The model assumes, of course, that the
accidents are not fatal or very serious and thus do not remove the individual
from further exposure. The noticeable clumping in these data probably arises

TABLE 4.5
Accidents in 5 weeks to 647 women working on high-explosive
shells.
) el

(/) 2) Poisson Deviation

Number of Observed expected from
accidents Sfrequencies frequencies expectation

per woman ! S/ =1

0 447 406.3 +

1 132 189.0 —

2 42 440 —

3 21 6.8 +

4 3,26 0.8 »7.7 + >+

5+ 2 0.1 +

Total 647 647.0

Y = 0.4652 st = 0692 CD = 1488

Source: Greenwood and Yule (1920).

EXERCISES T

TABLE 4.6
Azuki bean weevils (Callosobruchus chinensis) emerging from
112 Azuki beans (Phaseolus radiatus).

1
N urrfbir of (&) 4
weevils 2) Poisson Deviation
emerging Observed expected Jfrom
per bean Sfrequencies frequencies expectation
Y J J f—f
0 61 70.4 -
1 50 327 +
2 1 7.6} -
3 0,1 1.2 89 o
4 0 0.1 -
Total 112 1120

¥ = 0.4643 s2 = 0.269 CD = 0.579

Source: Utida (1943).

either because some women are accident-prone or because some women have
more dangerous jobs than others. Using only information on the distributions
of accidents, one cannot distinguish between the two alternatives, which sug-
gest very different changes that should be made to reduce the numbers of
accidents.

The second example (Table 4.6) is extracted from an experimental study
of the effects of different densities of the Azuki bean weevil. Larvae of these
weevils enter the beans, feed and pupate inside them, and then emerge through
an emergence hole. Thus the number of holes per bean is a good measure of the
number of adults that have emerged. The rare event in this case is the presence
of the weevil in the bean. We note that the distribution is strongly repulsed.
There are many more beans containing one weevil than the Poisson distribution
would predict. A statistical finding of this sort leads us to investigate the biology
of the phenomenon. In this case it was found that the adult female weevils tended
to deposit their eggs evenly rather than randomly over the available beans. This
prevented the placing of too many eggs on any one bean and precluded heavy
competition among the developing larvae on any one bcan. A contributing
factor was competition among remaining larvae feeding on the same bean, in
which generally all but one were killed or driven out. Thus, it is easily under-
stood how the above biological phenomena would give rise to a repulsed
distribution.

Exercises

4.1 The two columns below give fertility of eggs of the CP strain of Drosophila
melanogaster raised in 100 vials of 10 eggs each (data from R. R. Sokal). Find
the expected [requencies on the assumption of independence of mortality for
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each egg in a vial. Use the observed mean. Calculate the expected variance and
compare it with the observed variance. Interpret results, knowing that the eggs
of each vial are siblings and that the different vials contain descendants from
different parent pairs. ANS. 62 = 2.417, s* = 6.636. There is evidence that mor-
tality rates are different for different vials.

Number of eggs
hatched Number of vials

Y /
0 1
1 3
2 8
3 10
4 6
5 15
6 14
7 12
8 13
9 9

10 9

In human beings the sex ratio of newborn infants is about 10099:1053.3. Were
we to take 10,000 random samples of 6 newborn infants from the total population
of such infants for one year, what would be the expected frequency of groups
of 6 males, 5 males, 4 males, and so on?

The Army Medical Corps is concerned over the intestinal disease X. From
previous experience it knows that soldiers suffering from the disease invariably
harbor the pathogenic organism in their feces and that to all practical purposes
every stool specimen from a diseased person contains the organism. However,
the organisms are never abundant, and thus only 20% of all slides prepared by
the standard procedure will contain some. (We assume that if an organism is
present on a slide it will be seen.) How many slides should laboratory technicians
be directed to prepare and examine per stool specimen, so that in case a speci-
men is positive, it will be erroneously diagnosed negative in fewer than 1% of
the cases (on the average)? On the basis of your answer, would you recommend
that the Corps attempt to improve its diagnostic methods? ANS. 21 slides.
Calculate Poisson expected frequencies for the frequency distribution given in
Table 2.2 (number of plants of the sedge Carex flacca found in 500 quadrats).
A cross is made in a genetic experiment in Drosophila in which it is expected
that 4 of the progeny will have white eyes and 1 will have the trait called “singed
bristles.” Assume that the two gene loci segregate independently. (a) What
proportion of the progeny should exhibit both traits simultaneously? (b) If four
flies are sampled at random, what is the probability that they will all be
white-eyed? (c) What is the probability that none of the four flies will have either
white eyes or “singed bristles?” (d) If two flies are sampled, what is the probability
that at least one of the flies will have either white eyes or “singed bristles” or
both traits? ANS. (a) 4; (b) (1)*; (¢) [(1 — H(1 — D]% (@) 1 — L1 — 21 — D]
Those readers who have had a semester or two of calculus may wish to try to
prove that Expression (4.1) tends to Expression (4.2) as k becomes indefinitely
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4.7

4.8

49

4.10

large (and p becomes infinitesimal, so that g = kp remains constant). HINT:

xn
1——| e~ as n— o
n

If the frequency of the gene A is p and the frequency of the gene a is q, what
are the expected frequencies of the zygotes A4, Aa, and aa (assuming a diploid
zygote represents a random sample of size 2)? What would the expected frequency
be for an autotetraploid (for a locus close to the centromere a zygote can be
thought of as a random sample of size 4)? ANS. P{44} = p?, P{Aa} = 2pq,
P{aa} = ¢* for a diploid; and P{4AAA} = p*, P{AAAa} = 4pq, P{AAaa} =
6p*q*, P{Aaaa} = 4pq®, P{aaaa} = ¢*, for a tetraploid.
Summarize and compare the assumptions and parameters on which the binomial
and Poisson distributions are based.
A population consists of three types of individuals, 4,, A, and A, with relative
frequencies of 0.5,0.2, and 0.3, respectively. (a) What is the probability of obtaining
only individuals of type 4, in samples of size 1, 2, 3,.. ., n? (b) What would be
the probabilities of obtaining only individuals that were not of type 4, or 4,
in a sample of size n? (c) What is the probability of obtaining a sample containing
at least one representation of each type in samples of size 1,2,3,4,5,...,n?
ANS. (@) 1,1, L,...,1/2" (b) (0.3)" (¢) 0, 0, 0.18, 0.36, 0.507, . . .,

f S Sy 1PNk

orm X L i
If the average number of weed seeds found in a 3-ounce sample of grass seed is
1.1429, what would you expect the frequency distribution of weed seeds to be
in ninety-eight -ounce samples? (Assume there is random distribution of the
weed seeds.)




CHAPTER 5

The Normal
Probability Distribution

The theorctical frequency distributions in Chapter 4 were discrete. Their vari-
ables assumed values that changed in integral steps (that is, they were meristic
variables). Thus, the number of infected insects per sample could be 0 or 1 or 2
but never an intermediate value between these. Similarly, the number of yeast
cells per hemacytometer square is a meristic variable and requires a discrete
probability function to describe it. However, most variables encountered in
biology cither are continuous (such as the aphid femur lengths or the infant
birth weights used as examples in Chapters 2 and 3) or can be treated as con-
tinuous variables for most practical purposes, even though they arc inherently
meristic (such as the ncutrophil counts encountered in the same chapters).
Chapter 5 will deal more extensively with the distributions of continuous
varables.

Scction 5.1 introduces frequency distributions of continuous variables. In
Section 5.2 we show one way of deriving the most common such distribution,
the normal probability distribution. Then we examine its propertics in Scetion
5.3. A few applications of the normal distribution are illustrated in Section 5.4.
A graphic techmgue for pointing out departures from normality and for estimat-
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ing mean and standard deviation in approximately normal distributions is given
in Section 3.5, as are some of the reasons for departure from normality in
observed frequency distributions.

5.1 Frequency distributions of continuous variables

For continuous variables, the theoretical probability distribution, or probability
density function, can be represented by a continuous curve, as shown in Figure
5.1. The ordinate of the curve gives the density for a given value of the variable
shown along the abscissa. By density we mean the relative concentration of
variates along the Y axis (as indicated in Figure 2.1). In order to compare the
theoretical with the observed frequency distribution, it is necessary to divide
the two into corresponding classes, as shown by the vertical lines in Figure 5.1.
Probability density functions are defined so that the expected frequency of ob-
servations between two class limits (vertical lines) is given by the area between
these limits under the curve. The total area under the curve is therefore equal
to the sum of the expected frequencies (1.0 or n, depending on whether relative
or absolute expected frequencies have been calculated).

When you form a frequency distribution of observations of a continuous
variable, your choice of class limits is arbitrary, because all values of a variable
are theoretically possible. In a continuous distribution, one cannot evaluate the
probability that the variable will be exactly equal to a given value such as 3
or 3.5. One can only estimate the frequency of observations falling between two
limits. This is so because the area of the curve corresponding to any point along
the curve is an infinitesimal. Thus, to calculate expected frequencies for a con-
tinuous distribution, we have to calculate the area under the curve between the
class limits. In Sections 5.3 and 5.4, we shall sce how this is done for the normal
frequency distribution.

Continuous frequency distributions may start and terminate at finite points
along the Y axis, as shown in Figure 5.1, or one or both ends of the curve may
extend indefinitely, as will be seen later in Figures 5.3 and 6.11. The idea of an
area under a curve when one or both ends go to infinity may trouble those of
you not acquainted with calculus. Fortunately, however, this is not a great con-
ceptual stumbling block, since in all the cases that we shall encounter, the tail

! FIGURE 5.1
A probabibty disinbution of 4 continuous
variable.
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of the curve will approach the Y axis rapidly enough that the portion of the
area beyond a certain point will for all practical purposes be zero and the fre-
quencies it represents will be infinitesimal.

We may fit continuous frequency distributions to some sets of meristic data
(for example, the number of teeth in an organism). In such cases, we have reason
to believe that underlying biological variables that cause differences in numbers
of the structure are really continuous, even though expressed as a discrete
variable.

We shall now proceed to discuss the most important probability density
function in statistics, the normal frequency distribution.

5.2 Derivation of the normal distribution

There are several ways of deriving the normal frequency distribution from ele-
mentary assumptions. Most of these require more mathematics than we expect
of our readers. We shall therefore use a largely intuitive approach, which we
have found of heuristic value. Some inherently meristic variables, such as counts
of blood cells, range into the thousands. Such variables can, for practical pur-
poses, be treated as though they were continuous.

Let us consider a binomial distribution of the familiar form (p + ¢)* in which
k becomes indefinitely large. What type of biological situation could give rise
to such a binomial distribution? An example might be one in which many
factors cooperate additively in producing a biological result. The following
hypothetical case is possibly not too far removed from reality. The intensity of
skin pigmentation in an animal will be due to the summation of many factors,
some genetic, others environmental. As a simplifying assumption, let us state
that every factor can occur in two states only: present or absent. When the lactor
is present, it contributes one unit of pigmentation to skin color, but it contributes
nothing to pigmentation when it is absent. Each factor, regardless of its nature
or origin, has the identical effect, and the effects are additive: if three out of five
possible factors are present in an individual, the pigmentation intensity will be
three units, or the sum of three contributions of one unit each. One final assump-
tion: Each factor has an cqual probability of being present or absent in a given
individual. Thus, p = P[F] = 0.5, the probability that the factor is present; while
g = P[f] = 0.5, the probability that the factor is absent.

With only onc factor (k = 1), expansion of the binomial (p + ¢)! would yield
two pigmentation classes among the animals, as follows:

/) pigmentation classes (probability space)
{0.5, 0.5} expected frequency
0} pigmentation intensily

Half the animals would have intensity 1, the other half 0. With k = 2 factors
present in the population (the factors are assumed to occur independently of
each other), the distribution of pigmentation intenstties would be represented by
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FIGURE 5.2
Histogram based on relative expected frequencies resulting from expansion of binomial (0.5 + 0.5)1°.
The Y axis measures the number of pigmentation factors F.

the expansion of the binomial (p + ¢)*:

{FF, Ff, f } pigmentation classes (probability space)
{0.25, 050, 0.25} expected frequency
{2, 1, 0 } pigmentation intensity

One-fourth of the individuals would have pigmentation intensity 2; one-half,
intensity 1; and the remaining fourth, intensity 0.

The number of classes in the binomial increases with the number of factors.
The frequency distributions are symmetrical, and the expected frequencies at the
tails become progressively less as k increases. The binomial distribution for
k =10 is graphed as a histogram in Figure 5.2 (rather than as a bar diagram,
as it should be drawn). We note that the graph approaches the familiar bell-
shaped outline of the normal frequency distribution (seen in Figures 5.3 and 5.4).
Were we to expand the expression for k = 20, our histogram would be so close
to a normal frequency distribution that we could not show the difference be-
tween the two on a graph the size of this page.

At the beginning of this procedure, we made a number of severe limiting
assumptions for the sake of simplicity. What happens when these are removed?
First, when p # ¢, the distribution also approaches normality as k approaches
infinity. This is intuitively difficult to see, because when p # g, the histogram
is at first asymmetrical. However, it can be shown that when k, p, and q are
such that kpg > 3, the normal distribution will be closely approximated. Second,
in a more realistic situation, factors would be permitted to occur in more than
two states—one state making a large contribution, a sccond state a smaller
contribution, and so forth. However, it can also be shown that the multinomial
(p+4q+r+---+z)" approaches the normal frequency distribution as k ap-
proaches infinity. Third, different factors may be present in different frequencies
and may have different quantitative effects. As long as these are additive and
independent, normality is still approached as k approaches infinity.

Lifting these restrictions makes the assumptions leading to a normal dis-
tribution compatible with innumerable biological situations. It is therefore
not surprising that so many biological variables arc approximately normally
distributed.
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Let us summarize the conditions that tend to produce normal frequency
distributions: (1) that there be many factors; (2) that these factors be independent
in occurrence; (3) that the factors be independent in effect-—that is, that their
effects be additive; and (4) that they make equal contributions to the variance.
The fourth condition we are not yet in a position to discuss; we mention it here
only for completeness. It will be discussed in Chapter 7.

5.3 Properties of the normal distribution

Formally, the normal probability density function can be represented by the
expression

=
e

Z= LA (5.1)

o/2n

Here Z indicates the height of the ordinate of the curve, which represents the
density of the items. It is the dependent variable in the expression, being a func-
tion of the variable Y. There are two constants in the equation: n, well known
to be approximately 3.141,59, making l/ﬁ; approximately 0.398,94, and e,
the base of the natural logarithms, whose value approximates 2.718,28.

There are two parameters in a normal probability density function. These
are the parametric mean g and the parametric standard deviation o, which
determine the location and shape of the distribution. Thus, there is not just one
normal distribution, as might appear to the uninitiated who keep encountering
the same bcll-shaped image in textbooks. Rather, there are an infinity of such
curves, since these parameters can assume an infinity of values. This is illustrated
by the three normal curves in Figure 5.3, representing the same total frequencices.
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FIGURE 5.3
Hlustration of how changes in the two parameters of the normal distribution affect the shape and
location of the normal probability density function. (A)pu=4,6=1,B)p=8,06=1(C) u=8§,

o - (0.5
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Curves A and B differ in their locations and hence represent populations with
different means. Curves B and C represent populations that have identical means
but different standard deviations. Since the standard deviation of curve C is only
half that of curve B, it presents a much narrower appearance.

In theory, a normal frequency distribution extends from negative infinity
to positive infinity along the axis of the variable (labeled Y, although it is
frequently the abscissa). This means that a normally distributed variable can
assume any value, however large or small, although values farther from the
mean than plus or minus three standard deviations are quite rare, their relative
expected frequencies being very small. This can be seen from Expression (5.1).
When Y is very large or very small, the term (Y — u)*/26% will necessarily
become very large. Hence e raised to the negative power of that term will be very
small, and Z will therefore be very small.

The curve is symmetrical around the mean. Therefore, the mean, median,
and mode of the normal distribution are all at the same point. The following
percentages of items in a normal frequency distribution lie within the indicated
limits:

u + o contains 68.27% of the items
i+ 20 contains 95.45% of the items
i * 30 contains 99.73% of the items

Conversely,

50% of the items fall in the range p + 0.6740
95% of the items fall in the range u + 1.9600
99% of the items fal! in the range u + 2.5760

These relations are shown in Figure 5.4.

How have these percentages been calculated? The direct calculation of any
portion of the area under the normal curve requires an integration of the func-
tion shown as Expression (5.1). Fortunately, for those of you who do not know
calculus (and even for those of you who do) the integration has already been
carried out and is presented in an alternative form of the normal distribution:
the normal distribution function (the theoretical cumulative distribution function
of the normal probability density function), also shown in Figure 5.4. 1t gives the
total frequency from negative infinity up to any point along the abscissa. We can
therefore look up directly the probability that an observation will be less than
a specified value of Y. For example, Figure 5.4 shows that the total frequency
up to the mean is 50.00% and the frequency up to a point one standard deviation
below the mean is 15.877. These frequencies are found, graphically, by raising
a vertical line from a point, such as — o, until it intersects the cumulative distri-
bution curve, and then reading the frequency (15.87%) off the ordinatc. The
probability that an observation will fall between two arbitrary points can be
found by subtracting the probability that an observation will fall below the
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FIGURE 5.4
Areas under the normal probability density function and the cumulative normal distribution
function.

lower point from the probability that an observation will {all below the upper
point. For example, we can see from Figure 5.4 that the probability that an
observation will fall between the mean and a point one standard deviation below
the mean is 0.5000 — 0.1587 = 0.3413.

The normal distribution function is tabulated in Table 1T in Appendix A2,
“Areas of the normal curve,” where, for convenience in later calculations, 0.5
has been subtracted from all of the entries. This table therefore hists the propor-
tion of the area between the mean and any point a given number of standard
deviations above it. Thus, for example, the area between the mean and the point
0.50 standard deviations above the mean is 0.1915 of the total area of the curve.
Similarly, the area between the mean and the point 2.64 standard deviations
above the mean is 0.4959 of the curve. A point 4.0 standard deviations from
the mean includes 0.499,968 of the area between it and the mean. However, since
the normal distribution extends from negative to positive infinity, one needs
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to go an infinite distance from the mean to reach an area of 0.5. The use of the
table of areas of the normal curve will be illustrated in the next section.

A sampling experiment will give you a “feel” for the distribution of items
sampled from a normal distribution.

Experiment 5.1. You are asked to sample from two populations. The first one is an
approximately normal frequency distribution of 100 wing lengths of houseflies. The
second population deviates strongly from normality. It is a frequency distribution of the
total annual milk yield of 100 Jersey cows. Both populations are shown in Table 5.1.
You are asked to sample from them repeatedly in order to simulate sampling from an
infinite population. Obtain samples of 35 items from each of the two populations. This
can be done by obtaining two sets of 35 two-digit random numbers from the table of
random numbers (Table I), with which you became familiar in Experiment 4.1. Write
down the random numbers in blocks of five, and copy next to them the value of Y (for
either wing length or milk yield) corresponding to the random number. An example of
such a block of five numbers and the computations required for it are shown in the

TABLE 5.1

Populations of wing lengths and milk yields. Column /. Rank number. Column 2. Lengths (in
mm x 10~ *) of 100 wings of houseflies arrayed in order of magnitude; p = 45.5,6% = 15.21, ¢ = 3.90;
distribution approximately normal. Column 3. Total annual milk yield (in hundreds of pounds) of
100 two-year-old registered Jersey cows arrayed in order of magnitude; u = 66.61, 62 = 124.4779,
o = 11.1597; distribution departs strongly from normality.

0 @ |n @ ;0 @ 0 @ |l v B’

0t 36 51 ] 21 42 58 | 41 45 61 | 61 47 67 | 81 49 76
02 37 51 |22 42 58| 42 45 61 | 62 47 67 | 82 49 76
03 38 51 | 23 42 58143 45 61 |63 47 681 8 49 79
04 38 53| 24 43 58 | 44 45 ol | 64 47 68 | 84 49 B0
05 39 53|25 43 58 |45 45 61 | 65 47 69 | 85 S0 80
06 39 53 |2 43 58 |46 45 62| 66 47 69 | 86 SO 8
07 40 54 | 27 43 58 | 47 45 62 67 47 69 | 87 S0 82
08 40 55 | 28 43 58 | 48 45 62 | 68 47 69 | 88 50 82
09 40 55| 29 43 58 | 49 45 62 | 69 47 69 | 89 S50 82
10 40 56 | 30 43 58 | 50 45 63| 70 48 69 |90 S0 8

It 41 56 [ 31 43 58 | 51 46 63 | 71 48 70 | 91 51 83
4 59 | 52 46 63 | 72 48 72 )92 51 85
4 59 | S3 46 64! 73 48 73 | 93 51 87
44 59 154 46 65| 74 48 73 | 94 51 88
15 41 57 |35 44 60 | 55 46 65|75 48 74 | 95 52 88
4 60 | S6 46 65| 76 48 74 1 96 52 89
4 60| 57 46 65| 77 48 74 |97 53 93
4 60 | 58 46 65 | 78 49 T4 | 98 53 94
19 42 57 | 39 44 60| 59 46 67 79 49 75|99 54 96
20 42 57 140 44 61 | 60 46 67 | 80 49 T6 | 00 55 98

Source: Column 2—Data adapted from Sokal and Huater (1955). Column 3 —Data from Canadian government
records.
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following listing, using the housefly wing lengths as an example:

Wing

Random length
number Y

16 41

59 46

99 54

36 44

21 42

Z Y= 227

Z Y?=10413

Y= 454

Those with ready access to a computer may prefer to program this exercise and take
many more samples. These samples and the computations carried out for each sample
will be used in subsequent chapters. Therefore, preserve your data carefully!

In this experiment, consider the 35 variates for each variable as a single
sample, rather than breaking them down into groups of five. Since the true mean
and standard deviation (¢ and o) of the two distributions are known, you can
calculate the expression (Y; — u)/o for each variate Y;. Thus, for the first housefly
wing length sampled above, you compute

41 — 455
——— = —1.1538
3.90

This means that the first wing length is 1.1538 standard deviations below the
true mean of the population. The deviation from the mean measured in standard
deviation units is called a standardized deviate or standard deviate. The argu-
ments of Table L1, expressing distance from the mean in units of g, are called
standard normal deviates. Group all 35 variates in a frequency distribution; then
do the same for milk yields. Since you know the parametric mean and standard
deviation, you need not compute each dcviate separately, but can simply write
down class limits in terms of the actual variable as well as in standard deviation
form. The class limits for such a frequency distribution are shown in Table
5.2. Combine the results of your sampling with those of your classmates and
study the percentage of the items in the distribution one, two, and three standard
deviations to each side of the mean. Note the marked differences in distribution
between the housefly wing lengths and the milk yields.

5.4 Applications of the normal distribution

The normal frequency distribution i1s the most widely used distribution in sta-
tistics, and time and again we shall have recourse to it in a variety of situa-
tions. For the moment, we may subdivide its applications as follows.
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TABLE 5.2
Table for recording frequency distributions of standard deviates (Y, — p)/a for samples of
Experiment 5.1,

Wing lengths Milk yields
Variates Variates
falling falling
between between
these these
fimits ! limits S/
— — 0
—30 ~30
2o ~Aa
¢ 36, 37 —20
— o 38, 39 . ~lc
— 40, 41 ) s S1-55
L1 42,43 , _1e _S6-6l
u=455 44,45 _ u=6661 62-66
1o 46, 47 1o 67-72
o 48, 49 B c 73-71
g 50,51 ) e 788
20 52,53 - 20 _84-88 o
2g 54, 55 ~ 26 89-94
30 I e 3o 95 _
+ 0 + o

1. We sometimes have to know whether a given sample is normally distributed
before we can apply a certain test to it. To test whether a given sample is
normally distributed, we have to calculate expected frequencics for a normal
curve of the same mean and standard deviation using the table of areas of
the normal curve. In this book we shall employ only approximate graphic
methods for testing normality. These are featured in the next section.

2. Knowing whether a sample is normally distributed may confirm or reject
certain underlying hypotheses about the nature of the lactors aflecting the
phenomenon studied. This is related to the conditions making for normality
in a frequency distribution, discussed in Section 5.2. Thus, if we find a given
variable to be normally distributed, we have no reason for rejecting the hy-
pothesis that the causal factors affecting the variable are additive and inde-
pendent and of equal variance. On the other hand, when we find departure
from normality, this may indicate certain forces, such as sclection, alfecting
the variable under study. For instance, bimodality may indicate a mixture
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of observations from two populations. Skewness of milk yield data may indi-
cate that these are records of selected cows and substandard milk cows have
not been included in the record.

3. If we assume a given distribution to be normal, we may make predictions
and tests of given hypotheses based upon this assumption. (An example of
such an application follows.)

You will recall the birth weights of male Chinese children, illustrated in
Box 3.2. The mean of this sample of 9465 birth weights is 109.9 oz, and its
standard deviation is 13.593 oz. If you sample at random from the birth records
of this population, what is your chance of obtaining a birth weight of 151 oz or
heavier? Such a birth weight is considerably above the mean of our sample, the
difference being 151 — 109.9 = 41.1 oz. However, we cannot consult the table
of areas of the normal curve with a difference in ounces. We must express it in
standardized units—that is, divide it by the standard deviation to convert it into
a standard deviate. When we divide the difference by the standard deviation,
we obtain 41.1/13.593 = 3.02. This means that a birth weight of 151 oz is 3.02
standard deviation units greater than the mean. Assuming that the birth weights
are normally distributed, we may consult the table of areas of the normal curve
(Table II), where we find a value of 0.4987 for 3.02 standard deviations. This
means that 49.87% of the area of the curve lies between the mean and a point
3.02 standard deviations from it. Conversely, 0.0013, or 0.13%, of the area lies
beyond 3.02 standard deviation units above the mean. Thus, assuming a normal
distribution of birth weights and a value of ¢ = 13.593, only 0.13%, or 13 out
of 10,000, of the infants would have a birth weight of 151 oz or farther from
the mean. It is quite improbable that a single sampled item from that population
would deviate by so much from the mean, and if such a random sample of one
weight were obtained from the records of an unspecified population, we might
be justified in doubting whether the observation did in fact come from the
population known to us.

The above probability was calculated from one tail of the distribution. We
found the probability that an individual would be greater than the mean by
3.02 or more standard deviations. If we are not concerned whether the indi-
vidual is either heavier or lighter than the mean but wish to know only how
different the individual is from the population mean, an appropriate question
would be: Assuming that the individual belongs to the population, what is the
probability of observing a birth weight of an individual deviant by a certain
amount from the mean in either direction? That probability must be computed
by using both tails of the distribution. The previous probability can be simply
doubled, since the normal curve is symmetrical. Thus, 2 x 0.0013 = 0.0026.
This, too, is so small that we would conclude that a birth weight as deviant
as 151 oz is unlikely to have come from the population represented by our
sample of male Chinese children.

We can learn one more important point from this example. Our assumption
has been that the birth weights arc normally distributed. Inspection of the
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frequency distribution in Box 3.2, however, shows clearly that the distribution
is asymmetrical, tapering to the right. Though there are eight classes above
the mean class, there are only six classes below the mean class. In view of this
asymmetry, conclusions about one tail of the distribution would not neces-
sarily pertain to the second tail. We calculated that 0.13% of the items would
be found beyond 3.02 standard deviations above the mean, which corresponds
to 15! oz. In fact, our sample contains 20 items (14 + 5 + 1) beyond the 147.5-0z
class, the upper limit of which is 151.5 oz, almost the same as the single birth
weight. However, 20 items of the 9465 of the sample is approximately 0.217%,
more than the 0.13% expected from the normal frequency distribution. Although
it would still be improbabile to find a single birth weight as heavy as 151 oz in
the sample, conclusions based on the assumption of normality might be in error
if the exact probability were critical for a given test. Qur statistical conclusions
are only as valid as our assumptions about the population from which the
samples are drawn.

5.5 Departures from normality: Graphic methods

In many cases an observed frequency distribution will depart obviously from
normality. We shall emphasize two types of departure from normality. One is
skewness, which is another name for asymmetry; skewness means that one tail
of the curve is drawn out more than the other. In such curves the mean and
the median will not coincide. Curves are said to be skewed to the right or left,
depending upon whether the right or left tail is drawn out.

The other type of departure from normality is kurtosis, or “peakedness”
of a curve. A leptokurtic curve has more items near the mean and at the tails,
with fewer items in the intermediate regions relative to a normal distribution
with thc samc mecan and variance. A platykurtic curve has fewer items at the
mean and at the tails than the normal curve but has more items in intermediate
regions. A bimodal distribution is an extreme platykurtic distribution.

Graphic methods have been developed that examine the shape of an ob-
served distribution for departures from normality. These methods also permit
estimates of the mean and standard deviation of the distribution without
computation.

The graphic methods are based on a cumulative frequency distribution. In
Figure 5.4 we saw that a normal frequency distribution graphed in cumulative
fashion describes an S-shaped curve, called a sigmoid curve. In Figure 5.5 the
ordinate of the sigmoid curve is given as rclative frequencies expressed as
percentages. The slope of the cumulative curve reflects changes in height of the
frequency distribution on which it is based. Thus the steep middle segment of
the cumulative normal curve corresponds to the relatively greater height of the
normal curve around its mean.

The ordinate in Figures 5.4 and 5.5 is in linear scale, as is the abscissa in
Figurc 5.4. Another possible scalce is the normal probability scale (often simply
called probability scale), which can be generated by dropping perpendiculars
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FIGURE 5.5
Transformation of cumulative percentages into normal probability scale.

from the cumulative normal curve, corresponding to given percentages on the
ordinate, to the abscissa (as shown in Figure 5.5). The scale represented by the
abscissa compensates for the nonlinearity of the cumulative normal curve. It
contracts the scale around the median and expands it at the low and high
cumulative percentages. This scale can be found on arithmetic or normal prob-
ability graph paper (or simply probability graph paper), which is generally avail-
able. Such paper usually has the long edge graduated in probability scale, while
the short edge is in linear scale. Note that there are no 0% or 100% points on
the ordinate. These points cannot be shown, since the normal frequency distri-
bution extends from negative to positive infinity and thus however long we
made our line we would never reach the limiting values of 0% and 100%.

If we graph a cumulative normal distribution with the ordinate in normal
probability scale, it will lie exactly on a straight line. Figure 5.6A shows such a
graph drawn on probability paper, while the other parts of Figure 5.6 show a
series of frequency distributions variously departing from normality. These are
graphed both as ordinary frequency distributions with density on a linear scale
(ordinate not shown) and as cumulative distributions as they would appear on
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Examples of some frequency distributions with their cumulative distributions plotted with the
ordinate in normal probability scale. (See Box 5.1 for explanation.)

probability paper. They are useful as guidelines for examining the distributions
of data on probability paper.

Box 5.1 shows you how to use probability paper to examine a frequency
distribution for normality and to obtain graphic estimates of its mean and
standard deviation. The method works best for fairly large samples (n > 50).
The method does not permit the plotting of the last cumulative frequency, 100%,
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BOX 5.1

Graphic test for normality of a frequency distribution and estimate of mean and

standard deviation. Use of arithmetic probability paper.
Birth weights of male Chinese in ounces, from Box 3.2,
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BOX 5.1
Continued

The median is estimated by dropping a perpendicular from the intersection of
the 50% point on the ordinate and the cumulative frequency curve to the
abscissa (see Figure 5.7). The estimate of the mean of 110.7 oz is quite close to
the computed mean of 109.9 oz.

. The standard deviation can be estimated by dropping similar perpendiculars

from the intersections of the 15.9% and the 84.1% points with the cumulative
curve, respectively. These points enclose the portion of a normal carve repre-
sented by p + 0. By measuring the difference between these perpendiculars and
dividing this by 2, we obtain an estimate of one standard deviation. In this
instance the estimate is s == 13.6, since the difference is 27.2 oz divided by 2. This
is a close approximation to the computed value of 13.59 oz.

89

n 2 3) @ ©)
Class Upper Cumulative Percent
mark class Jrequencies cumulative

Y limit f F Jrequencies

59.5 63.5 2 2 0.02

67.5 71.5 6 8 0.08

75.5 79.5 39 47 0.50

835 87.5 385 432 46

91.5 95.5 888 1320 139

99.5 103.5 1729 3049 22
107.5 111.5 2240 5289 559
1155 119.5 2007 7296 77.1
123.5 127.5 1233 8529 90.1
131.5 1355 641 9170 96.9
1395 143.5 201 9371 99.0
147.5 151.5 74 9445 99.79
155.5 159.5 14 9459 99.94
163.5 167.5 5 9464 99.99
171.5 175.5 1 9465 100.0

9465

Computational steps
1. Prepare a frequency distribution as shown in columns (1), (2), and (3).
2. Form a cumulative frequency distribution as shown in column (4). It is obtained

by successive summation of the frequency values. In column (5) express the
cumulative frequencies as percentages ol total sample size n, which is 9465 in
this example. These percentages are 100 times the values of column (4) divided
by 9465.

3. Graph the upper class limit of each class along the abscissa (in linear scale)

against percent cumulative frequency along the ordinate (in probability scale)
on normal probability paper (see Figure 5.7). A straight line is fitted to the points
by eye, preferably using a transparent plastic ruler, which permits all the points
to be seen as the line is drawn. In drawing the line, most weight should be
given to the points between cumulative frequencies of 25% to 75%. This is
because a difference of a single item may make appreciable changes in the
percentages at the tails. We notice that the upper frequencies deviate to the right
of the straight line. This is typical of data that are skewed to the right (see
Figure 5.6D).

4. Such a graph permits the rapid estimation of the mean and standard deviation

of a sample. The mean is approximated by a graphic estimation of the median.
The more normal the distribution is, the closer the mean will be to the median.
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Graphic analysis of data from Box S.1.
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(A) Histogram of the observed frequency distribution of birth weights of male Chinese from Box 5.1 with expected normal curve

superimposed. (B) The data in A displayed as a hanging histogram. Frequency bars are suspended from the expected normal
curve. Bars that do not reach the abscissa indicate deficiencies from expectations. Bars extending below the abscissa indicate

observed frequencies in excess of expectation. {C) The data in B shown as a hanging rootogram. Both observed and expected
frequencies are given as square roots of the actual values. Departures from expectation in the tails of the distribution are

accentuated. (D) Comparing observed and expected frequencies for the birth weight data in A. The histogram of the skyline
indicates the expected frequencies: that of the “inverted skyline™ indicates the observed frequencies. Both frequencies are given

in square roots of actual values. Where the invered skyline does not reach the abscissa, there are fewer observed than expected

frequencies. Wherever it reaches below the abscissa. there is an excess of observed frequencies over expected frequencies.

FIGURE 5.8
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since that corresponds to an infinite distance from the mean. If you are interested
in plotting all observations, you can plot, instead of cumulative frequencies F,
the quantity F — § expressed as a percentage of n.

Often it is desirable to compare observed frequency distributions with their
expectations without resorting to cumulative frequency distributions. One
method of doing so would be to superimpose a normal curve on the histogram
of an observed frequency distribution. Fitting a normal distribution as a curve
superimposed upon an observed frequency distribution in the form of a histo-
gram is usually done only when graphic facilities {plotters) are available. Ordi-
nates are computed by modifying Expression (5.1) to conform to a frequency
distribution:

1,Y-p\?

z=_M_ 2 (52)

sy/2m

In this expression n is the sample size and i is the class interval of the frequency
distribution. If this needs to be done without a computer program, a table of
ordinates of the normal curve is useful. In Figure 5.8A we show the frequency
distribution of birth weights of male Chinese from Box 5.1 with the ordinates
of the normal curve superimposed. There is an excess of observed frequencies
at the right tail due to the skewness of the distribution.

You will probably find it difficult to compare the heights of bars against
the arch of a curve. For this reason, John Tukey has suggested that the bars
of the histograms be suspended from the curve. Their departures from expecta-
tion can then be easily observed against the straight-line abscissa of the graph.
Such a hanging histogram is shown in Figure 5.8B for the birth weight data.
The departure from normality is now much clearer.

Because tmportant departures are frequently noted in the tails of a curve,
it has been suggested that square roots of expected frequencies should be com-
pared with the square roots of observed frequencies. Such a “hanging rooto-
gram” is shown in Figure 5.8C for the Chinese birth weight data. Note the
accentuation of the departure from normality. Finally, one can also usc an
analogous technique for comparing expected with obscrved histograms. Figure
5.8D shows the same data plotted in this manner. Square roots of frequencies
are again shown. The excess of observed over expected frequencies in the right
tail of the distribution is quite evident.

Exercises

5.1 Using the information given in Box 3.2, what is the probability of obtaining an
individual with a negative birth weight? What is this probability if we assume
that birth weights are normally distributed? ANS. The empirical estimate is zero.
If a normal distribution can be assumed, it is the probability that a standard
normal deviate is less than (0 — 109.9)/13.593 = —8.085. This value is beyond
the range of most tables, and the probability can be considered zero for practical
purposcs.
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CHAPTER 5 / THE NORMAL PROBABILITY DISTRIBUTION

Carry out the operations listed in Exercise 5.1 on the transformed data generated
in Exercise 2.6.

Assume you know that the petal length of a population of plants of species X
is normally distributed with a mean of g = 3.2 cm and a standard deviation of
o = 1.8. What proportion of the population would be expected to have a petal
length (a) greater than 4.5 cm? (b) Greater than 1.78 cm? (c) Between 2.9 and
3.6 cm? ANS. (a) = 0.2353, (b) = 0.7845, and (c) = 0.154.

Perform a graphic analysis of the butterfat data given in Exercise 3.3, using prob-
ability paper. In addition, plot the data on probability paper with the abscissa
in logarithmic units. Compare the results of the two analyses.

Assume that traits 4 and B are independent and normally distributed with param-
eters p, = 28.6, 64, = 4.8, up = 162, and g5 = 4.1. You sample two individuals
at random (a) What is the probability of obtaining samples in which both
individuals measure less than 20 for the two traits? (b) What is the probability
that at least one of the individuals is greater than 30 for trait B? ANS.
(a) P{A4 < 20}P{B < 20} = (0.3654)(0.082,38) = 0.030; (b) 1 —(P{A4 < 30}) x
(P{B < 30}) = 1 — (0.6147)(0.9960) = 0.3856.

Perform the following operations on the data of Exercise 2.4. (a) If you have
not already done so, make a frequency distribution from the data and graph the
results in the form of a histogram. (b) Compute the expected frequencies for each
of the classes based on a normal distribution with g4 = ¥ and ¢ = 5. (c) Graph
the expected frequencies in the form of a histogram and compare them with the
observed frequencies. (d) Comment on the degree of agreement between observed
and expected frequencies.

Let us approximate the observed frequencies in Exercise 2.9 with a normal fre-
quency distribution. Compare the observed frequencies with those expected when
a normal distribution is assumed. Compare the two distributions by forming
and superimposing the observed and the expected histograms and by using a
hanging histogram. ANS. The expected (requencics for the age classes are: 17.9,
48.2, 720, 51.4, 17.5, 3.0. This is clear evidence for skewness in the obscrved
distribution.

Perform a graphic analysis on the following measurements. Are they consistent
with what one would expect in sampling from a normal distribution?

11.44 1288 11.06 702 10.25 626 792 1253 6.74
15.81 946 2127 9.72 6.37 540 321 6.50  3.40
560 1420 6.60 1042 8.18 11.09 874

The following data are total lengths (in ¢cm) of bass from a southern lake:

299 402 378 197 300 297 194 392 247 204
19.1 347 335 183 194 273 382 162 368 331
414 136 322 243 191 374 238 333 316 201
172 133 377 126 396 246 186 180 337 382

Compute the mean, the standard deviation, and the cocfficient of variation. Make
a histogram of the data. Do the data seem consistent with a normal distribution
on the basis of a graphic analysis? If not, what type of departure is suggested?
ANS. Y = 27.4475, s = 8.9035, 1 = 32.438. There is a suggestion of bimodality.

CHAPTER 6

Estimation and
Hypothesis Testing

In this chapter we provide methods to answer two fundamental s}atislical ques-
tions that every biologist must ask repeatedly in the course of his or her wprlf:
(1) how reliable are the results 1 have obtained? and (2) how probabie is ¥t
that the differences between observed results and those expected on the basis
of a hypothesis have been produced by chance alone? The ﬁrgt question, about
reliability, is answered through the setting of confidence limits to 'sample sta-
tistics. The second question leads into hypothesis testing. Both subjects belong
to the field of statistical inference. The subject matter in this chapter is funda-
mental to an understanding of any of the subsequent chapters.

In Section 6.1 we consider the form of the distribution of means and thgir
variance. In Section 6.2 we examine the distributions and variances of statistics
other than the mean. This brings us to the general subject of standard errors,
which are statistics measuring the reliability of an estimate. Confidence limits
provide bounds to our estimates of population parameters. We develop the idea
of a confidence limit in Section 6.3 and show its application to samples where
the true standard deviation is known. However, one usually deals with small,
more or less normally distributed samples with unknown standard deviations,
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in which case the t distribution must be used. We shall introduce the r dis-
tribution in Section 6.4. The application of ¢ to the computation of confidence
limits for statistics of small samples with unknown population standard devia-
tions is shown in Section 6.5. Another important distribution, the chi-square
distribution, is explained in Section 6.6. Then it is applied to setting confidence
limits for the variance in Section 6.7. The theory of hypothesis testing is intro-
duced in Section 6.8 and is applied in Section 6.9 to a variety of cases exhibiting
the normal or ¢ distributions. Finally, Section 6.10 illustrates hypothesis testing
for variances by means of the chi-square distribution.

6.1 Distribution and variance of means

We commence our study of the distribution and variance of means with a sam-
pling experiment.

Experiment 6.1 You were asked to retain from Experiment 5.1 the means of the seven
samples of 5 housefly wing lengths and the seven similar means of milk yields. We
can collect these means from every student in a class, possibly adding them to the sam-
pling results of previous classes, and construct a frequency distribution of these means.
For each variable we can also obtain the mean of the seven means, which is a mean
of a sample 35 items. Here again we shall make a frequency distribution of these means,
although it takes a considerable number of samplers to accumulate a sufficient number
of samples of 35 items for a meaningful frequency distribution.

In Table 6.1 we show a frequency distribution of 1400 means of samples
of 5 housefly wing lengths. Consider columns (1) and (3) for the time being.
Actually, these samples were obtained not by biostatistics classes but by a digi-
tal computer, enabling us to collect these values with little effort. Their mean
and standard deviation arc given at the foot of the table. Thesc values are plot-
ted on probability paper in Figure 6.1. Note that the distribution appears quite
normal, as docs that of thc means based on 200 samples of 35 wing lengths
shown in the same figure. This illustrates an important theorem: The means of
samples from a normally distributed population are themselves normally distributed
regardless of sample size n. Thus, we note that the means of samples from the
normally distributed housefly wing lengths are normally distributed whether
they are based on 5 or 35 individual readings.

Similarly obtained distributions of means of the heavily skewed milk yields,
as shown in Figure 6.2, appear to be close to normal distributions. However,
the means based on five milk yields do not agree with the normal nearly as
well as do the means of 35 items. This illustrates another theorem of funda-
mental importance in statistics: As sample size increases, the means of samples
drawn from a population of any distribution will approach the normal distribution.
This theorem, when rigorously stated (about sampling from populations with
finite variances), is known as the central limit theorem. The importance of this
theorem is that if n 1s large enough. it permits us to use the normal distri-
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TABLE 6.1

Frequency distribution of means of 1400 random samples of
5 housefly wing lengths. (Data from Table 5.1.) Class marlss
chosen to give intervals of 3oy to each side of the parametric

mean y.
)
Class mark 2)
Y Class mark (3)
(inmm x 1071 (in oy units) S/
39.832 -3 1
40.704 -22 11
41.576 —24 19
42.448 —13 64
43.320 —1i 128
44.192 -3 247
45.064 . 226
B=A3 2 5036 1 259
46.808 3 231
47.680 14 121
48.552 12 61
49.424 2i 23
50.296 22 6
51.168 3 3
1400
Y = 45.480 s= 1778 gy = 1.744

bution to make statistical inferences about means of populations in which the
items are not at all normally distributed. The necessary size of n depends upon
the distribution. (Skewed populations require larger sample sizes.) '
The next fact of importance that we note is that the range of the means 1
considerably less than that of the original items. Thus, the wing-.length means
range from 39.4 to 51.6 in samples of 5 and from 439 to 47.4 in §amples of
35, but the individual wing lengths range from 36 to 55. The milk-yield means
range from 54.2 to 89.0 in samples of 5 and from 61.9 to 71.3 in samples of 35,
but the individual milk yields range from 51 to 98. Not only do means show
less scatter than the items upon which they are based (an casily undt?rslqod
phenomenon if you give some thought to it), but the range of the distribution
of the means diminishes as the sample size upon which the means are based
increases. .
The differences in ranges are reflected in differences in the standard devia-
tions of these distributions. If we calculate the standard deviations of the means
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in the four distributions under consideration, we obtain the following values:

Observed standard deviations
of distributions of means

n=3; n =35
- =S
Wing lengths 1.778 0.584
Milk yields 5.040 1,799

Nole_ that the standard deviations of the sample means based on 35 items are
considerably less than those based on 5 items. This is-also intuitively obvious.
Means based on large samples should be close to the parametric mean, and
means based on large samples will not vary as much as will means baséd on
smau samples. The variance of means is therefore partly a function of the sam-
ple size on which the means are based. It is also a function of the variance of
the ltems in the samples. Thus, in the text table above, the means of milk
yields have a much greater standard deviation than means of wing lengths based
on comparable sample size simply because the standard deviation of the indi-
vidual milk yields (11.1597) is considerably greater than that of individual wing
lengths (3.90).

It is possible Lo work out the expected value of the variance of sample
means. By expected value we mean the average value to be obtained by infinitely
repeated sampling. Thus, if we were to take samples of a means of n items
repeatedly and were to calculate the variance of these a means each time, the
average of these variances would be the expected value. We can visualizé the
mean as a weighted average of the n independently sampled observations with
cach weight w, cqual to 1. From Expression (3.2) we obtain

7L
n'

JAVAS]

W T Y;

I‘orvlhc weighted mean. We shall state without proof that the variance of the
weighted sum of independent items 37 w Y is

Vur(Z w; Y,) = i wia? (6.1)

ore g2 g i
where o} is the variance of Y. It follows that

n
2

2
wio

Since the weishts w ] IS Ca8e ol . i
ce [hAL weights w; in this case equal 1. T" w; = 1, and we can rewrite the above
expression as

6.1 / DISTRIBUTION AND VARIANCE OF MEANS 99

If we assume that the variances ¢? are all equal to o, the expected variance
of the mean is

0 =-—F=— (6.2)
and consequently, the expected standard deviation of means is

oy = —= (6.2a)
N
From this formula it is clear that the standard deviation of means is a function
of the standard deviation of items as well as of sample size of means. The greater
the sample size, the smaller will be the standard deviation of means. In fact,
as sample size increases to a very large number, the standard deviation of means
becomes vanishingly smalil. This makes good scnse. Very large sample sizes,
averaging many observations, should yield estimates of means closer to the
population mean and less variable than those based on a few items.

When working with samples from a population, we do not, of course, know
its parametric standard deviation ¢, and we can obtain only a sample estimate
s of the latter. Also, we would be unlikely to have numerous samples of size
n from which to compute the standard deviation of means directly. Customarily,
we therefore have to cstimate the standard deviation of means from a single
sample by using Expression (6.2a), substituting s for o:

S
Sy = ——
Jn
Thus, from the standard deviation of a single sample, we obtain, an cstimate
of the standard deviation of means we would expect were we to obtain a collec-
tion of means based on equal-sized samples of nitcms from the same population.
As we shall see, this estimate of the standard deviation of a mcan is a very
important and frequently used statistic.

Table 6.2 illustrates some estimates of the standard deviations of mceans
that might be obtained from random samples of the two populations that we
have been discussing. The means of 5 samples of wing lengths based on 5
individuals ranged from 43.6 to 46.8, their standard deviations from 1.095 to
4827, and the estimate of standard deviation of the means (rom 0.490 to 2.159.
Ranges for the other categorics of samples in Table 6.2 similarly include the
parametric values of these statistics. The estimates of the standard deviations
of the means of the milk yields cluster around the expected value, since they
are not dependent on normality of the variates. However, in a particular sample
in which by chance the sample standard deviation i1s a poor estimate of the
population standard deviation (as in the second sample of 5 milk yields), the
estimate of the standard deviation of means is ¢qually wide of the mark.

We should emphasize onc point of difference between the standard devia-
tion of items and the standard deviation of sample means. If we estimate a
population standard deviation through the standard deviation of a sample, the
magnitude of the estimate will not change as we increase our sample size. We
mau avnect that the ectimate will imnrave and will annroach the true standard

(6.3)
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TABLE 6.2

Means, standard deviations, and standard deviations of means
(standard errors) of five random samples of 5 and 35 housefly
wing lengths and Jersey cow milk yields, respectively. (Data
from Table $.1.) Parametric values for the statistics are given
in the sixth line of each category.

(/) (2 3
}_' s Sy
Wing lengths

45.8 1.095 0.490

45.6 3.209 1.435

n=>5 43.6 4.827 2.159
448 4.764 2.131

46.8 1.095 0.490

=455 o =390 oy = 1.744

45.37 3.812 0.644

45.00 3.850 0.651

n=235 45.74 3.576 0.604
45.29 4.198 0.710

4591 3.958 0.669

u=455 g =390 oy = 0.659

Milk yields

66.0 6.205 2.775

61.6 4.278 1.913

n=>5 67.6 16.072 7.188
65.0 14.195 6.348

62.2 5.215 2.332

it = 66.61 a = 11.160 oy = 4.991

65.429 11.003 1.860

64971 11.221 1.897

n=35 66.543 9.978 1.687
64.400 9.001 1.521

68.914 12415 2.099

1= 6661 = 11.160 6y = 1.886

deviation of the population. However, its order of magnitude will be the same,
whether the sample is based on 3, 30, or 3000 individuals. This can be seen
clearly in Table 6.2. The valucs of s are closer to o in the samples based on

= 35 than in samples of n = 5. Yet the general magnitude is the same in both
instances. The standard deviation of mcans, however, decreases as sample size
increascs, as is obvious from Expression (6.3). Thus, means based on 3000 items
will have a standard deviation only one-tenth that of means based on 30 items.
This is obvious from

s s s
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6.2 Distribution and variance of other statistics

Just as we obtained a mean and a standard deviation from each sample of the
wing lengths and milk yields, so we could also have obtained other statistics
from each sample, such as a variance, a median, or a coefficient of variation.
After repeated sampling and computation, we would have frequency distribu-
tions for these statistics and would be able to compute their standard deviations,
just as we did for the frequency distribution of means. In many cases the statistics
are normally distributed, as was true for the means. In other cases the statistics
will be distributed normaily only if they are based on samples from a normally
distributed population, or if they are based on large samples, or if both these
conditions hold. In some instances, as in variances, their distribution is never
normal. An illustration is given in Figure 6.3, which shows a frequency distri-
bution of the variances from the 1400 samples of 5 housefly wing lengths. We
notice that the distribution is strongly skewed to the right, which is character-
istic of the distribution of variances.

Standard deviations of various statistics are generally known as standard
errors. Beginners sometimes get confused by an imagined distinction between
standard deviations and standard errors. The standard error of a statistic such
as the mean (or V'} is the standard deviation of a distribution of means (or V’s)
for samples of a given sample size n. Thus, the terms “standard error” and
“standard deviation” are used synonymously, with the following exception: it is
not customary to use “standard error” as a synonym of “standard deviation”
for items in a sample or population. Standard error or standard deviation has
to be gualified by referring to a given statistic, such as the standard deviation

200
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of ¥, which is the same as the standard error of V. Used without any qualifica-
tion, the term “standard error” conventionally implies the standard error of the
mean. “Standard deviation” used without qualification generally means stan-
dard deviation of items in a sample or population. Thus, when you read that
means, standard deviations, standard errors, and coefficients of variation are
shown in a table, this signifies that arithmetic means, standard deviations of
items in samples, standard deviations of their means (= standard errors of
means), and coefficients of variation are displayed. The following summary
of terms may be helpful:

Standard deviation = s = \/Zy¥/(n ~ 1).
Standard deviation of a statistic St = standard error of a statistic St = sg,.
Standard error = standard error of a mean

= standard deviation of a mean = sy.

Standard errors are usually not obtained from a frequency distribution by
repeated sampling but are estimated from only a single sample and represent
the expected standard deviation of the statistic in case a large number of such
samples had been obtained. You will remember that we estimated the standard
error of a distribution of means from a single sample in this manner in the
previous section.

Box 6.1 lists the standard errors of four common statistics. Column (1) lists
the statistic whose standard error is described; column (2) shows the formula

L

BOX 6.1
Standard errors for common statistics.

() ‘ (2 &) )
Statistic Estimate of standard error df Comments on applicability
- 5 sy 52 .
1 Y Sy = —= mm = [ n~1  True for any population
Vn n h with finite variance
2 Median 5,4~ (1.2533)sy n~1 Large samples from
normal populations
s
3 s s, = (0.7071068) - n~—1  Samples from normal
Jn populations (n > 15}
Vv 2
4 |4 Sy =——= [1+ ﬁ) n~1 Samples from normal
n populations
|4
Sp AL e n—1 Used when V < 15
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for the estimated standard error; column (3) gives the degrees of freedom on
which the standard error is based (their use is explained in Section 6.5); and
column (4) provides comments on the range of application of the standard
error. The uses of these standard errors will be illustrated in subsequent sections.

6.3 Introduction to confidence limits

The various sample statistics we have been obtaining, such as means or standard
deviations, are estimates of population parameters p or o, respectively. So far
we have not discussed the reliability of these estimates. We first of all wish to
know whether the sample statistics are unbiased estimators of the population
parameters, as discussed in Section 3.7. But knowing, for example, that Y is an
unbiased estimate of p is not enough. We would like to find out how reliable
a measure of u it is. The true values of the parameters will almost always remain
unknown, and we commonly estimate reliability of a sample statistic by setting
confidence limits to it.

To begin our discussion of this topic, let us start with the unusual case of
a population whose parametric mean and standard deviation are known to be
1 and o, respectively. The mean of a sample of n items is symbolized by Y. The
expected standard error of the mean is o//n. As we have scen, the sample
means will be normally distributed. Therefore, from Section 5.3, the region from
1.960/\/; below u to ].960/\/2 above g includes 95% of the sample means of
size n. Another way of stating this is to consider the ratio (Y - w)/(a/</n). This
is the standard deviate of a sample mean from the parametric mean. Since they
are normally distributed, 95% of such standard deviates will lic between —1.96
and + 1.96. We can express this statement symbolically as follows:
)7 — M

a//n

1’{— 1.96 < < + I.‘)(w} = (.95

This means that the probability P that the sample means Y will difler by no
more than 1.96 standard errors a/+/n from the parametric mean y cquals 0.95.
The expression between the brackets is an inequality, all terms of which can be
multiplied by a//n to yicld

{1.%@ <(Y < +196 ”-}

Jn Jn
We can rewrite this expression as

[

. a
—1.96- - < (1 — < + 196 -
{ =y m}

Y

because —a < b < a implies ¢ > —b > —a, which can be written as —a <
—b < a. And linally, we can transfer — Y across the inequality signs, just as in an
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equation it could be transferred across the equal sign. This yields the final desired
expression:

196 196
P{Y— Tcus<t+ ”}:0.95 (6.4)

Jn

or

P{Y — 1960y < u < Y + 1.960,} = 0.95 (6.4a)

This means that the probability P that the term Y — 1.96075 is less than or equal
to the parametric mean u and that the term Y + 1.9605 is greater than or equal
to p is 0.95. The two terms ¥ — 19665 and Y + 19.60 we shall call L, and L,,
respectively, the lower and upper 957% confidence limits of the mean.

Another way of stating the relationship implied by Expression (6.4a) is that
if we repeatedly obtained samples of size n from the population and constructed
these limits for each, we could expect 95% of the intervals between these limits
to contain the true mean, and only 5% of the intervals would miss u. The interval
from L, to L, is called a confidence interval.

If you were not satisfied to have the confidence interval contain the true
mean only 95 times out of 100, you might employ 2.576 as a coefficient in place
of 1.960. You may remember that 997 of the area of the normal curve lies in
the range u + 2.5760. Thus, to calculate 997 confidence limits, compute the two
quantities L, = Y — 2.5765/\/n and L, = Y + 2.576a/+/n as lower and upper
confidence limits, respectively. In this case 99 out of 100 confidence intervals
obtained in repeated sampling would contain the true mean. The new confidence
interval is wider than the 95% interval (since we have multiplied by a greater
coefficient). If you were still not satisfied with the reliability of the confidence
limit, you could increase it, multiplying the standard error of the mean by 3.291
to obtain 99.9% confidence limits. This value could be found by inverse inter-
polation in a more extensive table of areas of the normal curve or directly in
a table of the inverse of the normal probability distribution. The new coefficient
would widen the interval further. Notice that you can construct confidence
intervals that will be expected to contain p an increasingly greater percentage
of the time. First you would expect to be right 95 times out of 100, then 99 times
out of 100, finally 999 times out of 1000. But as your confidence increascs, your
statement becomes vaguer and vaguer, since the confidence interval lengthens.
Let us examine this by way of an actual sample.

We obtain a sample of 35 housefly wing lengths from the population of
Table 5.1 with known mean (¢ = 45.5) and standard deviation (¢ = 3.90). Let us
assumc that the sample mean is 44.8. We can expect the standard deviation
of means based on samples of 35 items to be 6y = 6/ /n = 3.90/4/35 = 0.6592.
We compute confidence limits as follows:

The lower limit is L, = 44.8 — (1.960)(0.6592) = 43.51.
The upper limitis L, = 44.8 + (1.960)(0.6592) = 46.09.

6.3 / INTRODUCTION TO CONFIDENCE LIMITS 105

Remember that this is an unusual case in which we happen to know the true
mean of the population (u = 45.5) and hence we know that the confidence limits
enclose the mean. We expect 95% of such confidence intervals obtained in
repeated sampling to include the parametric mean. We could increase the reli-
ability of these limits by going to 99% confidence intervals, replacing 1.960 in
the above expression by 2.576 and obtaining L, = 43.10 and L, = 46.50. We
could have greater confidence that our interval covers the mean, but we could
be much less certain about the true value of the mean because of the wider
limits. By increasing the degree of confidence still further, say, to 99.9%, we
could be virtually certain that our confidence limits (L, = 42.63, L, = 46.97)
contain the population mean, but the bounds enclosing the mean are now so
wide as to make our prediction far less useful than previously.

Experiment 6.2. For the seven samples of 5 housefly wing lengths and the seven similar
samples of milk yields last worked with in Experiment 6.1 (Section 6.1), compute 95%
confidence limits to the parametric mean for each sample and for the total sample based
on 35 items. Base the standard errors of the means on the parametric standard deviations
of these populations (housefly wing lengths ¢ = 3.90, milk yields ¢ = 11.1597). Record
how many in each of the four classes of confidence limits (wing lengths and milk yields,
n = 5and n = 35) are correct—that is, contain the parametric mean of the population.
Pool your results with those of other class members.

We tried the experiment on a computer for the 200 samples of 35 wing
lengths each, computing confidence limits of the parametric mean by cmploying
the parametric standard error of the mean, gy = 0.6592. Of the 200 confidence
intervals plotted parallel to the ordinate, 194 (97.0%) cross the parametric mean
of the population.

To reduce the width of the confidence interval, we have to reduce the stan-
dard error of the mean. Since g, = 0/\/n, this can be done only by reducing
the standard deviation of the items or by increasing the sample size. The first of
these alternatives is not always available. If we are sampling from a population
in nature, we ordinarily have no way of reducing its standard deviation. How-
ever, in many experimental proccdures we may be able to reduce the variance
of the data. FFor example, if we are studying the eflect of a drug on heart weight
in rats and find that its variance is rather large, we might be able to reduce this
variance by taking rats of only one age group, in which the variation of heart
weight would be considerably less. Thus, by controlling one of the variables of
the experiment, the variance of the response variable, heart weighl, is reduced.
Similarly, by keeping temperature or other cnvironmental variables constant in
a procedure, we can [requently reduce the variance of our response variable and
hence obtain more precise estimates of population parameters.

A common way to reduce the standard error is to increase sample size.
Obviously from Expression (6.2) as n increases, the standard crror decrecases;
hence, as n approaches infinity, the standard error and the lengths of conlidence
intervals approach zero. This ties in with what we have learned: in samples
whose size approaches infinity, the sample mean would approach the parametric
mean.
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We must guard against a common mistake in expressing the meaning of the
confidence limits of a statistic. When we have set lower and upper limits (L, and
L,, respectively) to a statistic, we imply that the probability that this interval
covers the mean is, for example, 0.95, or, expressed in another way, that on the
average 95 out of 100 confidence intervals similarly obtained would cover the
mean. We cannort state that there is a probability of 0.95 that the true mean is
contained within a given pair of confidence limits, although this may seem to be
saying the same thing. The latter statement is incorrect because the true mean
1s a parameter; hence it is a fixed value, and it 1s therefore either inside the interval
or outside it. It cannot be inside the given interval 95% of the time. It is important,
therefore, to learn the correct statement and meaning of confidence limits.

So far we have considered only means based on normally distributed sam-
ples with known parametric standard deviations. We can, however, extend the
methods just learned to samples from populations where the standard deviation
1s unknown but where the distribution is known to be normal and the samples
are large, say, n > 100. In such cases we use the sample standard deviation for
computing the standard error of the mean.

However, when the samples are small (r < 100) and we lack knowledge of
the parametric standard deviation, we must take into consideration the reli-
ability of our sample standard deviation. To do so, we must make use of the
so-called 1 or Student’s distribution. We shall learn how to set confidence limits
employing the ¢ distribution in Section 6.5. Before that, however, we shall have
to become familiar with this distribution in the next section.

6.4 Student’s t distribution

The deviations Y — u of sample means from the parametric mean of a normal
distribution are themselves normally distributed. If these deviations are divided
by the parametric standard deviation, the resulting ratios, (Y — p)/ay. are still
normally distributed, with g = 0 and ¢ = 1. Subtracting the constant u from
every Y, is simply an additive code (Section 3.8) and will not change the form
of the distribution of sample mecans, which is normal (Section 6.1). Dividing cach
deviation by the constant gy reduces the variance to unity, but proportionately
so for the entire distribution, so that its shape is not altered and a previously
normal distribution remains so.

If, on the other hand, we calculate the variance s7 of cach of the samples
and calculate the deviation for cach mean Y, as (Y, — {U/sy,, where sy, stands for
the estimate of the standard error of the mean of the ith sample, we will find
the distribution of the deviations wider and more peaked than the normal distri-
bution. This is illustrated in Figure 6.4, which shows the ratio (Y, - /sy, for
the 1400 samples of five houselly wing lengths of Table 6.1. The new distribution
ranges wider than the corresponding normal distribution, because the denomi-
nator is the sample standard crror rather than the parametric standard crror and
will sometimes be smaller and sometimes greater than expected. This increased
variation will he reflected in the greater variance of the ratio (Y - p)'sy. The
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FIGURE 6.4

Distribution of quantity t, = (¥ — g);sy ulong abscissa computed for 1400 samples of § housefly wing
lengths presented as a histogram and as a cumulative frequency distribution. Right-hand ordinate
represents frequencies for the histogram: lefi-hand ordinate is cumulative frequency in probability
scale.

expected distribution of this ratio is called the r distribution, also known as
“Student’s” distribution, named after W. S. Gossett, who first described it, pub-
lishing under the pseudonym “Student.” The 1 distribution 1s a function with a
complicated mathematical formula that need not be presented here.

The t distribution shares with the normal the properties of being symmetric
and of extending from negative to positive infinity. However, it differs from the
normal in that it assumes different shapes depending on the number of degrees
of freedom. By “degrees of freedom™ we mean the quantity n - 1, where n is the
sample sizc upon which a variance has been based. It wiil be remembered that
n — 1 is the divisor in obtaining an unbiased estimate of the variance from a sum
of squares. The number of degrees of freedom pertinent to a given Student’s
distribution is the same as thc number of degrees of freedom of the standard
deviation in the ratio (Y — u)/sy. Degrees of frecdom (abbreviated df or some-
times v) can range from 1 to infinity. A t distribution for df = 1 deviales most
markedly from the normal. As the number of degrees of freedom increascs,
Student’s distribution approaches the shape of the standard normal distribution
(1 =0, 6 = 1) ever more closcly, and in a graph the size of this page a ¢ distri-
bution of df = 30 is essentially indistinguishable from a normal distribution. At
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df = oo, the t distribution is the normal distribution. Thus, we can think of the
t distribution as the general case, considering the normal to be a special case
of Student’s distribution with df = 0. Figure 6.5 shows ¢ distributions for 1 and
2 degrees of freedom compared with a normal frequency distribution.

We were able to employ a single table for the areas of the normal curve by
coding the argument in standard deviation units. However, since the ¢ distri-
butions differ in shape for differing degrees of freedom, it will be necessary to
have a separate ¢ table, corresponding in structure to the table of the areas of
the normal curve, for each value of df. This would make for very cumbersome
and claborate sets of tables. Conventional ¢ tables are therefore differently
arranged. Table III shows degrees of freedom and probability as arguments and
the corresponding values of ¢ as functions. The probabilities indicate the percent
of the area in both tails of the curve (to the right and left of the mean) beyond
the indicated value of t. Thus, looking up the critical value of ¢ at probability
P =005 and df = 5, we find ¢t = 2.571 in Table III. Since this is a two-tailed
table, the probability of 0.05 means that 0.025 of the area will fall to the left of
a t value of —2.571 and 0.025 will fall to the right of t = +2.571. You will recall
that the corresponding value for infinite degrees of freedom (for the normal curve)
is 1.960. Only those probabilities generally used are shown in Table HL

You should become very familiar with looking up ¢ values in this table. This
is one of the most important tables to be consulted. A fairly conventional
symbolism is t,,,, mecaning the tabled r value for v degrees of freedom and
proportion « in both tails («/2 in each tail), which is equivalent to the r value for
the cumulative probability of 1 — (x/2). Try looking up some of these values
to become familiar with the table. For example, convince yourself that ty 517,
to.0131- fo.o2110p a0 £y o5, COrrespond to 2.365, 5.841, 2.764, and 1.960, respec-
tively.

We shall now employ the ¢ distribution for the setting of confidence limits
to means of small samples.

Normal = {},,

0
-6 =5 -4 =3 -2 -1 0 1 2 3 4 5 6

{ units

FIGURF 6.5
Frequency curves of ¢ distributions for 1 and 2 degrees
of freedom compared with the normal distribution.
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6.5 Confidence limits based on sample statistics

Armed with a knowledge of the ¢ distribution, we are now able to set confidence
limits to the means of samples from a normal frequency distribution whose
parametric standard deviation is unknown. The limits are computed as L; =
Y — tyn-157 and L, = Y + ty,- 15y for confidence limits of probability P =
1 — a. Thus, for 95% confidence limits we use values of ¢, g5, 1. We can rewrite
Expression (6.4a) as

P{Ly<p<Lyl=P{Y —ty 15y <Y+t sy =1—a (6.5)

An example of the application of this expression is shown in Box 6.2. We can

BOX 6.2
Confidence limits for p.

Aphid stem mother femur lengths from Box 2.1: Y = 4.004; 5 = 0.366; n = 25.

Values for ty, - ,, from a two-tailed ¢ table (Table III), where 1 — a is the proportion
expressing confidence and # — 1 are the degrees of freedom:

to.0s124) = 2.064 to.o1p24 = 2.797

The 95% confidence limits for the population mean u are given by the equations
- S
L, (lower limit) = Y — ¢y o500-1; =
1 ( ) 0.0 5 i} \/ﬁ

= 4.004 — (2.064 04@) = 4.004 — 0.151
J25

= 3.853
_ 5
L, (upper timit) = ¥ + £y 05t~ 1 ‘\7—;‘
= 4,004 + 0.151
= 4.155

The 99% confidence limits are

-~ N
Li=Y -1 —
1 0.01[24) \/'-1
0.366
= 4,004 — (2.797 ——) = 4,004 — 0.205

J25

= 3.799
= 5
Ly=Y+ ‘o.ouzqﬁ

= 4.004 + 0.205
= 4.209
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convince ourselves of the appropriateness of the ¢ distribution for setting con-
fidence limits to means of samples from a normally distributed population with
unknown ¢ through a sampling experiment.

Experiment 6.3. Repeat the computations and procedures of Experiment 6.2 (Section 6.3),
but base standard errors of the means on the standard deviations computed for each
sample and use the appropriate ¢ value in place of a standard normal deviate.

Figure 6.6 shows 95% confidence limits of 200 sampled means of 35 housefly
wing lengths, computed with ¢ and sy rather than with the normal curve and
oy. We note that 191 (95.5%) of the 200 confidence intervals cross the para-
metric mean.

We can use the same technique for setting confidence limits to any given
statistic as long as it follows the normal distribution. This will apply in an
approximate way to all the statistics of Box 6.1. Thus, for example, we may set
confidence limits to the coefficient of variation of the aphid femur lengths of
Box 6.2. These are computed as

P{V— [a[n~1]SV < VP sV+ ta[n*IISV} =l-a

REg!
]7 4
16
.;,ﬂ

11
139 50 100

Wing length tin units of 0.1 mm)
=

Number of trials

CRETY

K4

=07

ERSTH

= 451 .
£ M

E l:{‘“” 150 200
e

; Number of trials
FIGURE 6.6

Ninety-five pereent confidence intervals of means of 200 samples of 35 housefly wing lengths, based
on sample standard errors s,. The heavy horizontal line is the parametric mean ;. The ordinate
represents the variable
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where V, stands for the parametric value of the coefficient of variation. Since
the standard error of the coefficient of variation equals approximately s, =
V/\/2n, we proceed as follows:
[ _ 1005 _ 100(0.3656)
Y 4004

9.13 9.13

%05 10711
L =V~ Lo.0512415%
= 9.13 — (2.064)(1.29)
=913 - 2.66
= 6.47

=9.13

=129

Ly =V +ty0sp2415v
=913 + 266
=11.79

When sample size is very large or when ¢ is known, the distribution is effec-
tively normal. However, rather than turn to the table of areas of the normal
curve, it is convenient to simply use t,,,, the ¢ distribution with infinite degrecs
of freedom.

Although confidence limits are a useful measure of the reliability of a sam-
ple statistic, they are not commonly given in scientific publications, the statistic
plus or minus its standard error being cited in their place. Thus, you will fre-
quently see column headings such as “Mean + S.E.” This indicates that the
reader is free to use the standard error to set confidence limits if so inclined.

It should be obvious to you from your study of the ¢ distribution that you
cannot set confidence limits to a statistic without knowing the sample size on
which it is based, n being necessary to compute the correct degrees of freedom.
Thus, the occasional citing of means and standard crrors without also stating
sample size n is to be strongly deplored.

It is important to statc a statistic and its standard crror to a suflicient
number of decimal places. The following rule of thumb helps. Divide the stan-
dard error by 3, then note the decimal placc of the first nonzero digit of the
quotient; give the statistic significant to that decimal place and provide one
further decimal for the standard error. This rule is quite simple, as an example
will illustrate. If the mean and standard error of a sample are computed as
2.354 + 0.363, we divide 0.363 by 3, which yields 0.121. Therefore the mean
should be reported to one decimal place, and the standard error should be
reported to two decimal places. Thus, we report this result as 2.4 + 0.36. If, on
the other hand, the same mean had a standard crror of 0.243, dividing this
standard error by 3 would have yielded 0.081, and the first nonzero digit would
have been in the second decimal place. Thus the mean should have been re-
ported as 2.35 + (0.243.
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6.6 The chi-square distribution

Another continuous distribution of great importance in statistics is the distri-
bution of y2 (read chi-square). We need to learn it now in connection with the
distribution and confidence limits of variances.

The chi-square distribution is a probability density function whpse yalues
range from zero to positive infinity. Thus, unlike the normal distrlbutlop or
t, the function approaches the horizontal axis asymptotically only at the right-
hand tail of the curve, not at both tails. The function describing the y? distribu-
tion is complicated and will not be given here. As in t, there is not merely
one y? distribution, but there is one distribution for each number of degrees
of freedom. Therefore, ¥? is a function of v, the number of degrees of freedom.
Figure 6.7 shows probability density functions for the y? distributions for 1, 2,
3, and 6 degrees of freedom. Notice that the curves are strongly skewgd to the
right, L-shaped at first, but more or less approaching symmetry for higher de-
grees of freedom.

We can generate a x? distribution from a population of standard normz}l
deviates. You will recall that we standardize a variable Y; by subjecting it
to the operation (Y; — p)/o. Let us symbolize a standardized variable as
Y: = (Y, — p)/o. Now imagine repeated samples of n variates Y; from a normal
population with mean u and standard deviation o. For each sample, we trans-
form every variate Y; to Y;, as defined above. The quantities =" Y;* computed
for each sample will be distributed as a y2 distribution with n degrees of freedom.

0.9
0.8
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0.6+~

PO 1 S
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FIGURE 6.7
Frequency curves of y? distribution for 1, 2, 3, and 6 degrees of lreedom.
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Using the definition of Y}, we can rewrite " Y2 as

(Y- e

ZO_—2=?Z(Y; - #)2 (6.6)
When we change the parametric mean u to a sample mean, this expression
becomes

1 & =
=2 (Y- ¥) (6.7)
which is simply the sum of squares of the variable divided by a constant, the

parametric variance. Another common way of stating this expression is

— 1)s?
(n ~ )s* 63)

Here we have replaced the numerator of Expression (6.7) with n — 1 times the
sample variance, which, of course, yields the sum of squares.

If we were to sample repeatedly n items from a normally distributed popu-
lation, Expression (6.8) computed for cach sample would yield a y? distribution
with n — 1 degrees of freedom. Notice that, although we have samples of n
items, we have lost a degree of freedom because we are now employing a
sample mcan rather than the parametric mean. Figure 6.3, a sample distribution
of variances, has a second scale along the abscissa, which is the first scale
multiplied by the constant (n — 1)/a2. This scale converts the sample variances
s of the first scale into Expression (6.8). Since the second scale is proportional
to s*, the distribution of the sample variance will serve to illustrate a sample
distribution approximating x2. The distribution is strongly skewed to the right,
as would be expected in a y? distribution.

Conventional y? tables as shown in Table 1V give the probability levels
customarily required and degrees of freedom as arguments and list the x? cor-
responding to the probability and the df as the functions. Fach chi-square in
Table 1V is the value of y* beyond which the arca under the x? distribution
for v degrees of freedom represents the indicated probability. Just as we usced
subscripts to indicate the cumulative proportion of the area as well as the de-
grees of frcedom represented by a given value of 1. we shall subscript y? as
follows: y7,, indicates the 2 value (o the right of which is found proportion
a of the arca under a ¥? distribution for v degrees of freedom.

Let us learn how to use Table IV. Looking at the distribution of A we
note that 90% ol all values of ¥ would be to the right of 0211, but only
5% of all values of 4, would be greater than 5.991. It can be shown that the
expected value ofxf\,l (the mean of a y 2 distribution) cquals its degrees of freedom
v. Thus the expected value of a X5y distribution is 5. When we examine 507
values (the medians) in the y? table. we notice that they are generally lower
than the expected value (the means). Thus, for Zis) the 50Y point is 4.351. This
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illustrates the asymmetry of the y?* distribution, the mean being to the right of

the median. o ‘ . .
Our first application of the x* distribution will be in the next section. How-

ever, its most extensive use will be in connection with Chapter 13.

6.7 Confidence limits for variances

We saw in the last section that the ratio (n — 1)s*/a” is distributed as y? with
n — 1 degrees of freedom. We take advantage of this fact in setting confidence

limits to variances. . -
First, we can make the following statement about the ratio (n — I)s*/a™

(n — 1)s? N B
P{X(lezmn- <= S Awin-1n{ = l -«

o

This expression is similar to those encountered in Section 6.3 and implies that
the probability P that this ratio will be within the indicated boAuAndqry valqes
of yfo1yis 1 — o Simple algebraic manipulation of the quantities in the -
equality within brackets yields
_ 2
n L} - (6.9)

2
n—1s
Pg(‘z <o’ < 3
Liay2)n - 1] XU~ @ 2nln -t

Since (n — 1)s* = T % we can simplify Expression (6.9) to

P{ v <o’ < ﬁzj—} =1—u (6.10)

7 3
Kia/2)[n— 1] Yt = (a/2nln— 11

This still looks like a formidable expression, but it simply mecans tha.l if we
divide the sum of squares £ y? by the two values of Xfa— 1) that cut off lA‘d]lS each
amounting to a/2 of the arca of the xf,--distribution, .t.hc two quoticnts will
enclose the true valuc of the variance a2 with a probability of P =1 — a.

An actual numerical example will make this clear. Suppose we have a sam-
plc of § housefly wing lengths with a sample variance of s = 13.52. Ifyvc wmh Lo
set 957 confidence limits to the parametric variance, we evaluate Expression
(6.10) for the sample variance s2. We first calculate the sum of squares gor this
sample: 4 x 13.52 = 54.08. Then we look up the values for ¥& 42514y and Yo7t
Since 957 confidence limits are required, o in this case 1 cqqu’I‘o 0.05. These
values span between them 95% of the arca under the x* curve. T'hey correspond
{o 11.143 and 0.484, respectively, and the limits in Expression (6.10) then become

54.08
L, = 408 and L,=_.
"T11143 0.484
or

[, ~ 485 and L,=11174

This confidence interval is very wide, but we must not forget that the sample
variance is. after all. based on only S individuals. Note also that the interval
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—
BOX 6.3
Confidence limits for 62, Method of shortest unbiased confidence intervals.
Aphid stem mother femur lengths from Box 2.1: n = 25; s? = 0.1337.

The factors from Table VII for v=n—1 =24 df and confidence coefficient
{1 — a) =095 are

f1 = 0.5943 fz = 1.876
and for a confidence coefficient of 0.99 they are
£ =05139  f,=2351

The 95% confidence limits for the population variance ¢? are given by the equa-
tions

L, = (lower limit) = f,5* = 0.5943(0.1337) = 0.079,46
L, = (upper limit) = f,s* = 1.876(0.1337) = 0.2508
The 99% confidence limits are
Ly = f,5% = 0.5139(0.1337) = 0.068,71

L, = f,5? = 2.351(0.1337) =0.3143
I

is asymmetrical around 13.52, the sample variance. This is in contrast to the
confidence intervals encountered earlier, which were symmetrical around the
sample statistic.

The method described above 1s called the equal-tails method, because an
equal amount of probability is placed in cach tail (for example, 25%). It can be
shown that in view of the skewness of the distribution of variances, this method
does not yield the shortest possible confidence intervals. One may wish the
confidence interval to be “shortest” in the sense that the ratio L,/L, be as small
as possible. Box 6.3 shows how to obtain these shortest unbiased confidence
intervals for a2 using Table VII, based on the method of Tate and Klett (1959).
This table gives (n — ])/xf,,,, _yp» Where p is an adjusted value of a/2 or 1 — (a/2)
designed to yield the shortest unbiased confidence intervals. The computation
is very simple.

6.8 Introduction to hypothesis testing

The most frequent application of statistics in biological research 15 to test
some scientific hypothesis. Statistical methods arc important in biology because
results of experiments are usually not clear-cut and therefore need statistical
tests o support decisions between alternative hypotheses. A statistical test
examines a set of sumple data and, on the basis of an expected distribution of
the data, leads to a decision on whether to accept the hypothesis underlying
the expected distribution or to reject that hypothesis and accept an alternative
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one. The nature of the tests varies with the data and the hypothesis, but the
same general philosophy of hypothesis testing is common to all tests and will
be discussed in this section. Study the material below very carefully, because it
is fundamental to an understanding of every subsequent chapter in this book!

We would like to refresh your memory on the sample of 17 animals of
species A, 14 of which were females and 3 of which were males. These data were
examined for their fit to the binomial frequency distribution presented in Sec-
tion 4.2, and their analysis was shown in Table 4.3. We conciuded from Table 4.3
that if the sex ratio in the population was 1:1 (p, = g; = 0.5), the probability
of obtaining a sample with 14 males and 3 females would be 0.005,188, making
it very unlikely that such a result could be obtained by chance alone. We learned
that it is conventional to include all “worse” outcomes—that is, all those that
deviate even more from the outcome expected on the hypothesis p, = g, = 0.5.
Including all worse outcomes, the probability is 0.006,363, still a very small
value. The above computation is based on the idea of a one-tailed test, in which
we are interested only in departures from the 1:1 sex ratio that show a pre-
ponderance of females. If we have no preconception about the direction of the
departures from expectation, we must calculate the probability of obtaining a
sample as deviant as 14 females and 3 males in either direction from expectation.
This requires the probability either of obtaining a sample of 3 females and 14
males (and all worse samples) or of obtaining 14 females and 3 males (and all
worse samples). Such a test is two-tailed, and since the distribution is symmet-
rical, we double the previously discussed probability to yield 0.012,726.

What does this probability mean? It is our hypothesis that p, = g, = 0.5,
Let us call this hypothesis H,, the null hypothesis, which is the hypothesis under
test. It is called the null hypothesis because it assumes that there is no real
difference between the true value of p in the population from which we sampled
and the hypothesized value of p = 0.5. Applied to the present example, the null
hypothesis implies that the only reason our sample does not exhibit a 1:1 sex
ratio is because of sampling error. If the null hypothesis p, = g; = 0.5 is true,
then approximately 13 samples out of 1000 will be as deviant as or more deviant
than this one in either direction by chance alone. Thus, it is quite possible to have
arrived at a sample of [4 females and 3 males by chance, but it is not very
probable, since so deviant an event would occur only about 13 out of 1000 times,
or 1.3% of the time. If we actually obtain such a sample, we may make one
of two decisions. We may decide that the null hypothesis is in fact true (that is,
the sex ratio is 1:1) and that the sample obtained by us just happened to be one
of those in the tail of the distribution, or we may decide that so deviant a sample
is too improbable an event to justify acceptance of the null hypothesis. We may
therefore decide that the hypothesis that the sex ratio is 1:1 is not true. Either
of these decisions may be correct, depending upon the truth of the matter. If
in fact the 1:1 hypothesis is correct, then the first decision (to accept the null
hypothesis) will be correct. If we decide to reject the hypothesis under these
circumstances, we commit an crror. The rejection of a true null hypothesis is
called a type I error. On the other hand, if in fact the true sex ratio of the pop-
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ulation is other than 1:1, the first decision (to accept the 1:1 hypothesis) is an
error, a so-called type I1 error, which is the acceptance of a false null hypothesis.
Finally, if the 1:1 hypothesis is not true and we do decide to reject it, then we
again make the correct decision. Thus, there are two kinds of correct decisions:
accepting a true null hypothesis and rejecting a false null hypothesis, and there
are two kinds of errors: type I, rejecting a true null hypothesis, and type II,
accepting a false null hypothesis. These relationships between hypotheses and
decisions can be summarized in the following table:

Statistical decision

Null hypothesis

Actual situation Accepted Rejected

True Correct decision Type I error

Nul i
ull hypothesis False Type Il error Correct decision

Before we carry out a test, we have to decide what magnitude of type 1
error (rejection of true hypothesis) we are going to allow. Even when we sample
from a population of known parameters, there will always be some samples that
by chance are very deviant. The most deviant of these are likely to mislead us
into believing our hypothesis H, to be untrue. If we permit 5% of samples to
lead us into a type 1 error, then we shall reject 5 out of 100 samples from the
population, deciding that these are not samples from the given population. In
the distribution under study, this means that we would reject all samples of 17
animals containing 13 of one sex plus 4 of the other sex. This can be seen by
referring to column (3) of Table 6.3, where the ex pected frequencies of the various
outcomes on the hypothesis p, = g, = 0.5 are shown. This table is an extension
of the carlier Table 4.3, which showed only a tail of this distribution. Actually,
you obtain a type I error slightly less than 5% if you sum relative expected
frequencies for both tails starting with the class of 13 of one sex and 4 of the
other. From Table 6.3 it can be seen that the relative expected frequency in the
tyvo tails will be 2 x 0.024,520,9 = 0.049.041.8. In a discrete frequency distribu-
tion, such as the binomial, we cannot calculate errors of exactly 5% as we can
in a continuous frequency distribution, where we can measure off exactly 5%
of the arca. If we decide on an approximate 1% error, we will reject the hypoth-
esis p, = ¢, lor all samples of 17 animals having 14 or more of one sex. (From
Table 6.3 we find the f,,, in the tails equals 2 x 0.006,362.9 = 0.012,725,8.) Thus,
the smaller the type I error we are prepared Lo accept, the more deviant a samplc
has to be for us to reject the null hypothesis H,.

Your natural inclination might well be to have as little error as possible.
You may decide to work with an extremely small type | error, such as 0.1% or
even 0.017%, accepting the null hypothesis unless the sample is cxtremely deviant.
The difficulty with such an approach is that, although guarding against a type
Lerror, you might be falling into a type II error, accepting the null hypothesis
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TABLE 6.3
Relative expected frequencies for samples of 17 animals
under two hypotheses. Binomial distribution.

(3 4
() @ Hepi=q;=% Hiupi=2;=3%
o33 fo foa
17 0 0.0000076 0.0010150
16 1 0.0001297 0.0086272
15 2 0.0010376 0.0345086
14 3 0.0051880 0.0862715
13 4 0.0181580 0.1509752
12 5 0.0472107 0.1962677
11 6 0.0944214 0.1962677
10 7 0.1483765 0.1542104
9 8 0.1854706 0.0963815
8 9 0.1854706 0.0481907
7 10 0.1483765 0.0192763
6 11 0.0944214 0.0061334
5 12 0.0472107 0.0015333
4 13 0.0181580 0.0002949
3 14 0.0051880 0.0000421
2 15 0.0010376 0.0000042
t 16 0.0001297 0.0000002
0 17 0.0000076 0.0000000
Total 1.0000002 0.9999999

when in fact it is not true and an alternative hypothesis H, is true. Presently,
we shall show how this comes about.

First, let us learn some more terminology. Type | error is most frequently
expressed as a probability and is symbolized by «. When a type 1 error is
expressed as a percentage, it is also known as the significance level. Thus a type
I error of « = 0.05 corresponds to a significance level of 5% for a given test.
When we cut off on a frequency distribution those areas proportional to « (the
type 1 error), the portion of the abscissa under the area that has been cut off
is called the rejection region or critical region of a test. The portion of the
abscissa that would lead to acceptance of the null hypothesis is called the
acceptance region. Figure 6.8A 1s a bar diagram showing the expected distri-
bution of outcomes in the sex ratio example, given H,. The dashed lines separate
rejection regions from the 99% acceptance region.

Now let us take a closer look at the type 11 error. This is the probability
of accepting the null hypothesis when 1n fact it is false. If you try to evaluate
the probability of type Il error, you immediately run into a problem. If the null
hypothesis H,, is false, some other hypothesis H, must be true. But unless you
can specify H,, you are not in a position to calculate type I error. An example
will make this clear immediately. Suppose in our sex ratio case we have only two
reasonable possibilitics: (1) our old hypothesis Hy: p, = g, or (2) an alternative
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FIGURE 6.8 ‘ .
Expected distributions of outcomes when sampling 17 animals from two hypothetical populations.
A Hop,=q; =3 B Hi:p, =2q;= 1. Dashed lines separate critical regions from acceptance
region of the distribution of part A. Type I error o equals approximately 0.01.

hypothesis H,: p. = 2q, which states that the sex ratio is 2:1 in favor of females
so that p, = % and ¢; = §. We now have to calculate expected frequencies for
the binomial distribution (p, + ¢, =3 + )'” to find the probabilitics of the
various outcomes under the alternative hypothesis. These are shown graphically
in Figure 6.8B and are tabulated and compared with expected [requencies of the
earlier distribution in Table 6.3.

Suppose we had decided on a type 1 error of a = 0.01 (= means “approxi-
mately equal to”) as shown in Figure 6.8A. At this significance level we would
accept the H, for all samples of [7 having 3 or fewer animals of one sex.
Approximately 99% of all samples will fall into this category. However, what
if H, is not true and H, is truc? Clearly, from the population represented by
hypothesis H, we could also obtain outcomes in which one sex was represented
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13 or fewer times in samples of 17. We have to calculate what proportion of the
curve representing hypothesis H, will overlap the acceptance region of the dis-
tribution representing hypothesis H,,. In this case we find that 0.8695 of the
distribution representing H, overlaps the acceptance region of H, (see Figure
6.8B). Thus, if H, is really true (and H, correspondingly false), we would errone-
ously accept the null hypothesis 86.95% of the time. This percentage corresponds
to the proportion of samples from H, that fall within the limits of the acceptance
regions of H,. This proportion is called f, the type II error expressed as a
proportion. In this example f is quite large. Clearly, a sample of 17 animals is
unsatisfactory to discriminate between the two hypotheses. Though 99% of the
samples under H, would fall in the acceptance region, fully 87% would do so
under H,. A single sample that falls in the acceptance region would not enable
us to reach a decision between the hypotheses with a high degree of reliability.
If the sample had 14 or more females, we would conclude that H, was correct.
If it had 3 or fewer females, we might conclude that neither H, nor H, was true.
As H | approached H, (as in H,: p_ = 0.55, for example), the two distributions
would overlap more and more and the magnitude of § would increase, making
discrimination betwcen the hypotheses even less likely. Conversely, if H, repre-
sented p = 0.9, the distributions would be much farther apart and type II error
f# would be reduced. Clearly, then, the magnitude of 8 depends, among other
things, on the parameters of the aiternative hypothesis /| and cannot be speci-
fied without knowledge of the latter.

When the alternative hypothesis is fixed, as in the previous example (H,:
p. = 2q;), the magnitude of the type I error » we are prepared to tolerate will
determine the magnitude of the type 11 crror . The smaller the rejection region
o in the distribution under Hy, the greater will be the acceptance region | — o
in this distribution. The greater | — x, however, the greater will be its overlap
with the distribution representing H ., and hence the greater will be . Convince
vourself of this in Figure 6.8. By moving the dashed lines outward, we are
reducing the critical regions representing type | error « in diagram A. But as the
dashed lines move outward, more of the distribution of I, in diagram B will
lic in the aceeptance region of the null hypothesis. Thus, by decreasing x, we
arc tnereasing ff and in a sense defeating our own purposes.

[n most applications. scientists would wish to keep both of these errors
small, since they do not wish to reject a null hypothesis when it is true, nor
do they wish o accept it when another hypothesis is correct. We shall see in
the following what steps can be taken to decreasc f§ while holding o constant
at a preset level.

Although significance levels » can be vanied at will, investigators are fre-
quently limited because, for many tests, cumulative probabilities of the appro-
priate distributions have not been tabulated and so published probability levels
must be used. These are commonly 0.05. 0.01, and 0.001, although several others
arc occasionally encountered. When a null hypothesis has been rejected at a
spectfied level of o, we say that the sample is significantly different from the
parametric or hypothetical population at probability P < a. Generally, values
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of o greater than 0.05 are not considered to be statistically significant. A
significance level of 5% (P = 0.05) corresponds to one type I error in 20 trials,
a level of 1% (P = 0.01) to one error in 100 trials. Significance levels of 1% or
less (P < 0.01) are nearly always adjudged significant; those between 5% and 1%
may be considered significant at the discretion of the investigator. Since statis-
tical significance has a special technical meaning (H rejected at P < o), we shall
use the adjective “significant” only in this sense; its use in scientific papers and
reports, unless such a technical meaning is clearly implied, should be discour-
aged. For general descriptive purposes synonyms such as important, meaning-
ful, marked, noticeable, and others can serve to underscore differences and
effects.

A brief remark on null hypotheses represented by asymmetrical probability
distributions is in order here. Suppose our null hypothesis in the sex ratio case
had been H,:p. =3, as discussed above. The distribution of samples of 17
offspring from such a population is shown in Figure 6.8B. It is clearly asymmet-
rical, and for this reason the critical regions have to be defined independently.
For a given two-tailed test we can either double the probability P of a deviation
in the direction of the closer tail and compare 2P with «, the conventional level
of significance; or we can compare P with /2, half the conventional level of
significance. In this latter case, 0.025 is the maximum valuc of P conventionally
considered significant.

We shall review what we have learned by means of a second example, this
time involving a continuous frequency distribution—the normally distributed
housefly wing lengths— of parametric mean p = 45.5 and variance o = 15.21.
Means based on 5 items sampled from these will also be normally distributed,
as was demonstrated in Table 6.1 and Figure 6:1. Let us assume that someone
presents you with a single sample of 5 housefly wing lengths and you wish to
test whether they could belong to the specified population. Your null hypothesis
will be Hy: = 45.5 or Hy: p = pg, where gt is the true mean of the population
from which you have sampled and g, stands for the hypothetical parametric
mean of 45.5. We shall assume for the moment that we have no cvidence that
the variance of our sample is very much greater or smaller than the paramectric
variance of the housefly wing lengths. If it were, it would be unreasonable to
assume that our sample comes from the specified population. There is a critical
test of the assumption about the sample variance, which we shall take up later.
The curve at the center of Figure 6.9 represents the expected distribution of
means of samples of 5 housefly wing lengths from the specified population.
Acceptance and rejection regions for a type I crror « = 0.05 are delimited along
the abscissa. The boundaries of the critical regions are computed as follows
(remember that ¢, is equivalent to the normal distribution):

Ly =y~ to s 0y = 45.5 — (1.96)(1.744) = 42.08
and

Ly = tto + lo.osin0y = 45.5 + (1.96)(1.744) = 48.92
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FIGURE 6.9

Expected distribution of means of samples of 5 housefly wing lengths from normal populations
specified by 1 as shown above curves and oy = 1.744. Center curve represents null hypothesis,
Hg 1 = 45.5; curves at sides represent alternative hypotheses, u = 37 or 4 = 54. Vertical lines delimit
5% rejection regions for the null hypothesis (23% in each tail, shaded).

Thus, we would consider it improbable for means less than 42.08 or greater than
48.92 to have been sampled from this population. For such sample mcans we
would therefore reject the null hypothesis. The test we are proposing is two-tailed
because we have no a priori assumption about the possible alternatives to our
null hypothesis. If we could assume that the true mean of the population from
which the sample was taken could only be equal 1o or greater than 45.5, the test
would be one-tailed.

Now let us examine various alternative hypotheses. One alternative hypoth-
esis might be that the true mean of the population from which our sample stems
is 54.0, but that the variance is the same as before. We can express this assump-
tionas H,: = 540 or H,: u = u,, where i, stands for the alternative parametric
mean 54.0. From Table T (“Areas of the normal curve™) and our knowledge of the
variance of the means, we can calculate the proportion of the distribution implied
by H, that would overlap the acceptance region implied by H,. We find that
54.0 is 5.08 measurcment units from 48.92, the upper boundary of the acceptance
region of H,,. This corresponds to 5.08/1.744 = 29145, units. From Table Il we
find that 0.0018 of the arca will lie beyond 2916 at one tail of the curve. Thus,
under this alternative hypothesis, 0.0018 of the distribution of H, will overlap
the acceptance region of H,. This is f, the type Il error under this alternative
hypothesis. Actually, this is not entirely correct. Since the left tail of the H,
distribution goes all the way to negative infinity, it will leave the acceptance
region and cross over into the lcft-hand rejection region of H,. However, this
represents only an infinitesimal amount of the area of H, (the lower critical
boundary of H,, 42.08, is 6.83c, units from g, = 54.0) and can be ignored.

Our alternative hypothesis H, specified that g, is 8.5 units greater than .
However, as said before, we may have no a priori reason to believe that the truc
mean of our sample is cither greater or less than g Thercefore, we may simply
assume that it is 8.5 measurement units away from 45.5. In such a case we must
similarly calculate f8 for the alternative hypothesis that g, = g, ~ 8.5. Thus the
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alternative hypothesis becomes H: u = 54.0 or 37.0, or Hy: u = py, where y,
represents either 54.0 or 37.0, the alternative parametric means. Since the distri-
butions are symmetrical, f§ is the same for both alternative hypotheses. Type II
error for hypothesis H| is therefore 0.0018, regardless of which of the two alter-
native hypotheses is correct. If H | is really true, 18 out of 10,000 samples will
lead to an incorrect acceptance of H,, a very low proportion of error. These
relations are shown in Figure 6.9.

You may rightly ask what reason we have to believe that the alternative
parametric value for the mean is 8.5 measurement units to either side of y, =
45.5. It would be quite unusual if we had any justification for such a belief. As
a matter of fact, the true mean may just as well be 7.5 or 6.0 or any number of
units to either side of u,. If we draw curves for H,: u = p, + 7.5, we find that
B has increased considerably, the curves for H, and H, now being closer together.
Thus, the magnitude of § will depend on how far the alternative parametric
mean is from the parametric mean of the null hypothesis. As the alternative mean
approaches the parametric mean, f§ increases up to a maximum value of 1 — a,
which is the area of the acceptance region under the null hypothesis. At this maxi-
mum, the two distributions would be superimposed upon each other. Figurc 6.10
illustrates the increase in f§ as u, approaches u, starting with the test illustrated
in Figure 6.9. To simplify the graph, the alternative distributions are shown for
one tail only. Thus, we clearly see that f is not a fixed value but varies with the
nature of the alternative hypothesis.

An important concept in connection with hypothesis testing is the power of
a test. It is 1 — B, the complement of f3, and is the probability of rejecting the
null hypothesis when in fact it is false and the alternative hypothesis is correct.
Obviously, for any given test we would like the quantity 1 — f to be as large as
possible and the quantity f§ as small as possible. Since we generally cannot specify
a given alternative hypothesis, we have to describe ff or 1 — f§ for a continuum
of alternative values. When | — f is graphed in this manner, the result is called
a power curve for the test under consideration. Figure 6.11 shows the power curve
for the housefly wing length example just discussed. This figure can be compared
with Figure 6.10, from which it is directly derived. Figure 6.10 emphasizes the
type Il error §8, and Figure 6.11 graphs the complement of this value, 1 — 5. We
note that the power of the test falls off sharply as the alternative hypothesis
approaches the null hypothesis. Common sense confirms these conclusions: we
can make clear and firm decisions about whether our sample comes from a popu-
lation of mean 45.5 or 60.0. The power is essentially . But if the alternative
hypothesis is that u, = 45.6, differing only by 0.1 from the value assumed undcr
the null hypothesis, it will be difficult to decide which of these hypotheses is
true, and the power will be very low.

To improve the power of a given test (or decreasc f§) whilc keeping a constant
for a stated null hypothesis, we must increase sample size. If instcad of sampling
5 wing lengths we had sampled 35, the distribution of means would be much
narrower. Thus, rejection regions for the identical type T error would now com-
mence at 44.21 and 46.79. Although the acceptance and rejection regions have
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remained the same proportionately, the acceptance region has become much
narrower in absolute value. Previously, we could not, with confidence, reject the
null hypothesis for a sample mean of 48.0. Now, when based on 35 individuals,
a mean as deviant as 48.0 would occur only 15 times out of 100,000 and the
hypothesis would, therefore, be rejected.

What has happened to type II error? Since the distribution curves are not
as wide as before, there is less overlap between them; if the alternative hypoth-
esis H,: 1 = 54.0 or 37.0 is true, the probability that the null hypothesis could
be accepted by mistake (type II error) is infinitesimally small. If we let u,
approach p,, f will increase, of course, but it will always be smaller than
the corresponding value for sample size n = 5. This comparison is shown in
Figure 6.11, where the power for the test with n = 35 is much higher than that
for n = 5. If we were to increase our sample size to 100 or 1000, the power
would be still further increased. Thus, we reach an important conclusion: If a
given test 1s not sensitive enough, we can increase its sensitivity (= power) by
increasing sample size.

There is yet another way of increasing the power of a test. If we cannot
increase sample size, the power may be raised by changing the nature of the test.
Different statistical techniques testing roughly the same hypothesis may differ
substantially both in the actual magnitude and in the slopes of their power
curves. Tests that maintain higher power levels over substantial ranges of alter-
native hypotheses are clearly to be preferred. The popularity of the various
nonparametric tests, mentioned in several places in this book, has grown not only
because of their computational simplicity but also because their power curves are
less affected by failure of assumptions than are those of the parametric methods.
However, it is also true that nonparametric tests have lower overall power than
parameiric oncs, when all the assumptions of the parametric test are met.

Let us bricfly look at a one-tailed test. The null hypothesis is Hy,: g, = 45.5,
as before. Howcver, the alternative hypothesis assumes that we have reason to
believe that the parametric mean of the population from which our sample has
been taken cannol possibly be less than gy, = 45.5: if it is different from that
value, it can only be greater than 45.5. We might have two grounds for such
a hypothesis. First, we might have some biological reason for such a belief. Our
parametric flies might be a dwarf population, so that any other population from
which our sample could come must be bigger. A second reason might be that
we are interested in only onc direction of difference. For example, we may be
testing the effect of a chemical in the larval food intended to increase the size of
the flies in the sample. Therefore, we would expect that i, > g, and we would
not be interested in testing for any p, that is fess than g, because such an effect
is the exact opposite of what we expect. Similarly, if we arc investigating the effect
of a certain drug as a cure for cancer, we might wish to compare the untreated
population that has a mean fatality rate 8 (from cancer) with the treated popula-
tion, whose rate is /,. Our alternative hypotheses will be H: (0, < (). That is,
we arc nat interested in any ¢/, that is greater than 0, becausce if our drug will
increasc mortality from cancer, it certainly is not much of a prospect for a cure.
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FIGURE 6.12
One-tailed significance test for the distribution of Figure 6.9. Vertical line now cuts off 5% rejection
region from one tail of the distribution (corresponding area of curve has been shaded).

When such a one-tailed test is performed. the rejection region along the
abscissa is under only one tail of the curve representing the null hypothesis.
Thus, for our housefly data (distribution of means of sample size n = 5), the
rejection region will be in one tail of the curve only and for a 5% type I error
will appear as shown in Figure 6.12. We compute the critical boundary as
45.5 + (1.645)(1.744) = 48.37. The 1.645 s 1 4 41..» Which corresponds to the 5%
value for a one-tailed test. Compare this rejection region, which rejects the null
hypothesis for all means greater than 48.37, with the two rejection regions in
Figure 6.10, which reject the null hypothesis for means lower than 42.08 and
greater than 48.92. The alternative hypothesis is considered for one tail of the
distribution only, and the power curve of the test is not symmetrical but is drawn
out with respect to one side of the distribution only.

6.9 Tests of simple hypotheses employing the t distribution

We shall proceed to apply our newly won knowledge of hypothesis testing to
a simple examplc involving the 7 distribution.

Government regulations prescribe that the standard dosage in a certain
biological preparation should be 600 activity units per cubic centimeter. We
prepare 10 samples of this preparation and test cach for potency. We find that
the mean number of activity units per sample is 592.5 units per cc and the
standard deviation of the samples is 11.2. Docs our sample conform to the
government standard? Stated more precisely, our null hypothesis i1s Hg: u = pig.
The alternative hypothesis is that the dosage 1s not equal to 600, or H: p £ io-
We proceed to calculate the significance of the deviation Y — u, expressed in
standard deviation units. The appropriate standard deviation is that of means
(the standard error of the meun), not the standard deviation of items, because
the deviation is that of a sample mean around a parametric mecan. We therefore
calculate sy = s/'\/rn =] 1.2/\/10 — 3.542. We next test the deviation (Y - j,)/sy.
We have seen earlicr, in Scction 6.4, that a deviation divided by an estimated

6.9 / TESTS OF SIMPLE HYPOTHESES EMPLOYING THE ! DISTRIBUTION 127

standard deviation will be distributed according to the ¢t distribution with n — 1|
degrees of freedom. We therefore write

(=Yt (6.11)

Sy
This indicates that we would expect this deviation to be distributed as a t vari-
ate. Note that in Expression (6.11) we wrote f,. In most textbooks you will find
this ratio simply identified as 7, but in fact the ¢ distribution is a parametric and
theoretical distribution that generally is only approached, but never equaled,
by observed, sampled data. This may seem a minor distinction, but readers
should be quite clear that in any hypothesis testing of samples we are only as-
suming that the distributions of the tested variables follow certain theoretical
probability distributions. To conform with general statistical practice, the t dis-
tribution should really have a Greek letter (such as t), with r serving as the
sample statistic. Since this would violate long-standing practice, we prefer to
use the subscript s to indicate the sample value.
The actual test is very simple. We calculate Expression (6.11),

5925 - 600 7.5
- = - = 21 [ =
s 3,542 3.542 2 &= ’

and compare it with the cxpected values for ¢ at 9 degrees of freedom. Since
the ¢ distribution is symmetrical, we shall ignore the sign of ¢, and always look
up its positive value in Table HI. The two values on cither side of ¢, are t4 5o =
226 and 14 ;g9; = 1.83. Thesc are 1 values for two-tailed tests, appropriate in
this instance because the alternative hypothesis is that g # 600; that is. it can
be smaller or greater. It appears that the significance level of our value of 1, is
between 5% and 10%; if the null hypothesis is actually true, the probability of
obtaiming a deviation as great as or greater than 7.5 is somewhere between 0.05
and 0.10. By customary levels of significance, this is insufficient for declaring
the samplec mean significantly different from the standard. We consequently
accept the null hypothesis. In conventional language. we would report the re-
sults of the statistical analysis as follows: “The sample mean is not signiticantly
different from the accepted standard.” Such a statement in a scientitic report
should always be backed up by a probability value, and the proper way of pre-
senting this is to write *0.10 > P > 0.05.” This means that the probability of
such a deviation is between 0.05 and 0.10. Another way of saying this is that
the value of 1, 1s not significant (frequently abbreviated as ns).

A convention often encountered is the use of asterisks after the computed
value of the significance test, as in ¢, = 2.86**. The symbols generally represent
the following probability ranges:

*=0.05> P> 001 ** =001 = P> 0001 = P <0.001

However, since some authors occasionally imply other ranges by these aster-
isks, the meaning of the symbols has to be specified in cach scientific report.
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It might be argued that in a biological preparation the concern of the tester
should not be whether the sample differs significantly from a standard, but
whether il is significantly below the standard. This may be one of those bio-
logical preparations in which an excess of the active component is of no harm
but a shortage would make the preparation ineflective at the conventional
dosage. Then the test becomes one-tailed, performed in exactly the same manner
except that the critical values of t for a one-tailed test are at half the prob-
abilities of the two-tailed test. Thus 2.26, the former 0.05 value, becomes
lo.025197> and 1.83, the former 0.10 value, becomes ¢, ;59;. making our observed
t, value of 2.12 “significant at the 5% level™ or. more precisely stated, sig-
nificant at 0.05 > P > 0.025. If we are prepared to accept a 57 significance level,
we would consider the preparation significantly below the standard.

You may be surprised that the same example, employing the same data
and significance tests, should lead to two diflferent conclusions, and you may
begin to wonder whether some of the things you hear about statistics and
statisticians arc not, after all, correct. The explanation lies in the fact that the
two results are answers to different questions, If we test whether our sample
is significantly different from the standard in either direction, we must conclude
that it is not different enough for us to rcject the null hypothesis. If, on the
other hand, we exclude from consideration the fact that the true sample mean
i could be greater than the established standard g, the difference as found by
us is clearly significant. It 1s obvious from this example that in any statistical
test one must clearly state whether a onc-tailed or a two-tailed test has been
performed if the nature of the example 1s such that there could be any doubt
about the matter. We should also point out that such a difference in the out-
come of the results is not necessarily typical. 1t is only because the outcome in
this case i1s in a borderline arca between clear significance and nonsignificance.
Had the difference between samiple and standard been 10.5 activity units, the
samplc would have been unquestionably signiticantly different from the stan-
dard by the one-talled or the two-tailed test.

The promulgation of a standard mean 1s generally insufticient for the estab-
lishment of a rigid standard for a product. If the variance among the samples
is sufficiently large, it will never be possible to establish a significant diflerence
between the standard and the sample mean. This s an important point that
should be guite clear to you. Remember that the standard error can be in-
creased in two ways by lowering sample size or by increasing the standard
deviation of the replicates. Both of these are undesirable aspects of any experi-
mental setup.

The test described above for the biological preparation leads us to a general
test for the sigmficance of any statistic  that s, for the significance of a devia-
ttion of any statistic from a parametric value, which is outlined in Box 6.4. Such
a test applies whenever the statisties are expected to be normally distributed.
When the standard error s estimated from the sample, the ¢ distribution is used.
However, since the normal distribution is just a special case 1, of the ¢ dis-
iribution, most statisticians umiformly apply the r distribution with the appro-
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BOX 64

i i isti i i deviation of a
Testing the significance of a statistic—that is, the sngniﬁgan?e ofa via
samplg statistig:ﬁom a parametric value. For normally distributed statistics.

Computational steps

1. Compute t, as the following ratio:

St ~ St,
S5y

i isti i i inst which the
where St is a sample statistic, St, is the parametric value agai '
sample statistic is to be tested, and s, is its estimated standard error, obtained

from Box 6.1, or elsewhere in this book.
2. The pertinent hypotheses are
Hy: St = St, H,:St#58t,

=

8

for a two-tailed test, and
Hg: St = 8t,, H,:St> 5t

or
HO: Sl:"st}, le St<St,

for a one-tailed test.
i iti is the type I
3. In the two-tailed test, look up the critical value of typp .where ais t
etr‘ror agreed upon and v is the degrees of freedom pertinent to th.e}tandard
error employed (see Box 6.1). In the one-tailed test look up the critical value
of 1,4, for a significance level of .

4. Accept or reject the appropriate hypothesis in 2 on the basis of the f, value

in 1 compared with critical values of tin 3.
in 1 comp:

priate degrees of freedom from 1 1o infinity. An example .of such a test is the ¢
test for the significance of a regression coefficient shown in step 2 of Box 11.4.

6.10 Testing the hypothesis H,: 0% = al

The method of Box 6.4 can be used only if the statistic is normally distributed.
In the casc of the variance, this is not so. As we have secn, in Section 66 sums
of squares divided by a? follow the y? distribution. Therefore,‘for tgslmg the
hypothesis that a sample variance is different from a parametric variance, we
must employ the x* distribution. .

Let us use the biological preparation of the last section as an cxample.
We were told that the standard deviation was [ 1.2 based on 10 samples. There-
fore, the variance must have been 125.44. Suppose the government postulates
that the variance of samples from the preparation should be no greater than
100.0. 1s our sample variance significantly above 100.0? Remembering from
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Expression (6.8) that (n — 1)s?/a? is distributed as Xiu-1}- We proceed as follows
We first calculate ‘

(n— 1)s?
= —i‘

XZ
2

(9)125.44
100

= 11.290

Note that we call the quantity X? rather than 2. This is done to emphasize
that we are obtaining a sample statistic that we shall compare with the para-
metric distribution.

Following the general outline of Box 6.4, we next establish our null and
alternative hypotheses, which are H,: ¢2 = o and H: ¢*> > ¢; that is, we
are to perform a one-tailed test. The critical value of x? is found next as ¥
where « is the proportion of the x* distribution to the right of the critical valalll‘é’
as described in Section 6.6, and v is the pertinent degrees of freedom. You see:
now why we used the symbol « for that portion of the area. It corresponds

to the probability of a type I error. For v = 9 degrees of freedom, we find in
Table IV that

2
X0.05091 = 16.919 X6.10p0) = 14.684 ;((2)'50[9] = §8.343

We notice that the probability of getting a x* as large as 11.290 is therefore
less than 0.50 but higher than 0.10, assuming that the null hypothesis is true.
Thus X is not significant at the 5 level, we have no basis for rejecting the
null hypothesis, and we must conclude that the variance of the 10 samplcs
of the biological preparation may be no greater than the standard permitted by
the government. If we had decided to test whether the variance is different from
the standard, permitting it to deviate in cither direction, the hypotheses for this
two-tatled test would have been Hy 0® =0k and H,: a? # o5, and a 5% type
I error would have yielded the following critical values for the two-tailed test:

1(2,7975[91 = 2.700 )(3}025[% =19.023

The values represent chi-squares at points cutting off 21 rejection regions
at cach tail of the y7 distribution. A value of X2 < 2.700 or > 19.023 would
have been evidence that the sample variance did not belong to this population.
Our value of X* = 11.290 would again have led to an acceptance of the null
hypothesis.

In the next chapter we shall sce that there is another significance test avaii-
able to test the hypotheses about variances of the present scction. This is the
mathematically equivalent F test, which is, however, a more general test, allow-

Ing us to test [l-IC hypothesis that two sample variances come from populations
with equal variances.
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Exercises

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

Since it is possible to test a statistical hypothesis with any size sample, why
are larger sample sizes preferred? ANS. When the null hypothesis is false, the
probability of a type 11 error decreases as n increases.

Differentiate between type I and type IT errors. What do we mean by the power
of a statistical test?

Set 99% confidence limits to the mean, median, coefficient of variation, and vari-
ance for the birth weight data given in Box 3.2. ANS. The lower limits are
109.540, 109.060, 12.136, and 178.698, respectively.

The 95% confidence limits for u as obtained in a given sample were 491 and
5.67 g. Is it correct to say that 95 times out of 100 the population mean, g, falls
inside the interval from 4.91 to 5.67 g? If not, what would the correct state-
ment be?

In a study of mating calls in the tree toad Hyla ewingi, Littlejohn (1965) found
the note duration of the call in a sample of 39 observations from Tasmania to
have a mean of 189 msec and a standard deviation of 32 msec. Set 957 confi-
dence intervals to the mean and to the variance. ANS. The 95% confidence limits
for the mean are from 178.6 to 199.4. The 95% shortest unbiased hmits for the
variance are from 679.5 to 1646.6.

Set 95% confidence limits to the means listed in Table 6.2. Arc these limits all
correct? (That is, do they contain u?)

[n Section 4.3 the coeflicient of dispersion was given as an index of whether or
not data agreed with a Poisson distribution. Since in a true Poisson distribution,
the mean  equals the parametric variance 62, the coefficient of dispersion is anal-
ogous to Expression (6.8). Using the mite data from Table 4.5, test the hypoth-
esis that the true variance is equal to the sample mean—in other words, that
we have sampled from a Poisson distribution (in which the coefficient of disper-
sion should equal unity). Note that in these examples the chi-square table is not
adequate, so that approximate critical values must be computed using the method
given with Table IV. In Section 7.3 an alternative significance test that avoids
this problem will be presented. ANS. X — (n — 1) x CD = 1308.30, 13 45588 =
645.708.

Using the method described in Exercise 6.7, test the agreement of the observed
distribution with a Poisson distribution by testing the hypothesis that the true
cocflicient of dispersion equals unity for the data of Tablc 4.6.

In a study of bill measurements of the dusky flycatcher, Johnson (1966) found
that the bill length for the males had a mean of 8.14 + 0.021 and a coellicient
of variation of 4.677. On the basts of this information, infer how many specimens
must have been used? ANS. Since V' = 100s/Y and s, - s//n. \/n = Vs, ¥/100.
Thus n = 328.

In direct klinokinetic behavior relating to temperature, animals turn more often
in the warm end of a gradient and less often in the colder end, the direction of
turning being at random, however. In a computer simulation of such behavior,
the following results were found. The mean position along a temperature gra-
dient was found to be - 1.352. The standard deviation was 12267, and n equaled
500 individuals. The gradient was marked off in units: vero corresponded to the
middle of the gradient, the initial starting point of the animals; minus corre-
sponded to the cold end; and plus corresponded to the warmer end. Test the
hypothesis that direct klinokinetic behavior did not result in a tendency toward
aggregation in cither the warmer or colder end; that is, test the hypothesis that
i, the mean position along the gradient, was zero.
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6.11
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In an experiment comparing yields of three new varieties of corn, the following

results were obtained.

Variety
1 2 3
Y 22.86 43.21 38.56
n 20 20 20

'To compare the three varieties the investigator computed a weighted mean of the
three means using the weights 2, —1, — 1. Compute the weighted mean and its
95% cgnﬁdence limits, assuming that the variance of each value for the weighted
mean is zero. ANS. Y, = —36.05, 6} = 34.458, the 95% confidence limits are
—47.555 to —24.545, and the weighted mean is significantly different from zero

even at the P < 0.001 level.

CHAPTER 7

Introduction to Analysis

of Variance

We now proceed to a study of the analysis of variance. This method, developed
by R. A. Fisher, is fundamental to much of the application of statistics in biology
and especially to experimentat design. One use of the analysis of variance 1s to
test whether two or more sample means have been obtained from populations
with the same parametric mean. Where only two samples are involved, the ¢ test
can also be used. However, the analysis of variance 1s a more general test, which
permits testing two samples as well as many, and we arc therefore introducing
it at this carly stage in order to cquip you with this powerful weapon for your
statistical arscnal. We shall discuss the ¢ test for two samples as a special case
m Section 8.4.

In Section 7.1 we shall approach the subject on familiar ground, the sampling
experiment of the houselly wing lengths. From these samples we shall obtain
two independent estimates of the population variance. We digress in Section 7.2
to introduce yet another continuous distribution, the F distribution, needed for
the significance test in analysis of variance. Section 7.3 is another digression;
here we show how the F distribution can be used to test whether two samples
may reasonably have been drawn from populations with the same variance. We
are now ready for Scction 7.4, in which we examine the eflects of subjecting the
samples to different treatments. In Section 7.5, we describe the partitioning of



134 CHAPTER 7 / INTRODUCTION TO ANALYSIS OF VARIANCE

sums of squares and of degrecs of freedom, the actual analysis of variance. The
last two sections (7.6 and 7.7) take up in a more formal way the two scientific
models for which the analysis of variance is appropriate, the so-called fixed
treatment eflfects model (Model 1) and the variance component model (Mode! I1).

Except for Section 7.3, the entire chapter is largely theoretical. We shall
postpone the practical details of computation to Chapter 8. However, a thorough
understanding of the material in Chapter 7 is necessary for working out actual
examples of analysis of variance in Chapter 8.

One final comment. We shall use J. W. Tukey’s acronym “anova” inter-
changeably with “analysis of variance”™ throughout the text.

7.1 The variances of samples and their means

We shall approach analysis of variance through the familiar sampling experi-
ment of housefly wing lengths (Experiment 5.1 and Table S.1), in which we
combined seven samples of 5 wing lengths to form samples of 35. We have
reproduced one such sample in Table 7.1. The seven samples of 5, here called
groups, are listed vertically in the upper half of the table.

Before we proceed to explain Table 7.1 further, we must become familiar
with added terminology and symbolism for dealing with this kind of problem.
We call our samples groups; they are sometimes called classes or are known
by yet other terms we shall learn later. In any analysis of variance we shall have
two or more such samples or groups, and we shall use the symbol a for the
number of groups. Thus, in the present example a = 7. Each group or sample
is based on n items, as before; in Table 7.1, n = 5. The total number of items
in the table 1s « times n, which in this casc equals 7 x 5 or 35.

The sums of the items in the respective groups are shown in the row under-
neath the horizontal dividing line. In an anova, summation signs can no longer
be as simple as heretofore. We can sum either the items of one group only or
the items of the entire table. We therefore have to use superscripts with the
summation symbol. In line with our policy of using the simplest possible nota-
tion, whenever this is not likely to lead to misunderstanding, we shall use £"Y
to indicate the sum of the items of a group and X*'Y to indicate the sum of all
the items in the table. The sum of the items of each group is shown in the first
row under the horizontal line. The mean of cach group, symbolized by Y, is
in the next row and 1s computed simply as £"Y/n. The remaining two rows in
that portion of Table 7.1 list £"Y? and X" y?, separately for cach group. These
are the familiar quantities, the sum of the squared Y’s and the sum of squares
of Y.

From the sum of squares for cach group we can obtain an estimate of the
population variance of housefly wing length. Thus, in the first group £"y? =
29.2. Therefore, our estimate of the population variance 1s

Lot 292
s7 = i” BT 7.3

rAaBLE 7.1

45.5; variance, 6% = 15.21.

seven samples (groups) of 5 wing lengths of houseflies randomly selected. (Data from Experiment 5.1 and Table 5.1.) Paramelric mean, 4

a groups (a=1T7)

Computation of total
sum of squares

Computation of sum
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a rather low estimate compared with those obtained in the other samples. Since
we have a sum of squares for each group, we could obtain an estimate of the
population variance from each of these. However, it stands to reason that we
would get a better estimate if we averaged these separate variance estimates in
some way. This is done by computing the weighted average of the variances by
Expression (3.2) in Section 3.1. Actually, in this instance a simple average would
suffice, since all estimates of the variance are based on samples of the same size.
However, we prefer to give the general formula, which works equally well for
this case as well as for instances of unequal sample sizes, where the weighted
average is necessary. In this case each sample variance s? is weighted by its
degrees of freedom, w; = n; — 1, resulting in a sum of squares (T y?), since
(n; — 1)s? = X y?. Thus, the numerator of Expression (3.2) is the sum of the sums
of squares. The denominator i1s Z%(n; — 1) = 7 x 4, the sum of the degrees of
freedom of each group. The average vanance, therefore, is

@2 2024120 + 752 + 452 4+ 98.8 + 81.2 4+ 107.2 4488

o8 T 16.029

This quantity 1s an estimate of 15.21, the parametric variance of housefly
wing lengths. This estimate, based on 7 independent estimates of variances of
groups, is called the average variance within groups or simply variunce within
groups. Note that we use the expression wirhin groups, although in previous
chapters we used the term variance of groups. The reason we do this i1s that the
variance estimates used for computing the average variance have so far all come
from sums of squares measuring the variation within one column. As we shall
see in what follows, one can also compute variances among groups, cutling
across group boundarices.

To obtain a sccond estimate of the population variance, we treat the seven
group mcans Y as though they were a sample of seven observations. The resulting
statistics arc shown in the lower right part of Table 7.1, hcaded “Computation
of sum of squares of means.” There arce seven means in this example; in the
general case there will be a means. We first compute X¢ Y, the sum of the means.
Note that this is rather sloppy symbolism. To be entirely proper, we should

i=a

identify this quantity as £{2¢Y,, summing the mcans of group 1 through group
a. The next quantity computed is Y, the grand mean of the group means, com-
puted as Y = £*¥/a. The sum of the seven means is Y = 317.4, and the grand
meanis Y = 4534, a fairly closc approximation to the parametric mean j = 45.5.
The sum of squarces represents the deviations of the group means from the grand
mean, (Y — ¥)2 For this we first nced the quantity Y2 which cquals
14,417.24. The customary computational formula for sum of squares applied
to these means is T4Y? — [(X°Y)2/a| = 25.417. From the sum of squarcs of the
means we obtain a variance among the means in the conventional way as follows:
Y - Y)Y/ - 1. We divide by a - 1 rather than n — | because the sum
of squarces was based on « items (means). Thus, variance of the mcans s; -
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25.417/6 = 4.2362. We learned in Chapter 6, Expression (6.1), that when we
randomly sample from a single population,

2 02
oy = —
n
and hence
0% = no}

Thus, we can estimate a variance of items by multiplying the variance of means
by the sample size on which the means are based (assuming we have sampled
at random from a common population). When we do this for our present ex-
ample, we obtain s? = 5 x 4.2362 = 2[.181. This is a second estimate of the
parametric variance 15.21. It is not as close to the true value as the previous
estimate based on the average variance within groups, but this is to be expected,
since it is based on only 7 “observations.” We need a name describing this
variance to distinguish it from the variance of means from which it has been
computed, as well as from the variance within groups with which it will be
compared. We shall call it the variance among groups; it is n times the variance
of means and is an independent estimate of the parametric variance o of the
housefly wing lengths. [t may not be clear at this stage why the two estimates
of 62 that we have obtained, the variance within groups and the variance among
groups, are independent. We ask you to take on faith that they are.

Let us review what we have done so far by expressing it in a more formal
way. Table 7.2 represents a generalized table for data such as the samples of
housefly wing lengths. Each individual wing length is represented by Y, sub-
scripted to indicate the position of the quantity in the data table. The wing length
of the jth fly from the ith sample or group is given by Y;;. Thus, you will notice
that the first subscript changes with cach column representing a group in the

TABLE 7.2
Data arranged for simple analysis of variance, single classification, completely
randomized.
groups
I 2 3 - i a
g ! Y Yy, Y;i ¥, )';.1
S 2 Y1, 22 Yy - Yo }'f.:
=3 Yy, Yys Yo 0 ¥, Yos
= : : : : :
J Y Yy Yy Y Yo
n Yl n Y: n YXn Y[n Yun
n n n T T TTh T T T
Sums YY 3y, Yy, YY, %Y, Yy,
Means Y Y, Y, Y, Y ¥,
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table, and the second subscript changes with each row representing an individual
item. Using this notation, we can compute the variance of sample 1 as

1

n—1 j

I

n

- )

gl

<

[

(

1

The variance within groups, which is the average variance of the samples,
is computed as

PG

Note the double summation. It means that we start with the first group, setting
i =1 (i being the index of the outer X). We sum the squared deviations of all
items from the mean of the first group, changing index j of the inner T from 1
to n in the process. We then return to the outer summation, set i = 2, and sum
the squared deviations for group 2 from j = 1 toj = n. This process is continued
until i, the index of the outer Z, is set to a. In other words, we sum all the
squared deviations within one group first and add this sum to similar sums from
all the other groups.
The variance among groups is computed as

a(n—l

Now that we have two independent estimates of the population variance,
what shall we do with them? We might wish to find out whether they do in fact
estimate the same parameter. To test this hypothesis, we nced a statistical test
that will evaluate the probability that the two sample variances are from the same
population. Such a test employs the F distribution, which is taken up next.

7.2 The F distribution

Let us devise yet another sampling experiment. This is quite a tedious one with-
out the use of computers, so we will not ask you to carry it out. Assumc that
you are sampling at random from a normally distributed population, such as the
housefly wing lengths with mean p and variance 2. The sampling procedure
consists of first sampling n, items and calculating their variance 7, followed by
sampling n, items and calculating their variance 2. Sample sizes n, and n, may
or may not be equal to each other, but are fixed for any one sampling experiment.
Thus, for cxample, we might always sample 8 wing lengths for the first sample
(n,) and 6 wing lengths for the second sample (n,). After each pair of values (s7
and s3) has been obtained, we calculate

o

F

N

i
[N

v

This will be a ratio near 1, because these variances are estimates of the same
quantity. Its actual value will dupund on lln relative magmludu of variances

>
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F; of their variances, the average of these ratios will in fact approach the quantity
(n, — 1)/(n, — 3), which is close to 1.0 when n, is large.

The distribution of this statistic is called the F distribution, in honor of
R. A. Fisher. This is another distribution described by a complicated mathe-
matical function that need not concern us here. Unlike the t and x? distributions,
the shape of the F distribution is determined by two values for degrees of freedom,
v, and v, (corresponding to the degrees of freedom of the variance in the
numerator and the variance in the denominator, respectively). Thus, for every
possible combination of values v,, v,, each v ranging from [ to infinity, there
exists a separate F distribution. Remember that the F distribution is a theoretical
probability distribution, like the t distribution and the y* distribution. Variance
ratios s2/s3, based on sample variances are sample statistics that may or may
not follow the F distribution. We have therefore distinguished the sample vari-
ance ratio by calling it F_, conforming to our convention of separate symbols
for sample statistics as distinct from probability distributions (such as ¢t and
X? contrasted with ¢ and ¥?).

We have discussed how to generate an F distribution by repeatedly taking
two samples from the same normal distribution. We could also have generated
it by sampling from two separate normal distributions differing in their mean
but identical in their parametric variances; that is, with p, # u, but 62 = ¢3.
Thus, we obtain an F distribution whether the samples come from the same
normal population or from different ones, so long as their variances are identical.

Figure 7.1 shows several representative F distributions. For very low degrees
of freedom the distribution is L-shaped, but it becomes humped and strongly
skewed to the right as both degrees of freedom increase. Table V in Appendix
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A2 shows the cumulative probability distribution of F for three selected prob-
ability values. The values in the table represent F, ;. where a is the proportion
of the F distribution to the right of the given F value (in one tail) and v, v, are
the degrees of freedom pertaining to the variances in the numerator and the
denominator of the ratio, respectively. The table is arranged so that across the
top one reads v, the degrees of freedom pertaining to the upper (numerator)
variance, and along the left margin one reads v,, the degrees of freedom per-
taining to the lower (denominator) variance. At each intersection of degree of
freedom values we list three values of F decreasing in magnitude of a. For
example, an F distribution with v, = 6, v, = 24 is 2.51 at a = 0.05. By that
we mean that 0.05 of the area under the curve lies to the right of F = 2.51.
Figure 7.2 illustrates this. Only 0.01 of the area under the curve lies to the right
of F = 3.67. Thus, if we have a null hypothesis H,: 67 = ¢3, with the alternative
hypothesis H,: 62 > 63, we use a one-tailed F test, as illustrated by Figur‘e 7.2.

We can now test the two variances obtained in the sampling experiment
of Section 7.1 and Table 7.1. The variance among groups based on 7 means was
21.180, and the variance within 7 groups of 5 individuals was 16.029. Our null
hypothesis is that the two variances estimate the same paramelfic var'iance; th'e
alternative hypothesis in an anova is always that the parametric variance esti-
mated by the variance among groups is greater than that estimated by the
variance within groups. The reason for this restrictive alternative hypothesis,
which leads to a one-tailed test. will be explained in Section 7.4. We calculate
the variance ratio F, = s3/s3 = 21.181/16.029 = 1.32. Before we can inspect the
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FIGURE 7.2 . .
IFrequency curve of the I distribution for 6 and 24 degrees of freedom, respectively. A onc-tailed
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F table, we have to know the appropriate degrees of freedom for this variance
ratio. We shall learn simple formulas for degrees of freedom in an anova later,
but at the moment let us reason it out for ourselves. The upper variance
(among groups) was based on the variance of 7 means; hence it should have
a — 1 = 6 degrees of freedom. The lower variance was based on an average of
7 variances, each of them based on 5 individuals yielding 4 degrees of freedom
per variance: a(n — 1) = 7 x 4 = 28 degrees of freedom. Thus, the upper variance
has 6, the lower variance 28 degrees of freedom. If we check Table V for v L =6,
v, = 24, the closest arguments in the table, we find that Fo.0516,247 = 2.51. For
F = 1.32, corresponding to the F, value actually obtained, « is clearly > 0.05.
Thus, we may expect more than 5% of all variance ratios of samples based on
6 and 28 degrees of freedom, respectively, to have F, values greater than 1.32.
We have no evidence to reject the null hypothesis and conclude that the two
sample variances estimate the same parametric variance. This corresponds, of
course, to what we knew anyway from our sampling experiment. Since the seven
samples were taken from the same population, the estimate using the variance
of their means is expected to yield another estimate of the parametric variance
of housefly wing length.

Whenever the alternative hypothesis is that the two parametric variances are
unequal (rather than the restrictive hypothesis H,: 62 > ¢2), the sample variance
st can be smaller as well as greater than s3. This leads to a two-tailed test, and
in such cases a 5% type I error means that rejection regions of 24% will occur
at each tail of the curve. In such a case it is necessary to obtain F values for
a > 0.5 (that is, in the left half of the F distribution). Since these values arc rarely
tabulated, they can be obtained by using the simple relationship

|
_ (7.1)

ay[vz.vi]

Fateron Fi.
For cxample, Fo 4s15.24) = 2.62. If we wish to obtain Fy 9515.24; (the F value to
the right of which lies 957% of the area of the F distribution with 5 and 24 degrees
of freedom, respectively), we first have to find Fy 05124.5) = 4.53. Then Fo osps.24)
is the reciprocal of 4.53, which equals 0.221. Thus 95% of an F distribution with
5 and 24 degrees of freedom lies to the right of 0.221,

There is an important relationship between the F distribution and the y?
distribution. You may remember that the ratio X2 = X y?/52 was distributed as
a x* with n — | degrees of freedom. If you divide the numerator of this expression
by n — 1, you obtain the ratio F, = s*/a2 which is a variance ratio with an
expected distribution of Fi- 1, The upper degrees of freedom are n — | (the
degrees of freedom of the sum of squares or sample variance). The lower degrees
of freedom are infinite, because only on the basis of an infinite number of items
can we obtain the true, parametric variance of a population. Thercfore, by
dividing a value of X2 by n — | degrees of freedom, we obtain an F, value with
n—1and oo df, respectively. In general, AV = F|, ;- We can convince our-
selves of this by inspecting the F and 2 tables. From the x> table (Table TV)
we find that y§ o6, = 18.307. Dividing this value by 10 df. we obtain 1.8307

b S T 2 T
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Thus. the two statistics of significance are closely related and, lacking a x? table,
we could make do with an F table alone, using the values of vFy, ,; in place
of i

Before we return to analysis of variance. we shall first apply our newly won
knowledge of the F distribution to testing a hypothesis about two sample
variances.

BOX 7.1
Testing the significance of differences between two variances.

Survival in days of the cockroach Blattella vaga when kept without food or water.

Females n, =10 ¥, =85days si=36
Males ny=10 ¥, =48days s3=09

Hyol=0} Hyof#0}

Source: Data modified from Willis and Lewis (1957).

The alternative hypothesis is that the two variances are unequal. We have
no reason to suppose that one sex should be more variable than the other.
In view of the alternative hypothesis this is a two-tailed test. Since only
the right tail of the F distribution is tabled extensively in-Table V and in
most other tables, we calculate F| as the ratio of the greater variance over
the lesser one: ;36

s3 .
s 09 +00
Because the test is two-tailed, we look up the critical value F, 5y, .,;, Where
a is the type I error accepted and v, =n, — | and v, = n, — 1 are the
degrees of frecdom for the upper and lower variance, respectively. Whether
we look up Fjpy, vy OF Fopayp,.,y depends on whether sample 1 or sample
2 has the greater variance and has been placed in the numerator.

From Table V we find Fy ;510,09 = 403 and Fg o519,0) = 3.18. Be-
cause this is a two-tailed test, we double these probabilities. Thus, the F
value of 4.03 represents a probability of « = 0.05, since the right-hand tail
arca of o = 0.025 is matched by a similar left-hand area to the left of
Fo.07510.0) = 1/Fg.02510,0) = 0.248. Therefore, assuming the null hypothesis
is true, the probability of observing an F value greater than 4.00 and
smaller than 1/4.00 = 0.25 is 0.10 > P > 0.05. Strictly speaking, the two
sample variances are not significantly different—the two sexes are equally
variable in their duration of survival. However, the outcome is close
enough to the 5% significance level to make us suspicious that possibly
the variances are in fact different. It would be desirable to repeat this
experiment with larger sample sizes in the hope that more decisive results
would emerge.

F,
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7.3 The hypothesis H: 6 = 03

A test of the null hypothesis that two normal populations represented by two
samples have the same variance is illustrated in Box 7.1. As will be seen later,
some tests leading to a decision about whether two samples come from popula-
tions with the same mean assume that the population variances are equal. How-
ever, this test is of interest in its own right. We will repeatedly have to test whether
two samples have the same variance. In genetics we may need to know whether
an offspring generation is more variabie for a character than the parent genera-
tion. In systematics we might like to find out whether two local populations are
equally variable. In experimental biology we may wish to demonstrate under
which of two experimental setups the readings will be more variable. In general,
the less variable setup would be preferred; if both setups were equally variable.
the experimenter would pursue the one that was simpler or less costly to
undertake.

7.4 Heterogeneity among sample means

We shall now modify the data of Table 7.1, discussed in Section 7.1. Suppose
the seven groups of houseflies did not represent random samples from the same
population but resulted from the following experiment. Each sample was reared
in a separate culture jar, and the medium in each of the culture jars was prepared
in a dilferent way. Some had more water added, others more sugar, yet others
more solid matter. Let us assume that sample 7 represents the standard medium
against which we propose to compare the other samples. The various changes
in the medium affect the sizes of the flies that emerge from it; this in turn affects
the wing lengths we have been measuring.

We shall assume the following effects resulting from trcatment of the
medium:

Medium | deereases average wing length of a sample by 5 units
2 -—decreases average wing length of a sample by 2 units
3-—does not change average wing length of a sample
4 - increases average wing length of a samplc by 1 unit
5~ -increases average wing length ol a sample by 1 unit
6 - increases average wing length of a samplc by 5 units
T-—{control) does not change average wing length of a sample

The effect of treatment i is usually symbolized as «;,. (Please note that this use
of a is not reluted to its use as a symbol for the probability of a type 1 crror.)
Thus o; assumes the following values for the above treatment effects.

o, = — 35 oy = |
017:*2 CXSZI

= 0 Ay =5
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Note that the a,’s have been defined so that X% o, = 0; that is, the effects cancel
out. This 1s a convenient property that is generally postulated, but it is unneces-
sary for our argument. We can now modify Table 7.1 by adding the appropriate
values of «; to each sample. In sample 1 the value of «, is —5; therefore, the
first wing length, which was 41 (see Table 7.1), now becomes 36; the second
wing length, formerly 44, becomes 39; and so on. For the second sample «, is
—2, changing the first wing length from 48 to 46. Where «; is 0, the wing
lengths do not change; where o is positive, they are increased by the magnitude
indicated. The changed values can be inspected in Table 7.3, which is arranged
identically to Table 7.1.

We now repeat our previous computations. We first calculate the sum of
squares of the first sample to find it to be 29.2. If you compare this value
with the sum of squares of the first sample in Table 7.1, you find the two
values to be identical. Stmilarly, all other values of " y?, the sum of squares of
each group, are identical to their previous values. Why is this so? The effect of
adding «; to each group is simply that of an additive code, since «; is constant
for any one group. From Appendix A1.2 we can see that additive codes do not
affect sums of squares or variances. Therefore. not only is each separate sum of
squares the same as before, but the average variance within groups is still 16.029.
Now let us compute the variance of the means. 1t 1s 100.617/6 = 16.770, which
is a value much higher than the vanance of means found before, 4.236. When we
multiply by n = 5 to get an estimate of 6%, we obtain the variance of groups.
which now is 83.848 and is no longer even close to an estimate of a2, We repeat
the F test with the new variances and find that F, = 83.848/16.029 = 5.23, which
is much greater than the closest eritical value of Iy 5624 = 2.51. In fact, the
obscrved F is greater than Fy 024 = 3.67. Clearly, the upper variance, repre-
senting the variance among groups, has become significantly larger. The two
variances arec most unlikely to represent the same parametric variance.

What has happened? We can casily explain it by means of Table 7.4, which
represents Table 7.3 symbolically in the manner that Table 7.2 represented
Table 7.1. We note that cach group has a constant ; added and that this
constant changes the sums of the groups by na,; and the means of these groups
by «,. [n Section 7.1 we computed the variance within groups as

i-a j-n S
- ' (Y- Y
ain - 1) iZl jzl Y Y
When we try to repeat this, our formula becomes more complicated, because to
each Y,; and cach Y, there has now been added 2, We therefore write

i-aj n

L Y YO, b 5

aln — 1),= =

Then we open the parentheses inside the square brackets, so that the second z,
changes sign and the a’s cancel out, leaving the cxpression cxactly as before,
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TABLE 7.4
Data of Table 7.3 arranged in the manner of Table 7.2.

a Groups
I 2 3 i a

gl Yy + o Y t+a, ip+ay 0 Y+ SR AT -

5 2 Vi, + oy Yy, + o, Yip oy -0 Yot oo Y;zz‘*"-”

=3 Yia+ o Yy + o, Y33 T %3 Yy + 2 Y5 2,

J: ij‘*;% Yz,'+.°‘z Yy +ay, - Yuf’xi X;jf%

n Yln“;“n an*;o‘z Y3, + o3 Y, + o Y., +o,

n n n n n

Sums Y Y, + noy N Y, + ney YYy4+nay 0 Y Y+ n Y, +ny
Means Y, + o, Y, +a, Yy +ay o Y+« Y+,

substantiating our earlier observation that the variance within groups does not
change despite the trcatment effects.
The variance of means was previously calculated by the formula
1 i
1,

a

(Y —

1

)2

ling
1
=~

However. from Table 7.4 we see that the new grand mean equals

1 i=a I i=a 1 i=aq

(Y, +a) = Y+- 5 0, =Y+ 42

a iZl ! Yo i; " iZ] ‘

When we substitute the new values for the group means and the grand mean.
the formula appears as

which in turn yiclds

Squaring the expression in the square brackets, we obtain the terms

] ia — 1 iza 2 ita —

Y s Y @ Y (Y Y - )

a— 15 a- 17 a-— 1=
The first of these terms we immediately recognize as the previous variance ol
the means, sy. The second is a new quantity, but is familiar by general appeis
ance; it clearly is a variance or at least a quantity akin to a variance. The thud
expression is a new type: it s a so-called covariance, which we have not yo
encountered. We shall not be concerned with it at this stage exeept to say that
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in cases such as the present one, where the magnitude of the treatment effects
a; is assumed to be independent of the Y to which they are added, the expected
value of this quantity is zero; hence it does not contribute to the new variance
of means.

The independence of the treatments eflects and the sample means is an
important concept that we must understand clearly. If we had not applied dif-
ferent treatments to the medium jars, but simply treated all jars as controls,
we would still have obtained differences among the wing length means. Those
are the differences found in Table 7.1 with random sampling from the same
population. By chance, some of these means are greater, some are smaller. In
our planning of the experiment we had no way of predicting which sample
means would be small and which would be large. Therefore, in planning our
treatments, we had no way of matching up a large treatment effect, such as that
of medium 6, with the mean that by chance would be the greatest, as that for
sample 2. Also, the smallest sample mean (sample 4) is not associated with the
smallest treatment effect. Only if the magnitude of the treatment effects were
deliberately correlated with the sample means (this would be difficult to do in
the experiment designed here} would the third term in the expression, the co-
variance, have an expected value other than zero.

The second term in the expression for the new variance of means is clearly
added as a result of the treatment effects. It 1s analogous to a variance, but it
cannot be called a variance, since it is not based on a random variable, but
rather on deliberately chosen treatments largely under our control. By changing
the magnitudc and naturc of the treatments, we can more or less alter the
variancelike quantity at will. We shall therefore call it the added component due
to treatment effects. Since the ;s are arranged so that @ = 0, we can rewrite
the middle term as

1 i~a 1 i~a
R L

Ll_],':l (l*l,“] a —

a
NS

In analysis of variance we multiply the variance of the means by n in order
to estimate the parametric variance of the items. As you know, we call the
quantity so obtained the variance of groups. When we do this for the case in
which trcatment ellects are present, we obtain

2 L&, 2 nos 2
n s,;+r2a =5 +;—T2a

Thus we see that the estimate of the parametric variance of the population is
increased by the quantity

which is # times the added component due to treatment cllects. We found the
variance ratio F, to be significantly greater than could be reconciled with the
null hypothesis. Tt is now obvious why this is so. We were testing the variance
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ratio expecting to find F approximately equal to ¢?/6® = 1. In fact, however,
we have

i 4
22

a—1

It is clear from this formula (deliberately displayed in this lopsided manner)
that the F test is sensitive to the presence of the added component due to treat-
ment effects.

At this point, you have an additional insight into the analysis of variance.
It permits us to test whether there are added treatment effects—that is, whether
a group of means can simply be considered random samples from the same
population, or whether treatments that have affected each group separately
have resulted in shifting these means so much that they can no longer be
considered samples from the same population. If the latter is so. an added com-
ponent duc to treatment effects will be present and may be detected by an F test
in the significance test of the analysis of variance. [n such a study, we are
generally not interested in the magnitude of

L %
a— 1=

but we are interested in the magnitude of the scparate values of x;. In our
example these arc the effects of different formulations of the medium on wing
length. If, instead of housefly wing length, we were measuring blood pressure
in samples of rats and the different groups had been subjected to different drugs
or different doscs of the same drug, the quantitics %; would represent the effects
of drugs on the blood pressure, which is clearly the issue of interest to the
investigator. We may also be interested in studying differences of the type
o, — a,, leading us to the question of the significance of the differences between
the effects of any two types of medium or any two drugs. But we arc a little
ahead of our story.

When analysis of variance involves treatment effects of the type just studied,
we call it a Model T anova. Later in this chapter (Section 7.6), Model 1 will
be delined preciscly. There is another model, called a Model 1T anova, in which
the added effects for cach group arc not fixed treatments but are random cfiects.
By this we mean that we have not deliberately planned or fixed the treatment
for any one group, but that the actual effects on cach group are random and
only partly under our control. Supposc that the seven samples of housetlies in
Table 7.3 represented the offspring of seven randomly selected females from a
population reared on a uniform medium. There would be genetic differences
among these females, and their seven broods would reflect this. The exact nature
of these differences is unclear and unpredictable. Before actually measuring
them, we have no way of knowing whether brood 1 will have longer wings than
brood 2, nor have we any way of controlling this experiment so that brood 1
will in fact grow longer wings. So far as we can ascertain, the genetic factors
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for wing length are distributed in an unknown manner in the population of
houseflies (we might hope that they are normally distributed), and our sample
of seven is a random sample of these factors.

In another example for a Model I1 anova, suppose that instead of making
up our seven cultures from a single batch of medium, we have prepared seven
batches separately, one right after the other, and are now analyzing the variation
among the batches. We would not be interested in the exact differences from
batch to batch. Even if these were measured, we would not be in a position to
interpret them. Not having deliberately varied batch 3, we have no idea why,
for example, it should produce longer wings than batch 2. We would, however,
be interested in the magnitude of the variance of the added effects. Thus, if we
used seven jars of medium derived from one batch, we could expect the vanance
of the jar means to be ¢?/5, since there were 5 flies per jar. But when based on
different batches of medium, the variance could be expected to be greater, be-
cause all the imponderable accidents of formulation and environmental dif-
ferences during medium preparation that make one batch of medium different
from another would come into play. Interest would focus on the added variance
component arising from differences among batches. Similarly, in the other
example we would be interested in the added variance component arising from
genetic differences among the females.

We shall now take a rapid look at the algebraic formulation of the anova
in the case of Model 11. In Table 7.3 the second row at the head of the data
columns shows not only z; but also A;, which is the symbol we shall use for
a random group elfect. We use a capital letter to indicate that the eflect 1s a
variable. The algebra of calculating the two cstimates of the population vari-
ance is the same as in Model |, except that in place of o, we imagine A; sub-
stituted 1n Table 7.4, The estimate of the variance among means now represents
the quantity

AT - | Q- , 2o _ )
0l ,_Zl (Y, - Yy 4 0 ,_Zl (4, AP+ 0 ,_Zl (Y, = Y)A, — A)
The first term is the variance of means si, as before, and the last term is the
covariance between the group means and the random eflects A, the expected
valuc of which is zero (as belore), because the random effects are independent
of the magnitude of the means. The middle term s a true variance, since 4,
is a random variable. We symbolize it by 5% and call it the added variance
component amony groups. It would represent the added variance component
among females or among medium batches, depending on which of the designs
discussed above we were thinking of. The existence of this added variance com-
ponent is demonstrated by the F test. If the groups are random samples, we
may cxpect I7 to approximate ¢%/o? = 1; but with an added variance compo-
nent, the expected ratio, again displayed lopsidedly, is

_0° + noj

Fx
o2
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Note that ¢, the parametric value of s%, is multiplied by n, since we have to
multiply the variance of means by n to obtain an independent estimate of the
variance of the population. In a Model II anova we are interested not in the
magnitude of any A4; or in differences such as 4, — A4,, but in the magnitude
of 6% and its relative magnitude with respect to ¢, which is generally expressed
as the percentage 100s3/(s® + s3). Since the variance among groups estimates
g% + no?, we can calculate s% as

| . . o
- (variance among groups — variance within groups)
1o 2 2 L) 2
= [(s* + ns%) — s°] = ;(ns,,) =55

For the present example, s5 = £(83.848 — 16.029) = 13.56. This added vari-
ance component among groups 1s

100 x 1356 1356
16.029 + 13.56  29.589

= 45.83%

of the sum of the variances among and within groups. Model 11 will be formally
discussed at the end of this chapter (Section 7.7); the methods of estimating
variance components are treated in detail in the next chapter.

7.5 Partitioning the total sum of squares and degrees of freedom

So far we have ignored one other variance that can be computed from the
data in Table 7.1. If we remove the classification into groups, we can consider
the housefly data to be a single sample of an = 35 wing lengths and calculate
the mean and variance of these items in the conventional manner. The various
quantities necessary for this computation are shown in the last column at the
right in Tables 7.1 and 7.3, headed “Computation of total sum of squares.” We
obtain a mean of Y= 45.34 for the sample in Table 7.1, which is, of course,
the same as the quantity Y computed previously from the seven group means.
The sum ol squares of the 35 items 1s 575.886, which gives a variance of 16.938
when divided by 34 degrees of freedom. Repeating these computations for the
data in Table 7.3, we obtain Y= 4534 (the same as in Table 7.1 because
T4, = 0) and 57 = 27.997, which is considerably greater than the correspond-
ing variance from Table 7.1. The total variance computed from all an items is
another estimate of 2. It is a good estimate in the first case, but in the second
sample (Table 7.3), where added components due to treatment effects or added
variance components arc present, itis a poor estimate of the population variance.

However, the purpose of calculating the total variance in an anova is not
for using it as yet another estimate of o2, but for introducing an important
mathematical relationship between 1t and the other variances. This 1s best seen
when we arrange our results in a conventional analysis of variance table, as
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TABLE 7.5
Anova table for data in Table 7.1.

3 &)
Sum Mean
(1) (2) of squares square

Source of variation df SS MS
Y-v Ameong groups 6 127.086 21.181
Y-Y Within groups 28 448.800 16.029
Y-Y Total 34 575.886 16.938

shown in Table 7.5. Such a table is divided into four columns. The first iden-
tifies the source of variation as among groups, within groups, and total (groups
amalgamated to form a single sample). The column headed df gives the degrees
of freedom by which the sums of squares pertinent to each source of variation
must be divided in order to yield the corresponding variance. The degrees of
freedom for variation among groups is a — 1, that for variation within groups
is a (n — 1), and that for the total variation is an — 1. The next two columns
show sums of squares and variances, respectively. Notice that the sums of
squares entered in the anova table are the sum of squares among groups, the
sum of squares within groups, and the sum of squares of the total sample of
an items. You will note that variances arc not referred to by that term in anova,
but are generally called mean squares, since, in a Model T anova, they do not
estimate a population variance. These quantities arc not truc mean squarcs,
because the sums of squares are divided by the degrees of freedom rather than
sample size. The sum of squares and mean square arc frequently abbreviated
SS and MS, respectively.

The sums of squares and mean squares in Table 7.5 are the same as thosc
obtained previously, except for minute rounding crrors. Note, however, an
important property of the sums of squares. They have been obtained indepen-
dently of cach other, but when we add the $S among groups to the SS within
groups we obtain the total SS. The sums of squares are additive! Another way of
saying this is that we can decomposc the total sum of squares into a portion
due to variation among groups and another portion due 1o variation within
groups. Observe that the degrees of freedom are also additive and that the total
of 34 df can be decomposed into 6 df among groups and 28 df within groups.
Thus, if we know any two of the sums of squares (and their appropriate degrees
of freedom), we can compute the third and complele our analysis of variance.
Note that the mean squares arc not additive. This is obvious, since gencrally
{a+ bY(c+ d) # ajc + b/d.

We shall use the computational formula for sum of squares (Expression
(3.8)) to demonstrate why these sums of squares are additive. Although it is an
algebraic derivation, it is placed here rather than in the Appendix becausc
these formulas will also lead us (0 some common computational formulas for
analysis of variance. Depending on computational equipment, the formulas we
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have used so far to obtain the sums of squares may not be the most rapid pro-

cedure.
The sum of squares of means in simplified notation is

a

a 2
g )
SSmeans = z (Y_ Y)Z = Z )72

1 @ n 2 1 a n 2
=~ Y| - Y
LE(Ev) - (3T
Note that the deviation of means from the grand mean is first rearranged to
fit the computational formula (Expression (3.8)), and then each mean is written
in terms of its constituent variates. Collection of denominators outside the sum-

mation signs yields the final desired form. To obtain the sum of squares of
groups, we multiply SS,..... by n, as before. This yields

1. n 2 1 a n 2
SS roups — X SSmeans =- Y -
o= )L )
Next we evaluate the sum of squares within groups:

SSuma = L3 (¥ = V)2 =¥ [Z v 1<Z Y)]

2

a n 1 a n <
-5 l5(Ey)
The total sum of squares represents
SSlulzll = Z Z (Y - y:')Z
u n 1 a n 2
- 2 b
-$3v-L(55y)

We now copy the formulas for these sums of squares, slightly rearranged as

follows:
] a n 2 1 a n 2
Ssxmuw = o Z Z Y - Z 2 Y
|« n 2 a n
SSwi\hin = - Y <Z Y> + Z Z sz
7 u 7n7/ 1 ;1 Vn N2
SSwl;:l = z Z YZ . (Z Z Y>
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Adding the expression for SS,,.,,, to that for S5, We obtain a quantity that
is identical to the one we have just developed as SS,.,. This demonstration
explains why the sums of squares are additive.

We shall not go through any derivation, but simply state that the degrees
of freedom pertaining to the sums of squares are also additive. The total degrees
of freedom are split up into the degrees of freedom corresponding to variation
among groups and those of variation of items within groups.

Before we continue, let us review the meaning of the three mean squares
in the anova. The total MS is a statistic of dispersion of the 35 (an) items around
their mean, the grand mean 45.34. It describes the variance in the entire sample
due to all the sundry causes and estimates o when there are no added treatment
effects or variance components among groups. The within-group MS, also
known as the individual or intragroup or error mean square, gives the average
dispersion of the 5 (n) items in each group around the group means. If the a
groups are random samples from a common homogeneous population, the
within-group MS should estimate 2. The MS among groups is based on the
variance of group means, which describes the dispersion of the 7 (a) group
means around the grand mean. If the groups are random samples from a homo-
geneous population, the expected variance of their mean will be a%/n. Therefore,
in order to have all three variances of the same order of magnitude, we multiply
the variance of means by n to obtain the variance among groups. If there are
no added treatment cffects or variance components, the MS among groups is
an estimate of 2. Otherwise, it is an estimate of

n a
6’+— Yo" or o'+ no}
a—

depending on whether the anova at hand is Model | or I1.

The additivity relations we have just learned are independent of the presence
of added treatment or random effects. We could show this algebraically, but
it is simpler to inspect Table 7.6, which summarizes the anova of Tablec 7.3 in
which o; or 4; is added to cach sample. The additivity relation still holds,
although the values for group §S and the total S§ are differcat from those of
Table 7.5.

TABLE 7.6
Anova table for data in Table 7.3.

(3 4

Sum Mean
t7) () of squares square

Source of variation df Y MS
Y-V Among groups 6 503.086 83.848
Y-Y Within groups 28 448.800 16.029
Y-Y Total 34 951.886 27997
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Another way of looking at the partitioning of the variation is to study the
deviation from means in a particular case. Referring to Table 7.1, we can look
at the wing length of the first individual in the seventh group, which happens
to be 41. Its deviation from its group mean is

Y, — ¥, =41 - 454 = —44
The deviation of the group mean from the grand mean is
Y, — ¥Y=1454 — 4534 = 0.06
and the deviation of the individual wing length from the grand mean is
Y, — ¥ =41-4534= —434

Note that these deviations are additive. The deviation of the item from the group
mean and that of the group mean from the grand mean add to the total devia-
tion of the item from the grand mean. These deviations are stated algebraically
as(Y - V) +(Y - Y)=(Y - Y). Squaring and summing these deviations for an
items will result in

EZ(Y ¥)? +nZ{Y¥Y) Z(Y—?)Z

Before squaring, the deviations were in the relationship a + b = ¢. After squar-
ing, we would expect them to take the form a® + b + 2ab = ¢2. What happened
to the cross-product term corresponding to 2ab? This is

— a

28 T -y =25 (T - T)

s

(¥ - 7))
a covariance-type term that is always zero, since Z" (Y — Y) = 0for each of the
a groups (proof in Appendix Al.1).

We identify the deviations represented by each level of variation at the left
margins of the tables giving the analysis of variance results (Tables 7.5 and 7.6).
Note that the deviations add up correctly: the deviation among groups plus
the deviation within groups equals the total deviation of items in the analysis
of variance, (Y — Y) 4+ (Y — V)= (Y — Y).

7.6 Model I anova

An important point to remember is that the basic setup of data, as well as the
actual computation and significance 1est, in most cases is the same for both
models. The purposes of analysis of variance differ for the two models. So do
some of the supplementary tests and computations following the initial signifi-
cance test.

Let us now Iry to resolve the variation found in an analysis of variance
casc. This will not only lead us to a more formal interpretation of anova but
will also give us a deeper understanding of the nature of variation itsell. For
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purposes of discussion, we return to the housefly wing lengths of Table 7.3. We
ask the question, What makes any given housefly wing length assume the value
it does? The third wing length of the first sample of flies is recorded as 43 units.
How can we explain such a reading?

If we knew nothing else about this individual housefly, our best guess of
its wing length would be the grand mean of the population, which we know
to be u = 45.5. However, we have additional information about this fly. It is a
member of group 1, which has undergone a treatment shifting the mean of the
group downward by 5 units. Therefore, «; = —5, and we would expect our
individual Y, (the third individual of group 1) to measure 45.5 — 5 = 40.5 units.
In fact, however, it is 43 units, which is 2.5 units above this latest expectation.
To what can we ascribe this deviation? It is individual variation of the flies
within a group because of the variance of individuals in the population
(62 = 15.21). All the genetic and environmental effects that make one housefly
different from another housefly come into play to produce this variance.

By means of carefully designed experiments, we might learn something
about the causation of this variance and attribute it to certain specific genetic
or environmental factors. We might also be able to eliminate some of the vari-
ance. For instance, by using only full sibs (brothers and sisters) in any one
culture jar, we would decrease the genetic variation in individuals, and un-
doubtedly the variance within groups would be smaller. However, it is hopeless
to try to eliminate all variance completely. Even if we could remove all genetic
variance, there would still be environmental variance. And even in the most
improbable case in which we could remove both types of variance, measurement
error would remain, so that we would never obtain exactly the same reading
even on the same individual fly. The within-groups MS always remains as a
residual, greater or smalier from experiment to experiment—part of the nature
of things. This is why the within-groups variance is also called the error variance
or error mean square. It 1s not an error in the sensc of our making a mistake,
but in the sensc of a measure of the variation you have to contend with when
trying to estimate significant differences among the groups. The error variance
is composed of individual deviations for each individual, symbolized by ¢, the
random component of the jth individual variate in the ith group. In our casc,
€,3 = 2.5, since the actual obscrved value 1s 2.5 units above its cxpectation
of 40.5.

We shall now state this relationship more formally. In a Model | analysis
of variance we assume that the differences among group means, if any, are duc
to the fixed treatment effects determined by the experimenter. The purpose of
the analysis of variance is to estimate the true differences among the group
means. Any single variate can be decomposed as follows:

Yj=n+o+¢; (7.2)

where i = 1,...,4, j=1,..., n and g; represents an independent, normally
distributed variable with mean €; = 0 and variance a? = ¢°. Therefore, a given
reading 1s composed of the grand mean p of the population, a fixed deviation
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%; of the mean of group i from the grand mean u, and a random deviation €
of the jth individual of group i from its expectation, which is {¢t + ;). Remember
that both %; and ¢;; can be positive as well as negative. The expected value (mean)
of the ;s is zero, and their variance is the parametric variance of the popula-
tion, o2 For all the assumptions of the analysis of variance to hold. the dis-
tribution of €;; must be normal.

Ina Model I anova we test for differences of the type o, — %, among the
group means by testing for the presence of an added component due to treat-
ments. If we find that such a component is present. we reject the null hypothesis
that the groups come from the same population and accept the alternative
hypothesis that at least some of the group means are different from each other,
which indicates that at least some of the s are unequal in magnitude. Next,
we generally wish to test which #;'s are different from each other. This is done
by significance tests. with alternative hypotheses such as Hi:a >0, or H:
Hoy + ;) > a3. In words, these test whether the mean of group 1 is greater
than the mean of group 2, or whether the mean of group 3 is smaller than the
average of the means of groups | and 2.

Some examples of Model 1 analyses of variance in various biological
disciplines follow. An experiment in which we try the effects of different drugs
on batches of animals results in a Model I anova. We are interested in the results
of the treatments and the differences between them. The treatments are fixed
and determined by the experimenter. This is true also when we test the effects
of different doses of a given factor— a chemical or the amount of light to which
a plant has been exposed or temperatures at which culture bottles of insects have
been reared. The treatment does not have to be entirely understood and manip-
ulated by the experimenter. So long as it is fixed and repeatable, Model 1 will
apply.

Il we wanted to compare the birth weights of the Chinese children in the
hospital in Singapore with weights of Chinese children born in a hospital in
China, our analysis would also be a Model | anova. The treatment cffects then
would be “China versus Singapore,” which sums up a whole series of different
factors, genetic and environmental —some known to us but most of them not
understood. However, this is a definite treatment we can deseribe and also
repeat: we can, if we wish, again sample birth weights of infants in Singaporc
as well as in China.

Another example of Modcl I anova would be a study of body weights for
animals of several age groups. The treatments would be the ages, which are
hxed. If we ind that there are significant differences in weight among the ages,
we might proceed with the question of whether there is a diflerence from age 2 to
age 3 or only from age 1 to age 2.

To a very large extent, Model T anovas are the result of an experiment and
ol deliberate manipulation of factors by the experimenter. However, the study
of differences such as the comparison of birth weights from two countrics, while
not an experiment proper, also falls into this category.
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7.7 Model II anova

The structure of variation in a Model II anova is quite similar to that in
Model I

Yij =p+ A+ €5 (1.3)

where i=1,...,a; j=1,...,n¢; represents an independent, normally dis-
tributed variable with mean &; =0 and variance 67 = ¢*; and A, represents
a normally distributed variable, independent of all €’s, with mean 4; = 0 and
variance ¢%. The main distinction is that in place of fixed-treatment effects o,
we now consider random effects 4; that differ from group to group. Since the
effects are random, it is uninteresting to estimate the magnitude of these rapdom
effects on a group, or the differences from group to group. But we can estimate
their variance, the added variance component among groups ¢5. We test for its
presence and estimate its magnitude s2, as well as its percentage contribution to
the variation in a Model I analysis of variance.

Some examples will illustrate the applications of Model 11 anova. Suppose
we wish to determine the DNA content of rat liver cells. We take five rats and
make three preparations from each of the five livers obtained. The assay read-
ings will be for a = 5 groups with n = 3 readings per group. The five r.zlts pre-
sumably are sampled at random from the colony available to the experimenter.
They must be different in various ways, genetically and environmentalily, but we
have no definite information about the nature of the differences. Thus, if we learn
that rat 2 has slightly more DNA in its liver cells than rat 3, we can do little
with this information, because we are unlikely to have any basis for following
up this problem. We will, however, be interested 1n estimating the var‘iancc of
the three replicates within any one liver and the variance among the five rats;
that is, does variance 62 exist among rats in addition to the variance o expected
on the basis of the three replicates? The variance among the three preparations
presumably arises only from differences in technique and possibly from differ-
ences in DNA content in different parts of the liver (unlikely in a homogenate).
Added variance among rats, if it existed, might be due to differences in ploidy
or rclated phenomena. The relative amounts of variation among rats and
“within” rats (= among preparations) would guide us in designing further
studics of this sort. If there was little variance among the preparations and
relatively more variation among the rats, we would need fewer preparations and
more rats. On the other hand, if the variance among rats was proportionately
smaller, we would use fewer rats and more preparations per rat.

In a study of the amount of variation in skin pigment in human populations,
we might wish to study different families within a homogencous cthnic or racial
group and brothers and sisters within cach family. The vanance within familics
would be the crror mean square, and we would test for an added variance
component among familics. We would expect an added variance component
63 because there are genetic differences among families that determine amount
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of skin pigmentation. We would be especially interested in the relative propor-
tions of the two variances 62 and 6%, because they would provide us with
important genetic information. From our knowledge of genetic theory, we
would expect the variance among families to be greater than the variance among
brothers and sisters within a family.

The above examples illustrate the two types of problems involving Model
IT analysis of variance that are most likely to arise in biological work. One is
concerned with the general problem of the design of an experiment and the
magnitude of the experimental error at different levels of replication, such as
error among replicates within rat livers and among rats, error among batches,
experiments, and so forth. The other relates to variation among and within
families, among and within females, among and within populations, and so
forth. Such problems are concerned with the general problem of the relation
between genetic and phenotypic variation.

Exercises

7.1 In a study comparing the chemical composition of the urine of chimpanzees
and gorillas (Gartler, Firschein, and Dobzhansky, 1956), the following results
were obtained. For 37 chimpanzees the variance for the amount of glutamic acid
in milligrams per milligram of creatinine was 0.01069. A similar study based on
six gorillas yielded a variance of 0.12442, Is there a significant difference be-
tween the variability in chimpanzees and that in gorillas? ANS. F, = 11.639,
Fo.02515.361 = 2.90.

7.2 The following data are from an experiment by Sewall Wright. He crossed Polish
and Flemish giant rabbits and obtained 27 F, rabbits. These were inbred and
112 F, rabbits were obtained. We have extracted the following data on femur
length of these rabbits.

n Y s
F, 27 8339 165
F, 112 80.5 381

Is there a significantly greater amount of variability in femur lengths among the
F, than among the F, rabbits? What well-known genetic phenomenon is illus-
trated by these data?

7.3 For the following data obtained by a physiologist, estimate o2 (the variance
within groups), o; (the fixed treatment effects), the variancc among the groups,
and the added component due to treatment T x%/(a — 1), and test the hypothesis
that the last quantity is zero.

Treatment

A B C D

6.12 4.34 5.12 7.28
z 2.85 6.70 4.06 2.03
" 10 10 10 10

=

v
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74

75

7.6

ANS. s? =391, 4, = 0405, 4, = 1.375, &, = 0.595, 4, = 1.565, MS among
groups = 124.517, and F, = 31.846 (which is significant beyond the 0.01 level).
For the data in Table 7.3, make tables to represent partitioning of the value of
each variate into its three components, Y, (¥, — Y),(Y;; — Y;). The first table would
then consist of 35 values, all equal to the grand mean. In the second table all
entries in a given column would be equal to the difference between the mean of
that column and the grand mean. And the last table would consist of the devia-
tions of the individual variates from their column means. These tables represent
estimates of the individual components of Expression (7.3). Compute the mean
and sum of squares for each table.

A geneticist recorded the following measurements taken on two-week-old mice
of a particular strain. Is there evidence that the variance among mice in different
litters is larger than one would expect on the basis of the variability found within
each litter?

Litters
) 2 3 4 5 6 7

19.49 22.94 23.06 15.90 16.72 20.00 21.52
20.62 22.15 20.05 2148 19.22 19.79 20.37
19.51 19.16 21.47 22.48 26.62 21.15 2193
18.09 20.98 14.90 18.79 20.74 14.88 20.14
2275 23.13 19.72 19.70 21.82 19.79 22.28

ANS. 5% = 5987, MS, ung = 4416, 55 = 0, and F_ = 0.7375, which is clearly not
significant at the 5% level.

Show that it is possible to represent the value of an individual variate as (ollows:
Y, = (Y) + (v, —Y) + (Y, — Y). What docs cach of the terms in parentheses
estimate in 2 Model 1 anova and in a Model 1 anova?



CHAPTER 8

Single-Classification

Analysis of Variance

We are now rcady to study actual cases of analysis of variance in a varicty of
applications and designs. The present chapter deals with the simplest kind of
anova, single-clussification analysis of variance. By this we mean an analysis in
which the groups (samples) are classified by only a single criterion. Either inter-
pretations of the seven samples of housefly wing tengths (studied in the last
chapter), different medium formulations (Maodel 1), or progenies of different fe-
males (Model 1) would represent a single criterion for classification. Other
cxamples would be different temperatures at which groups of animals were
raised or different soils in which samples of plants have been grown.

We shall start in Scection 8.1 by stating the basic computational formulas
for analysis of variance, based on the topics covered in the previous chapter.
Section 8.2 gives an example of the common case with cqual sample sizes. We
shall illustrate this case by mecans of a Model I anova. Since the basic com-
putations for the analysis of variance  are the same in either model, it is not
neeessary o repeat the illustration with a Model 11 anova. The latter modcl is
featured in Section 8.3, which shows the minor computational complications
resulting from uncqual sample sizes, since all groups in the anova need not
neeessarily have the same sample size. Some computations unigque to a Model
IT anova are also shown; these estimate variance components. Formulas be-
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come especially simple for the two-sample case, as explained in Section 8.4.
In Model I of this case, the mathematically equivalent ¢ test can be applied
as well.

When a Model T analysis of variance has been found to be significant,
leading to the conclusion that the means are not from the same population,
we will usually wish to test the means in a variety of ways to discover which
pairs of means are different from each other and whether the means can be
divided into groups that are significantly different from each other. To this end,
Section 8.5 deals with so-called planned comparisons designed before the test
is run; and Section 8.6, with unplanned multiple-comparison tests that suggest
themselves to the experimenter as a result of the analysis.

8.1 Computational formulas

We saw in Section 7.5 that the total sum of squares and degrees of freedom
can be additively partitioned into those pertaining to variation among groups
and those to variation within groups. For the analysis of variance proper, we
need only the sum of squares among groups and the sum of squares within
groups. But when the computation is not carried out by computer, it is sim-
pler to calculate the total sum of squares and the sum of squares among groups,
leaving the sum of squares within groups to be obtained by the subtraction
S8 otat = SSgreups: However, it is a good idea to compute the individual vari-
ances so we can check for heterogeneity among them (see Section 10.1). This will
also permit an independent computation of SS,,,,, as a check. In Section 7.5
we arrived at the following computational formulas for the total and among-
groups sums of squares:

a n | a n 2
SSmml = Z Z YZ - <Z Z Y)
an
1.4 n 2 i a n 2
S = 1S (57) - 2 (£57)

These formulas assume equal sample size n for cach group and will be modified
in Section 8.3 for unequal sample sizes. However, they suffice in their present
form to illustratc some general points about computational procedures in
analysis of variance.

We note that the second, subtracted term is the same in both sums of
squares. This term can be obtained by summing all the variates in the anova
(this is the grand total), squaring the sum, and dividing the result by the total
number of variates. It is comparable to the second term in the computational
formula for the ordinary sum of squares (Expression (3.8)). This term is often
called the correction term (abbreviated CT).

The first term for the total sum of squares is simple. I is the sum of all
squarcd variates tn the anova table. Thus the total sum of squares, which
describes the variation of a single unstructured sample of an items, is simply
the lamihar sum-of-squares formula of Expression (3.8).
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The first term of the sum of squares among groups is obtained by squaring
the sum of the items of each group, dividing each square by its sample size,
and summing the quotients {rom this operation for each group. Since the
sample size of each group is equal in the above formulas, we can first sum all
the squares of the group sums and then divide their sum by the constant n.

From the formula for the sum of squares among groups emerges an impor-
tant computational rule of analysis of variance: To find the sum of squares
amonyg any set of groups. square the sum of each group and divide by the sample
size of the group; sum the quotients of these operations and subtract from the sum
a correction term. To find this correction term, sum all the items in the set, square
the sum, and divide it by the number of items on which this sum is based.

8.2 Equal n

We shall illustrate a single-classification anova with equal sample sizes by a
Model I example. The computation up to and including the first test of signifi-
cance is identical for both models. Thus, the computation of Box 8.1 could also
serve for a Model Il anova with equal sample sizes.

The data are from an experiment in plant physiology. They are the lengths
in coded units of pea sections grown in tissue culture with auxin present. The
purpose of the experiment was to test the effects of the addition of various
sugars on growth as measured by length. Four experimental groups, represent-
ing three different sugars and one mixture of sugars, were used, plus one control
without sugar. Ten observations (replicates) were made for each trecatment. The
term “treatment” already impﬁes a Model 1 anova, Tt is obvious that the five
groups do not represent random samples from all possible experimental condi-
tions but were deliberately designed to testithe effects of certain sugars on the
growth rate. We arc interested in the effect of the sugars on length, and our null
hypothesis will be that there is no added component due to treatment effects
among the five groups; that is. the population means are all assumed to be equal.

The computation is illustrated in Box 8.1. After quantitics 1 through 7 have
been calculated, they are entered into an analysis-of-variance table, as shown
in the box. General formulas for such a table arc shown first; these arce followed
by a table filled in for the specific example. We note 4 degrees of freedom among
groups, there being five trcatments, and 45 df within groups. representing 5
times (10 — 1) degrees of freedom. We find that the mean square among groups
is considerably greater than the crror mean square, giving rise to a suspicion
that an added component duc to treatment effects is present. If the MS,, ., 1S
equal to or less than the MS, ;.. We do not bother going on with the analysts,
for we would not have evidence for the presence of an added component. You
may wonder how it could be possible for the MS, ., to be lcss than the
MS imin- YOu must remember that these two are independent estimates. If there
is no added component due to treatment or variance component among groups,
the estimate of the variance among groups is as likely to be less as it 1s to be
greater than the variance within groups.
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Expressions for the expected values of the mean squares are also shown
in the first anova table of Box 8.1. They are the expressions you learned in the
previous chapter for a Model 1 anova.

BOX 8.1
Single-classification anova with equal sample sizes.
The effect of the addition of different sugars on length, in ocular units

(x 0.114 = mm), of pea sections grown in tissue culture with auxin present: n = 10
{replications per group). This is a Model I anova.

Treatments {a = 5)

1% Glucose
2% 2% + 2%
Observations, Glucose Fructose 1% Fructose Sucrose
ie., replications Control added added added added
1 75 57 58 58 62
2 67 58 61 59 66
3 70 60 56 58 65
4 75 59 58 61 63
5 65 62 57 57 64
6 71 60 56 56 62
7 67 60 61 58 65
8 67 57 60 57 65
9 76 59 57 57 62
10 68 61 58 59 67
Z Y 701 593 582 580 641
v 70.1 59.3 58.2 58.0 64.1

Source: Data by W, Purves.
Preliminary computations

1. Grand total = 3" 3 ¥ = 701 + 593 + - - - + 641 = 3097
2. Sum of the squared observations

=3y

=752 4 67% + - - + 682 + 57% + - -+ + 677 = 193,151
3. Sum of the squared group totals divided by n

L n 2
= ‘,I;Z(Z Y) = 5(701% + 593% + - - - + 641%)
= $(1,929,055) = 192,905.50

4. Grand total squared and divided by total sample size = correction term

1 faa ) (3097 9,591,409
P = = = 191,828.18
cT an (Z ZY) 5% 10 50 8
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BOX 8.1
Continued

5, 5Sm = 2 2 Y2~ CT
= quantity 2 — quantity 4 = 193,151 — 191,828.18 = 1322.82

1 L3 " 2
6. SSyompe == (Z Y) ~CT
= quantity 3 — quantity 4 = 192,905.50 — 191,828.18 = 1077.32
7- stithiﬂ w5 SSmi - SS“

anps

= quantity 5 — quantity 6 = 1322.82 — 1077.32 = 245.50

The anova table is constructed as follows.
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Expected
Source of variation ar KA MS F, MS
. = 6 MS, n &
Y—Y Amonggroups a-—1 6 g g2 2
@1 MSpuw ° Ta-12°
Y-~ Y Within groups am—1) 7 T o?
- _an—1)
Y—-Y Total an—1 §

| .Substituting the computed values into the above table, we obtain the fol-
owing:

Anova table

Sowurce of variation df SS MS F,
Y- ¥ Among groups
(among treatments) 4 1077.32 269.33 49.33*#
Y ~ ¥ Within groups
~ (error, replicates) 45 245.50 546
Y—-Y Total 49 1322.82

F0.05(4,45] = 258 F0.01[4,45] = 377

* =001 < P <005
** = P 5001

These conventions will be followed throughout the text and will no longer be explained in subsequent
boxes and tables.

Conclusions. There is a highly significant (P « 0.01) added component due to
treatment effects in the mean square among groups (treatments), The different
sugar treatments clearly have a significant effect on growth of the pea sections.

See Sections 8.5 and 8.6 for the completion of a Model 1 analysis of variance:

that is, the method for determining which means are significantly different from
each other.
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It may seem that we are carrying an unnecessary number of digits in the
computations in Box 8.1. This is often necessary to ensure that the error sum
of squares, quantity 7, has sufficient accuracy.

Since v, is relatively large, the critical values of F have been computed by
harmonic interpolation in Table V (see footnote to Table 1II for harmonic
interpolation). The critical values have been given here only to present a com-
plete record of the analysis. Ordinarily. when confronted with this example, you
would not bother working out these values of F. Comparison of the observed
variance ratio F; = 49.33 with F; 4,440 = 3.83, the conservative critical value
(the next tabled F with fewer degrees of freedom), would convince you that the
null hypothesis should be rejected. The probability that the five groups differ as
much as they do by chance is almost infinitesimally small. Clearly, the sugars
produce an added treatment effect, apparently inhibiting growth and conse-
quently reducing the length of the pea sections.

At this stage we are not in a position to say whether each treatment is
different from every other treatment, or whether the sugars are different from the
control but not different from each other. Such tests are necessary to complete
a Model I analysis, but we defer their discussion until Sections 8.5 and 8.6.

8.3 Unegual n

This time we shall use a Model I1 analysis of variance for an example. Remember
that up to and including the F test for significance, the computations are exactly
the same whether the anova is based on Model 1 or Model 1. We shall point
out the stage in the computations at which there would be a divergence of
operations depending on the model.

The example is shown in Table 8.1. 1t concerns a serics of morphological
measurcments of the width of the scutum (dorsal shield) of samples of tick
larvae obtained from four different host individuals of the cottontail rabbit.
These four hosts were obtained at random from one locality. We know nothing
about thcir origins or their genctic constitution. They represent a random
sample of the population of host individuals from the given locality. We would
not be in a position to interpret differences between larvae from different hosts,
stnce we know nothing of the origins of the individual rabbits. Population
biologists arc nevertheless interested in such analyses because they provide an
answer to the following question: Are the variances of means of larval characters
among hosts greater than cxpected on the basis of variances of the characters
within hosts? We can calculate the average variance of width of larval scutum
on a host. This will be our “error”™ term in the analysis of variance. We then
test the obscerved mean square among groups and sce if it contains an added
component of variance. What would such an added component of variance
represent? The mean square within host individuals (that 1s, of larvae on any
one host) represents genetic differences among larvae and dilferences in environ-
mental experiences of these larvae. Added vaniance among hosts demonstrates
significant differentiation among the larvae possibly due to differences among

1y lhescte afFsrtivo ther laararanss Tt alem 9190 e Adviea $av o crentrind coe d i s rrvsrivive 3 1vs v 13 6y
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TABLE 8.1

Data and anova table for a single classification anova with unequal sample sizes. Width of scutum
(dorsal shield) of larvae of the tick Haemaphysalis leporispalustris in samples from 4 cottontail
rabbits. Measurements in microns. This is a Model II anova.

Hosts (a = 4)
] 2 3 4
380 350 354 376
376 356 360 344
360 358 362 342
368 376 352 372
372 338 366 374
366 342 372 360
374 366 362
382 350 344
344 342
364 358
351
348
n 348
Z Y 2978 3544 4619 2168
n; 8 10 13 6
2 y? 1,108,940 1,257,272 1,642,121 784,536
5? 54.21 142.04 79.56 233.07
Source: Data by P. A. Thomas.
Anova table
Source of variation df SS MS F
= )j’ Among groups (among hosts) 3 1808.7 602.6 5.26%*
Y — Y Within groups (error; among
larvae on a host) 33 3'{7&0 114.5
Y—Y Total 36 5586.7

Fo 053,33 = 2.89 Foois.a3 = 444

Conclusion. There is a significant (P < 0.01) added variance component among
hosts for width of scutum in larval ticks.

the larvae, should each host carry a family of ticks, or at least a population
whose individuals are more related to each other than they are to tick larvac
on other host individuals.

The emphasis in this cxample is on the magnitudes of the variances. In view
of the random choice of hosts this is a clear case of a Model Il anova. Because
this is a Model 11 anova, the mcans for each host have been omitted from
Table 8.1. We are not interested in the individual means or possible differences
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among them. A possible reason for looking at the means would be at the begin-
ning of the analysis. One might wish to look at the group means to spot outliers,
which might represent readings that for a variety of reasons could be in error.

The computation follows the outline furnished in Box 8.1, except that the
symbol Z” now needs to be written ™, since sample sizes differ for each group.
Steps 1, 2, and 4 through 7 are carried out as before. Only step 3 needs to be
modified appreciably. It is:

3. Sum of the squared group totals, each divided by its sample size,

a \2

1503 I~

e CoT8R (354
=X =Tt t

2168)?
+ (2168)° = 4,789,091

The critical 5% and 1% values of F are shown below the anova table in
Table 8.1 (2.89 and 4.44, respectively). You should confirm them for yourself
in Table V. Note that the argument v, = 33 is not given. You therefore have
to interpolate between arguments representing 30 to 40 degrees of frecdom,
respectively. The values shown were computed using harmonic interpolation.
However, again, it was not necessary to carry out such an interpolation. The
conservative value of F, F,; 305, 15 2.92 and 4.51, for « = 0.05 and « = 0.01,
respectively. The observed value F is 5.26, considerably above the interpolated
as well as the conservative value of Iy ;. We therefore reject the null hypothesis
(H,: 0% = 0) that there is no added variance component among groups and that
the two mean squares estimate the same variance, allowing a type | error of less
than 1%. We accept, instead, the alternative hypothesis of the cxistence of an
added variance component 3.

What is the biological meaning of this conclusion? For some reason, the
ticks on different host individuals differ more from cach other than do individual
ticks on any onc host. This may be due to some modifying influence of individ-
ual hosts on the ticks (biochemical differcnces in blood, differences in the skin,
differences in the environment of the host individual-—-all of them rather un-
likely in this case), or it may be due to genetic differences among the ticks.
Possibly the ticks on each host represent a sibship (that is, are descendants of a
single pair of parents) and the differences in the ticks among host individuals
represent genetic differences among families; or perhaps selection has acted dif-
ferently on the tick populations on each host, or the hosts have migrated to the
collection locality from diflerent geographic areas in which the ticks differ in
width of scutum. Of these various possibilitics, genetic differences among sib-
ships seem most rcasonable, in view of the biology of the organism.

The computations up to this point would have been identical in a Model 1
anova. If this had been Model I, the conclusion would have been that there
1s a significant treatment cflect rather than an added variance component. Now,
however, we must complete the computations appropriate to a Model 11 anova.
These will include the estimation of the added variance component and the
calculation of percentage variation at the two levels.
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Since sample size #; differs among groups in this example, we cannot write
6* + no for the expected M S o,p.- It is obvious that no single value of n would
be appropriate in the formula. We therefore use an average n; this, however,
is not simply 7, the arithmetic mean of the n/’s, but is

a
a ni2
a

I
e D )
n;

which is an average usually close to but always less than 7, unless sample sizes
are equal, in which case n, = 7. In this example,

(8.1)

82 4+ 102 + 132 4+ 62
8§+ 10+13+6

nozali [(84 10413 4+ 6) }—9.009

Since the Model IT expected MS,qu,. is 6 + no and the expected MS. ;0 1S
o2, it is obvious how the variance component among groups ¢4 and the error
variance o are obtained. Of course, the values that we obtain are sample esti-
mates and therefore are written as s3 and s, The added variance component s
is estimated as (MS, .. — MS.ia)/n. Whenever sample sizes are unequal, the
denominator becomes n,. In this example, (602.7 — 114.5)/9.009 = 54.190. We
are frequently not so much interested in the actual values of these variance com-
ponents as in their relative magnitudes. For this purpose we sum the compo-
nents and cxpress cach as a percentage of the resulting sum. Thus s + s3 =
114.5 + 54.190 == 168.690, and 57 and s are 67.97 and 32.1% of this sum, rc-
spectively; relatively more variation occurs within groups (larvac on a host)
than among groups (larvae on different hosts).

8.4 Two groups

A frequent test in statistics is to establish the significance of the difference
between two means. This can easily be done by means of an analysis of variance
Jor two groups. Box 8.2 shows this procedure for a Model T anova, the common
casce.

The example in Box 8.2 concerns the onsct of reproductive maturity
watcr fleas, Daphnia longispina. This is measured as the average age (in days)
at beginning of reproduction. Each variate in the table 1s in fact an average,
and a possible flaw in the analysis might be that the averages are not based
on equal sample sizes. However, we are not given this information and have
to proceed on the assumption that cach reading in the table s an cqually
rchable variate. The two series represent different genetic crosses, and the seven
replicates i caclt series are clones derived from the same genetic cross. This
cxample is clearly a Model Fanova, since the question to be answered 1s whether
series | differs from series 1 in average age at the beginning of reproduction.
Inspection of the data shows that the mean age at beginning of reproduction
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BOX 8.2
Testing the difference in means between two groups.

Average age (in days) at beginning of reproduction in Daphnia longispina {each
variate is a mean based on approximately similar numbers of females). Two series
derived from different genetic crosses and containing seven clones each are
compared; n = 7 clones per series. This is a Model I anova.

Series {a = 2)

I i1
72 8.8
7.1 75
9.1 7.7
72 7.6
73 74
12 6.7
15 72
Yy 52.6 529
¥ 7.5143 7.5571
yy? 398.28 402.23
s? 0.5047 0.4095

Source: Data by Ordway, from Banta (1939).
Single classification anova with two groups with equal sample sizes

Anova table

Source of variation df §S MS F,
¥ - Y Between groups (series) I 000643 000643 00141
Y — Y Within groups (error;
_ clones within series) 12 548571 045714
Y-Y Total 13 549214

F0.05(l.12] =475

Conclusions.  Since F, « Fg o501 125 the null hypothesis is accepted. The means
of the two series are not significantly different; that is, the two series do not differ
in average age at beginning of reproduction.

A t test of the hypothesis that two sample means come from a population with
equal p; also confidence limits of the difference between two means

This test assumes that the variances in the populations from which the two
samples were taken are identical. If in doubt about this hypothesis, test by method
of Box 7.1, Section 7.3.

169
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BOX 8.2
Continued

The appropriate formula for ¢, is one of the following:

Expression (8.2), when sample sizes are unequal and n; or n, or both sample
sizes are small (< 30): df = n, + ny, — 2

Expression (8.3), when sample sizes are identical (regardless of size): df =
2n—1)

Expression (8.4), when n, and n, are unequal but both are large (> 30 df =
ny + ny — 2

For the present data, since sample sizes are equal, we choose Expression (8.3):

_ (V, — ¥o) — (u; — ty)

l;
L
;(51"'52)

We are testing the null hypothesis that s, — u, = 0. Therefore we replace this
quantity by zero in this example. Then

75143 - 7.5571  —00428  —0.0428 _
J0.5047 + 04095)/7 J0.9142/7 03614

The degrees of freedom for this example are 2(n — 1) =2 x 6 = 12: The criti-
cal value of tg 51,2 = 2.179. Since the absolute value of our observed 1, is less than
the critical t value, the means are found to be not significantly different, which is
the same result as was obtained by the anova.

—0.1184

Confidence limits of the difference between two means
Ly, = (¥, = V) =ty -1,
L,= (Y, - ¥)+ LapiS7, - 12

In this case ¥, — ¥, = —0.0428, 15 4512) = 2179, and sy, _y, = 0.3614, as com-
puted earlier for the denominator of the ¢ test. Therefore

L, = —0.0428 — (2.179)(0.3614) = —0.8303
L, = —00428 + (2.179)(0.3614) = 0.7447

The 95% confidence limits contain_the zero point (no difference), as was to be
expected, since the difference Y, — Y, was found to be not significant.
-

is very similar for the two serics. 1t would surprise us, therefore, to find that
they are significantly dilferent. However, we shall carry out a test anyway. As
you realize by now, one cannot telt from the magnitude of a differcnce whether
it is significant. This depends on the magnitude of the error mean square, rep-
resenting the variance within series.

The computations for the analysis of variance are not shown. They would
he the same as in Box 8.1. With cqual sample sizes and only two groups, there
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is one further computational shortcut. Quantity 6. SS,,,,,,, can be directly com-
puted by the following simple formula:

n n 2
SS (Z o2 Y2> (526 = 3297 _ 00643
groups 2n 14 ‘

There is only [ degree of freedom between the two groups. The critical value of
Fo.0511.121 1s given underneath the anova table, but it is really not necessary to
consult it. Inspection of the mean squares in the anova shows that MS, ..
is much smaller than MS,,,;., therefore the value of F, is far below unity,
and there cannot possibly be an added component due to treatment effects
between the series. In cases where M S, 00 < MSyinia» W€ do not usually bother
to calculate F,, because the analysis of variance could not possibly be sig-
nificant.

There is another method of solving a Model I two-sample analysis of vari-
ance. This is a t rest of the differences between two means. This t test is the
traditional method of solving such a problem; it may already be familiar to you
from previous acquaintance with statistical work. It has no real advantage in
either ease of computation or understanding, and as you will see, it is mathe-
matically equivalent to the anova in Box 8.2. It is presented here mainly for
the sake of completeness. It would seem too much of a break with tradition
not to have the t test in a biostatistics text.

In Section 6.4 we learned about the t distribution and saw that a t dis-
tribution of n — 1 degree of freedom could be obtained from a distribution of
the term (Y, — p)/sy . where sy_has n — 1 degrees of freedom and Y is normally
distributed. The numerator of this term represents a deviation of a sample mean
from a parametric mean, and the denominator represents a standard error for
such a deviation. We now learn that the expression

(= (Y, — %) — (1, — 1) , (8.2)

(ny = Vst + (ny — s} | (ny + my
n,+n,—2 nyn,

1s also distributed as 1. Expression (8.2) looks complicated, but it really has
the same structure as the simpler term for r. The numerator is a deviation,
this time, not between a single sample mean and the parametric mean, but
between a single difference between two sample means, Y, and Y,, and the
truc difference between the means of the populations represented by these
means. In a test of this sort our null hypothesis 1s that the two samples come
from the same population; that is, they must have the same parametric mean.
Thus, the difference u, - p, is assumed (0 be zero. We therefore test the devia-
tion of the difference Y, — Y, from zero. The denominator of Expression (8.2)
18 a standard error, the standard error of the difference between two means
sy, 7, Uhe left portion of the expression, which is in square brackets, is a
weighted average of the variances of the two samples. s? and s%. comnuted
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in the manner of Section 7.1. The right term of the standard error is the com-
putationally easier form of (1/n;) + (1/n,), which is the factor by which the
average variance within groups must be multiplied in order to convert it into
a variance of the difference of means. The analogy with the multiplication of
a sample variance s* by 1/n to transform it into a variance of a mean s% should
be obvious.

The test as outlined here assumes equal variances in the two populations
sampled. This is also an assumption of the analyses of variance carried out so
far, although we have not stressed this. With only two variances, equality may
be tested by the procedure in Box 7.1.

When sample sizes are equal in a two-sample test, Expression (8.2) simplifies
to the expression

Y—-Y,) - — U,
L, :( 1 5) — (g — 1) (8.3)

|
;(Sf + 83)

which is what is applied in the present example in Box 8.2. When the sample
s1zes are unequal but rather large, so that the differences between n; and n; — |
are relatively trivial, Expression (8.2) reduces to the simpler form

= “71 - Y’z) — (i — uy)

R 1
st 53
. + =
n, n

The simplification of Expression (8.2) to Expressions (8.3} and (8.4} is shown in
Appendix A1.3. The pertinent degrees of freedom for Expressions (8.2) and (8.4)
are n; + n, - 2, and for Expression (8.3) df is 2(n — 1).

The test of significance for differences between means using the 1 test is
§h(>w11 in Box 8.2. This is a two-tailed test because our alternative hypothesis
18 H gy # g5 The results of this test are identical to thosc of the anova in the
same box: the two means are not significantly diffcrent. We can demonstrate
this mathematical cquivalence by squaring the value for 1,. The result should
be identical to the F, valuc of the corresponding analysis of variance. Since
t= —0.1184 in Box 8.2, {2 = 0.0140. Within rounding error, this is equal to
the F, obtained in the anova (F, = 0.0141). Why is this so? We learned that
tiyy = (Y — 10)/sy. where v is the degrees of freedom of the variance of the mean
sys therefore 1) = (Y — )?/s?. However, this expression can be regarded as a
variance ratio. The denominator is clearly a variance with v degrees of freedom.
The numerator is also a variance. It is a single deviation squared, which
represents a sum of squares possessing | rather than zero degrees of freedom
(since it is a deviation from the truc mean g rather than a sample mean). A
sum ol squares based on | degree of freedom is at the same time a variance.
Thus, (% is a variance ratio, since 1= Fiy v as we have scen. In Appendix
AT4 we demonstrate algebraically that the 2 and the I, value obtained in
Box 8.2 arc identical quantitics. Since t approaches the normal distribution as

(8.4)

8.5 / COMPARISONS AMONG MEANS: PLANNED COMPARISONS 173

the square of the normal deviate as v — co. We also know (from Section 7.2)
that x{,,)/vy = F|,,.)- Therefore, when v, = 1 and v, = o0, yfi; = F1,0) = 10
(this can be demonstrated from Tables 1V, V, and 111, respectively):

1(2).05“] == 3841
Fo.osn,x) =384
t0_05[1,] = 1960 18‘05[30] = 38416

The ¢ test for differences between two means is useful when we wish to set
confidence limits to such a difference. Box 8.2 shows how to calculate 95%
confidence limits to the difference between the series means in the Daphnia
example. The appropriate standard error and degrees of freedom depend on
whether Expression (8.2), (8.3), or (8.4) is chosen for ¢t,. It does not surprise us
to find that the confidence limits of the difference in this case enclose the value
of zero, ranging from —0.8303 to +0.7447. This must be so when a difference
is found to be not significantly different from zero. We can interpret this by
saying that we cannot exclude zero as the true value of the difference between
the means of the two series.

Another instance when you might prefer to compute the ¢ test for differences
between two means rather than use analysis of variance is when you are lacking
the original variates and have only published means and standard errors avail-
able for the statistical test. Such an example is furnished in Exercise 8.4.

8.5 Comparisons among means: Planned comparisons

We have seen that after the initial significance test, a Model 1T analysis of
variance 1s completed by cstimation of the added variance components. We
usually complete a Model 1 anova of more than two groups by examining the
data in greater detail, testing which means are different from which other ones
or which groups of means are dillerent from other such groups or from singlc
means. Let us look again at the Model T anovas treated so far in this chapter.
We can disposc right away of the two-sample casce in Box 8.2, the average age
of water flcas at beginning of reproduction. As you will recall, there was no
significant difference in age between the two genctic series. Bul even il there
had been such a difference, no further tests are possible. However, the data on
length of pea sections given in Box 8.1 show a significant difference among the
five treatments (based on 4 degrees of freedom). Although we know that the
means are not all equal, we do not know which ones differ lrom which other
ones. This leads us to the subject of tests among pairs and groups of mcans.
Thus, for example, we might test the control against the 4 experimental treat-
ments representing added sugars. The question 1o be tested would be, Does the
addition of sugars have an ¢flect on length of pea sections? We might also test
for differences among the sugar treatments. A reasonable test might be pure
sugars (glucose, fructose, and sucrose) versus the mixed sugar treatment (1%
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An important point about such tests is that they are designed and chosen
independently of the results of the experiment. They should be planned before
the experiment has been carried out and the results obtained. Such comparisons
are called planned or a priori comparisons. Such tests are applied regardless of
the results of the preliminary overall anova. By contrast, after the experiment
has been carried out, we might wish to compare certain means that we notice
to be markedly different. For instance, sucrose, with a mean of 64.1, appears
to have had less of a growth-inhibiting effect than fructose, with a mean of 58.2.
We might therefore wish to test whether there is in fact a significant difference
between the effects of fructose and sucrose. Such comparisons, which suggest
themselves as a result of the completed experiment, are called unplanned or a
posteriori comparisons. These tests are performed only if the preliminary overall
anova is significant. They include tests of the comparisons between all possible
pairs of means. When there are a means, there can, of course, be a(a — 1)/2
possible comparisons between pairs of means. The reason we make this distinc-
tion between a prior: and a posteriori comparisons is that the tests of signifi-
cance appropriate for the two comparisons are different. A simple example will
show why this is so.

Let us assume we have sampled from an approximately normal population
of heights on men. We have computed their mean and standard deviation. If
we sample two men at a time from this population, we can predict the dif-
ference between them on the basis of ordinary statistical theory. Some men will
be very similar, others relatively very different. Their differences will be distrib-
uted normally with a mean of 0 and an expected variance of 262, for reasons
that will be learned in Section 12.2. Thus, if we obtain a large difference between
two randomly sampled men, it will have to be a sufficient number of standard
deviations greater than zero for us to reject our null hypothesis that the two
men come from the specified population. If, on the other hand, we were to look
at the heights of the men before sampling them and then take pairs of men
who seemed to be very different from cach other, it 1s obvious that we would
repeatedly obtain differences within pairs of men that were several standard
deviations apart. Such differences would be outliers in the expected frequency
distributon of differences, and time and again we would reject our null hy-
pothesis when in fact 1t was true. The men would be sampled from the same
population, but becausc they were not being sampled at random but being
inspected before being sampled, the probability distribution on which our
hypothests testing rested would no longer be vahd. 1t is obvious that the tails
in a large sample from a normal distribution will be anywhere from 5 to 7
standard deviations apart. If we deliberately take individuals from each tail and
compare them, they will appear to be hghly significantly different from each
other, according to the methods described in the present section, even though
they belong to the same population.

When we compare means differing greatly from each other as the result of
some treatment in the analysis of vartance, we are doing exactly the same thing
as taking the tallest and the shortest men from the frequency distribution of
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heights. If we wish to know whether these are significantly different from each
other, we cannot use the ordinary probability distribution on which the analysis
of variance rests, but we have to use special tests of significance. These un-
planned tests will be discussed in the next section. The present section concerns
itself with the carrying out of those comparisions planned before the execution
of the experiment.

The general rule for making a planned comparison is extremely simple; it
is related to the rule for obtaining the sum of squares for any set of groups
(discussed at the end of Section 8.1). To compare k groups of any size n;. take
the sum of each group, square it, divide the result by the sample size n;, and
sum the k quotients so obtained. From the sum of these quotients, subtract a
correction term, which you determine by taking the grand sum of all the groups
in this comparison, squaring it, and dividing the result by the number of items
in the grand sum. If the comparison includes all the groups in the anova, the
correction term will be the main CT of the study. If, however, the comparison
includes only some of the groups of the anova, the CT will be dilferent, being
restricted only to these groups.

These rules can best be learned by means of an example. Table 8.2 lists the
means, group sums, and sample sizes of the experiment with the pea sections
from Box 8.1. You will recall that there were highly significant differences among
the groups. We now wish 1o test whether the mean of the control differs from
that of the four treatments representing addition of sugar. There will thus be two
groups, one the control group and the other the “sugars” groups, the latter with
a sum of 2396 and a sample size of 40. We thercfore compute

SS (control versus sugars)

(701)* (593 -+ 582 + 580 + 641)* (701 4593 + 4582 + 580 + 641)?

= . - 4 s T
10 40 50
2 b} 2 2
_qonT G967 (09NT _ah 5y
10 40 50

In this case Lhe correction term is the same as for the anova, because it involves
all the groups of the study. The result is a sum of squarcs for the comparison

TABLY. 8.2
Means, group sums, and sample sizes from the data in Box 8.1. Length of pea sections grown in
tissue culture (in ocular units).

1" glucose
Ra 2% + 2"
Control ylcose Sfructose 17 fructose SUCrose L
% 70.1 59.3 58.2 58.0 64.1 (61.94 = ¥)
Z": Y 701 593 582 580 641 3097
n 10 10 10 10 10 50
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between these two groups. Since a comparison between two groups has only .1
degree of freedom, the sum of squares is at the same time a mean squarg. This
mean square is tested over the error mean square of the anova to give the
following comparison:

_ MS (control versus sugars) _ 832.32 15244
: MSwilhin 546

Fo.05[1,45] = 4.05, Fo.01[1.45] =7.23

This comparison is highly significant, showing that the additions of sugars have

significantly retarded the growth of the pea sections,. . .
Next we test whether the mixture of sugars is significantly different from
the pure sugars. Using the same technique, we calculate

SS (mixed sugars versus pure sugars)

_(SBOF (5934582 + 641)° (593 + 582 + 580 + 641)°

0 T 30 T w
2 2 b 2
= @ + {_l_?l_@ — ("39,6,), = 48.13
10 30 40

Here the CT is different, since it is based on the sum of the sugars only. The
appropriate test statistic is

MS (mixed sugars versus pure sugars)  48.13

F o= = - = 8.82
* MSwilhin 546
This is significant in view of the critical values of Fy 45 given in the preceding
paragraph.

A final test is among the three sugars. This mean squarc has 2 degrees
of freedom. since it is based on three means. Thus we compule

2 2 | 2 16 2
(5937 (582 + (041" (1816 50 es

S$S (among pure sugars) = 0 + m m 30

SS (among pure sugars)  196.87
MS (among pure sugars) = — -~ e

i = 98.433
df 2

MS (among pure sugars) ‘)8.4}3

= : ~ 1803
' M yunin 5.46

This F, is highly significant, since even Fo gio00 = S8 .

We conclude that the addition of the three sugars retards growth in the pea
sections. that mixed sugars affect the sections differently from pure sugars, and
that the pure sugars are significantly different among themselves, pmhubly'bcv
cause the sucrose has a far higher mean. We cannot test the sucrose against
the other two. because that would be an unplanned test. which suggests itsell
to us after we have looked at the resufts. To carry out such a test, we need the

otlhodde of the nex! <ection.
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Our a priori tests might have been quite different, depending entirely on our
initial hypotheses. Thus, we could have tested control versus sugars initially,
followed by disaccharides (sucrose) versus monosaccharides (glucose, fructose,
glucose + fructose), followed by mixed versus pure monosaccharides and finally
by glucose versus fructose.

The pattern and number of planned tests are determined by one’s hypoth-
eses about the data. However, there are certain restrictions. It would clearly
be a misuse of statistical methods to decide a priori that one wished to com-
pare every mean against every other mean (a(a — 1)/2 comparisons). For a
groups, the sum of the degrees of freedom of the separate planned tests should
not exceed a — 1. In addition, it is desirable to structure the tests in such a
way that each one tests an independent relationship among the means (as was
done in the example above). For example, we would prefer not to test if means
1, 2, and 3 differed if we had alrcady found that mean 1 differed from mean 3,
since significance of the latter suggests significance of the former.

Since these tests are independent, the three sums of squares we have so far
obtained, based on 1, 1, and 2 df, respectively, together add up to the sum of
squares among treatments of the original analysis of variance based on 4 de-
grees of freedom. Thus:

df
SS (control versus sugars) = 832.32 l
SS (mixed versus pure sugars) =  48.13 l
SS (among purc sugars) = 19687 2
SS (among trcatments) = 1077.32 4

This agam tllustrates the clegance of analysis of variance. The treatment sums
of squares can be decomposed into separate parts that are sums of squares
in their own right, with degrees of freedom pertaining to them. One sum of
squares measures the difference between the controls and the sugars, the second
that between the mixed sugars and the pure sugars, and the third the remaining
variation among the three sugars. We can present all of these results as an
anova table, as shown in Table 8.3.

TARLE 8.3

Anova table from Box 8.1, with (reatment sum of squares decomposed into
planned comparisons.

Sowrce of variation df 58 MS F,
Treatments 4 1077.32 269.33 49.33**
Control vs. sugars 1 832.32 832.32 152.44%*
Mixed vs. pure sugars 1 48.13 48.13 It S
Among pure sugars 2 196.87 98.43 18.03**
Within 45 245.50 5.46
Total 49 132282
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When the planned comparisons are not independent, and when the number
of comparisons planned is less than the total number of comparisons possible
between all pairs of means, which 1s ala — 1)/2, we carry out the tests as just
shown but we adjust the critical values of the type 1 error o. In comparisons
that arc not indcpendent, if the outcome of a single comparison is significant,
the outcomes of subsequent comparisons are more likely to be significant as
well, so that decisions based on conventional Jevels of significance might be in
doubt. For this rcason, we employ a conscrvative approach, lowering the type
I error of the statistic of significance for ¢ach comparison so that the proba-
bility of making any type I error at all in the entire series of tests does not
exceed a predetermined value x. This value is called the experimentwise error
rate. Assuming that the investigator plans a number of comparisons, adding
up to k degrees of freedom, the appropriate critical values will be obtained if
the probability o' is used for any one comparison, where

The approach using this relation 1s called the Bonferroni method; it assures us
of an cxperimentwise error rate < .

Applying this approach to the pea section data, as discussed above, let us
assume that the investigator has good reason to test the following comparisons
between and among treatments, given here in abbreviated form: (C) versus (G,
F. S, G+ Fy (G, F. S) versus (G + F): and (G) versus (F) versus (S); as well
as (G, F) versus (G + F). The S degrees of freedom in these tests require that
cach individual test be adjusted to a significance level of

2 005

= 001
k 5

for an cxperimentwise critical o« = 005 Thus, the critical value for the F ratios
of these comparisons s Fo g1y .555 07 Fooyy2.45) @8 appropriate. The first three
tests are carried out as shown above. The last test is computed in a similar
manner:

average of glucose and (593 + 582)° (5807 (593 + 582 + 580)2
58| fructose vs. glucose | = — A o

and fructose mixed 20 10 30

(179 (580 (1755)°

AL WA
20 10 30

In spite of the change in critical value, the conclusions concerning the
first three tests are unchanged. The fast test, the average of glucose and fructose
versus a mixture of the two, is not significant, since F, = ¥77 - 0.687. Adjust-
ing the critical value 1s a conservative procedure: individual comparisons using
this approach arce less likely to be sigmficant.
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The Bonferroni method generally will not employ the standard, tabled
arguments of a for the F distribution. Thus, if we were to plan tests involving
altogether 6 degrees of freedom, the value of o’ would be 0.0083. Exact tables
for Bonferroni critical values are available for the special case of single degree
of freedom tests. Alternatively, we can compute the desired critical value by
means of a computer program. A conservative alternative is to use the next
smaller tabled value of a. For details, consult Sokal and Rohlf (1981), section 9.6.

The Bonferroni method (or a more recent refinement, the Dunn-Sidak
method) should also be employed when you are reporting confidence limits for
more than one group mean resulting from an analysis of variance. Thus, if you
wanted to publish the means and 1 — a confidence limits of all five treatments
in the pea section example, you would not set confidence limits to each mean
as though it were an independent sample, but you would employ t,.,;, where
v is the degrees of freedom of the entire study and o' is the adjusted type I error
explained carlier. Details of such a procedure can be learned in Sokal and
Rohlf (1981}, Section 14.10.

8.6 Comparisons among means: Unplanned comparisons

A single-classification anova is said to be significant if

MSoums !
MSVM("IP? 2 Fxlu 1,a(n- 1)) (85)
within
Since M S, qups/ MSuwitnin = SSgroups/L{@ — 1) MS inin |» We can rewrite Expression
(8.5) as

SSgruups = (a - I] MS“ilhin 1,'11“ laa(n 1) (86)

For example, in Box 8.1, where the anova is significant, S8, = 1077.32. Sub-
stituting into Expression (8.0), we obtain

1077.32 > (5 — 1)(5.46)(2.58) = 56.35 for o = 0.05

It is therefore possible 1o compute a eritical 88 value or a test ol significance
of an anova. Thus, another way of calculating overall significance would be to
see whether the S8, 18 greater than this critical SS. 1t is ol interest Lo inves-
tigate why the 88, 18 as large as it is and to test for the significance of
the various contribulions made to this SS by differences among the sample
means. This was discussed in the previous scction, where scparate sums of
squares were computed based on comparisons among means planned belore
the data were examined. A comparison was called significant if its F| ratio was
> e 1ian 1y Where kis the number of means being compared. We can now
also state this in terms of sums of squares: An SS is significant if 1t 1s greater
than (k - 1) MSyimin Fax 1an 1

The above tests were a priori comparisons. One procedure for testing a
posteriori comparisons would be to set k = a in this last formula, no matter
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how many means we compare; thus the critical value of the SS will be larger
than in the previous method, making it more difficult to demonstrate the sig-
nificance of a sample SS. Setting k = a allows for the fact that we choose for
testing those differences between group means that appear to be contributing
substantially to the significance of the overall anova.

For an example, let us return to the effects of sugars on growth in pea
sections (Box 8.1). We write down the means in ascending order of magnitude:
58.0 (glucose + fructose), 58.2 (fructose), 59.3 (glucose), 64.1 (sucrose), 70.1
(control). We notice that the first three treatments have quite similar means and
suspect that they do not differ significantly among themselves and hence do not
contribute substantially to the significance of the S5,

To test this, we compute the SS among these three means by the usual
formula:

(593)% + (582)* + (580) (593 + 582 + 5§(&f
10 3(10)

= 102,677.3 — 102,667.5 = 9.8

SS

The differences among these means are not significant, because this SS is less
than the critical S§ (56.35) calculated above.

The sucrose mean looks suspictously different from the means of the other
sugars. To test this we compute

C(641)2 (593 + 582 4 580)7 (641 + 593 + 582 + 580)°

0t 30 10 + 30
~ 410881 + 102.667.5 — 143.520.4 = 2352

S§

which is greater than the critical SS. We conclude, therefore, that sucrose re-
tards growth significantly less than the other sugars tested. We may continue
in this fashion, testing all the differences that look suspicious or ¢ven testing
all possible sets of means. considering them 2, 3, 4, and 5 at a time. This latter
approach may require a computer if there are more than 5 means to be com-
parcd, since there are very many possible tests that could be made. This
procedure was proposed by Gabriel (1964), who called it a sum of squares simul-
taneous test procedure (SS-STP).

In the SS-STP and in the original anova, the chance of making any type |
error at all i1s o, the probability selected for the critical F value from Table V.
By “making any type L error at all” we mean making such an error in the overall
test of significance of the anova and in any of the subsidiary comparisons among
mcans or scts of means needed to complete the analysis of the experiment. This
probability « therefore is an experimentwise error rate. Note that though the
probability of any error at all is %, the probability of error for any particular
test of some subset, such as a test of the difference among three or between two
means, will always be less than . Thus, for the test of each subset one is really
using a significance level 2, which may be much less than the experimentwise

EXERCISES Ry

a, and if there are many means in the anova, this actual error rate o’ may be
one-tenth, one one-hundredth, or even one one-thousandth of the experiment-
wise « (Gabriel, 1964). For this reason, the unplanned tests discussed above
and the overall anova are not very sensitive to differences between individual
means or differences within small subsets. Obviously, not many differences are
going to be considered significant if o’ is minute. This is the price we pay for
not planning our comparisons before we examine the data: if we were to make
planned tests, the error rate of each would be greater, hence less conservative.

The SS-STP procedure is only one of numerous techniques for multiple
unplanned comparisons. It is the most conservative, since it allows a large
number of possible comparisons. Differences shown to be significant by this
method can be reliably reported as significant differences. However, more sen-
sitive and powerful comparisons exist when the number of possible comparisons
is circumscribed by the user. This is a complex subject, to which a more complete
introduction is given in Sokal and Rohlf (1981), Section 9.7.

Exercises

8.1 The following is an example with easy numbers to help you become familiar
with the analysis of variance. A plant ecologist wishes to test the hypothesis
that the height of plant species X depends on the type of soil it grows in. He has
measured the height of three plants in each of four plots representing different
soil types, all four plots being contained in an area of two miles square. His
results are tabulated below. (Height is given in centimeters.) Does your anal-
ysis support this hypothesis? ANS. Yes, since F,= 6951 is larger than
Foosam = 4.07.

Obscrvation Locdlities
number / 2 3 4
| 15 25 17 10
2 9 21 23 13
3 14 19 20 16
8.2 The following are measurements (in coded micrometer units) of the thorax length

of the aphid Pemphigus populitransversus. The aphids were collected in 28 galls
on the cottonwood Populas deltoides. Four alate (winged) aphids were randomly
selected from each gall and measured. The alate aphids of cach gall are isogenic
(identical twins), being descended parthenogenetically from one stem mother.
Thus, any variance within galls can be due to environment only. Variance be-
tween galls may be due to differences in genotype and also to environmental
dilferences between galls. If this character, thorax length, is allected by genctic
variation, significant intergall variance must be present. 'The converse ts not nec-
essarily true: significant variance between galls need not indicate genetic varia-
tion; it could as well be due to environmental differences between galls (data by
Sokal, 1952). Analyze the variance of thorax length. Is there significant mtergall
variance present? Give estimates of the added component of intergall varnance,
il present. What percentage of the variance is controlled by intragall and what
pereentage by intergall factors? Discuss your results.
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Gall no. Gall no.
1. 6.1, 60, 57, 60 15. 63, 65 61, 63
2. 6.2, 51, 6.1. 53 16. 59, 6.1, 61, 60
3. 62, 62, 53, 63 17. 58, 60, 59, 5.7
4, 5.1, 60, 58, 59 18. 6.5, 6.3, 6.5 70
5. 44, 49, 47, 48 19. 59, 52, 57, 57
6. 57, 51, 58, 55 20. 52, 53, 54, 53
7. 6.3, 6.6, 64. 63 21. 54, 55, 52, 63
8. 4.5, 4.5, 40, 3.7 22. 4.3, 4.7, 45, 44
9. 63, 62, 59, 62 23. 6.0, 58, 57, 59
10. 54, 53, 50, 53 24, 5.5 6.1, 55 6.1
11. 59, 58, 63, 57 25. 40, 42, 43, 44
12. 59, 59, 55, 55 26. 58, 5.6, 56, 6.1
13. 58, 59, 54, 55 27. 43, 40, 44, 4.6
14. 5.6, 64, 64, 6.1 28. 6.1, 6.0, 56, 6.5

Millis and Seng (1954) published a study on the relation of birth order to the
birth weights ol infants. The data below on first-born and eighth-born infants are
extracted from a table of birth weights ol male infants of Chinese third-class
patients at the Kandang Kerbau Maternity Hospital in Singapore in 1950 and
1951.

Birth weight Birth order
(lh:oz) ! 8
3:0 3.7 -
3:8 3:15 2
4:0 4: 3
4:8-4:15 7 4
5:0 5.7 It 5
5:8 5:15 267 19
6:0-6:7 457 52
6:8 6:15 485 55
7:0 7:7 363 61
7:8 7:15 162 48
8:0 8:7 64 39
8:8 ¥:15 6 19
9:0 9:7 5 4
9:8 9:15
10:0 10:7 |
10:8 10:15

1932 307

Which birth order appears to be accompanied by heavier infants? Is this differ-
ence significant? Can you conclude that birth order causes differences in birth
wetght? (Computational note: The variable should be coded as simply as pos-
sible.) Reanalyze, using the 1 test, and verify that t2 = F_. ANS. 1, = 11.016 and
F,o= 121.352

The following cytochrome oxidase assessments of male Periplaneta roaches in
cubtc millimeters per ten minutes per milligram were taken from a larger study
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n y_ Sy

24 hours after
methoxychlor injection
Control

wn

2438 0.9
19.7 1.4

L8]

Are the two means significantly different?

P. E. Hunter (1959. detailed data unpublished) selected two strains of D. melano-
gaster, one for short larval period (SL) and one for long farval period (LL). A
nonselected control strain (CS) was also maintained. At generation 42 these data
were obtained for the larval period (measured in hours). Analyze and interpret.

Strain
SL CS LL
n; 80 69 33

n; 3 n
SY 8070 7291 3640 35 ¥? = 1,994,650

Note that part of the computation has already been performed for you. Perform
unplanned tests among the three means (short vs. long larval periods and cach
against the control). Set 95% confidence limits to the observed differences of
means for which these comparisons are made. ANS. MSi . (1, = 2076.6697.
These data are measurements of live random samples of domestic pigeons col-
lected during January, I'cbruary, and March in Chicago in 1955, The variable
is the length from the anterior end of the narial opening to the tip of the bony
beak and is recorded in millimeters. Data [rom Olson and Miller (1958)

Samples
/ 2 3 4 3

54 52 5.5 5.1 5.1
5.3 5.1 4.7 4.6 5.5
5.2 4.7 4.8 5.4 5.9
4.5 5.0 49 5.5 6.1

5.0 59 5.9 5.2 5.2
5.4 53 5.2 5.0 5.0
38 6.0 48 4.8 59
59 5.2 4.9 5.1 5.0
5.4 6.6 6.4 4.4 4.9
5.1 5.0 5.1 6.5 5.3
54 S 5.1 4.8 5.3
4.1 57 4.5 4.9 S
5.2 5 5.3 6.0 4.9
48 4.7 4.8 4.8 5.8
4.6 6.5 53 5.7 5.0
5.7 51 54 5.5 5.6
59 54 49 5K 6.l
5.8 58 4.7 5.6 5.
50 5.8 48 5.5 4.8
5.0 5.9 5.0 5.0 4.9
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The following data were taken from a study of blood protein variations in deer
(Cowan and Johnston, 1962). The variable is the mobility of serum protein {rac-
tion 11 expressed as 10~ ° cm?/volt-seconds.

Y SY
Sitka 2.8 0.07
California blacktail 2.5 0.05
Vancouver Island blacktail 2.9 0.05
Mule deer 2.5 0.05
Whitetail 28 0.07

n = 12 for each mean. Perform an analysis of variance and a multiple-comparison
test, gsir.]g the sums of squares STP procedure. ANS. MS,imin = 0.0416; maximal
nonsignificant sets (at P = 0.05) are samples 1, 3, 5 and 2, 4 (numbered in the
order given).

For the data from Exercise 7.3 use the Bonferroni method to test for differences
between the following 5 pairs of treatment means:

A, B

A, C
A, D
A.(B + C + D)3
B,(C + D)/2

»

CHAPTER 9

Two-Way Analysis
of Variance

From the single-classification anova of Chapter 8 we progress to the two-way
anova of the present chapter by a single logical step. Individual items may be
grouped into classes representing the different possible combinations of two
treatments or factors. Thus, the housefly wing lengths studied in earlicr chapters,
which yielded samples representing different medium formulations, might also
be divided into males and females. Suppose we wanted to know not only whether
medium [ induced a different wing length than medium 2 but also whether
male houseflies differed in wing length from females. Obviously, each combi-
nation ol factors should be represented by a sample of flies. Thus, for seven
media and two sexes we necd at least 7 x 2 = 14 samples. Similarly, the ex-
periment testing five sugar treatments on pea sections (Box 8.1) might have
been carried out at three different temperatures. This would have resulted in a
two-way analysis of variance of the effects of sugars as well as of temperatures.

It is the assumption of this two-way method of anova that a given temper-
ature and a given sugar each contribute a certain amount to the growth of a pea
section, and that these two contributions add their effects without influencing
cach other. In Section 9.1 we shall see how departures from the assumption
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are measured; we shall also consider the expression for decomposing variates
i a two-way anova.

The two factors in the present design may represent either Model T or
Model II effects or one of each, in which case we talk of a mixed model.

The computation of a two-way anova for replicated subclasses (more than
one variate per subclass or factor combination) is shown in Section 9.1, which
also contains a discussion of the meaning of interaction as used in statistics.
Significance testing in a two-way anova is the subject of Section 9.2. This is
followed by Section 9.3, on two-way anova without replication, or with only a
singlc variate per subclass. The well-known method of paired comparisons is a
special casc of a two-way anova without replication.

We will now proceed to illustrate the computation of a two-way anova.

You will obtain closer insight into the structure of this design as we explain
the computations.

nd salinity (n = 8).

9.1 Two-way anova with replication

We illustrate the computation of a two-way anova in a study of oxygen con-
sumption by two species of limpets at three concentrations of seawater. Eight
replicate readings were obtained for cach combination of species and seawater

Acmaea scabra and A. digitalis, at three concentrations of seawater. The variable
replicates per combination of species a

concentration. We have continued to call the number of columns «, and are 'Eb

calling thc number of rows b. The sample size for each cell (row and column ‘f

combination) of the table is n. The cells are also called subgroups or subclasses. 5 N & 8 &
The data are featured in Box 9.1. The computational steps labeled Pre- g N g S § ;6

liminary computations provide an cfficient procedure for the analysis of variance, =

but we shall undertake several digressions to ensure that the concepts under- U ol < o ot o seee

lying this design arc appreciated by the reader. We commence by considering é‘é&: '_"‘é o § § = 2 3 i = e 3 SeD 3 <

the six subclasses as though they were six groups in a single-classification anova. é:” g AR - € T e &

Fach subgroup or subclass represents ecight oxygen consumpliqn rcadingsr If =8 g § t2g9 I, Srg b en oo 28 (-~

we had no further classification of these six subgroups by species or salinity, 3§ g E|SRITINIIZEN QIIEH

such an anova would (est whether there was any variation among the six sub- 25 wa < - - -

groups over and above the variance within the subgroups. But since we have the §.§ ; é,‘/

subdivision by species and salinity. our only purpose here is to compute some 3 2z g _g ] § §§ N ri i §§ S §§§§ a ES

quantitics necessary for the further analysis. Steps 1 through 3 in Box 9.1 cor- £ % 8 & S| ®== I~ - g "5 § o

respond to the identical steps in Box 8.1, although the symbolism has changed g a E i § ergall gres|l myxgR <

shghtly, since in place of ¢ groups we now have ab subgroups. To complete E‘,' a3 wg $ ~& o o N e 8 N = e -~ ..:

the anova, we need a correction term, which is labeled step 6 in Box 9.1, From = ‘8 f—% g 3

these quantities we obtain Sy, and SS, ... in steps 7, 8. and 12, correspond- F BO— N -

ing to steps 5, 6, and 7 in the layout of Box 8.1. The results of this preliminary E S"i-‘g’ 3 £ %

anova are featured in Table 9.1. & §_': = §§.~’«'{ be B2 88 g
The computation is continued by finding the sums of squares for rows and i3 g 2 o Hg! § < w N 2

columns of the table. This is done by the general formula stated at the end of ¥ i x % » g §V §

Scction &.1. Thus, for columns, we square the column sums, sum the resulting g [E 6 gﬁ g ]

squares, and divide the result by 24, the number of 1items per row. This is step ™

4 in Box 9.1. A similar quantity s computed for rows (step 5). I'rom these
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Continued

Preliminary computations

a b n
L. Grand total =3 3 ¥" ¥ = 461.74

a b n
2. Sum of the squared observations = YYY Y =(1162 4+ + {12.30)? = 5065.1530

3. Sum of the squared subgroup (cell) totals, divided by the sample size of the subgroups

a b n 2
E8(Ey)
_ 22 _ (84.49)% + -+ - 4 (98.61)
n = 3 = 4663.6317
a /b n 2
. ) EEEY) esoor 1 prener
- Sum of the squared column totals divided by the sample size of a column = - (245007 + 21674) 445
e Gx9 = 4458.3844
b/a n 2
B YEtv)
5. Sum of the squared row totals divided by the sample size of a row =——~ 7
an
_ (143.92)? + (121.82)? + (196.00)
= G x8) = 4623.0674
6. Grand total squared and divided by the total sample size = correction term CT
a b n 2
Y
_ (Z ) ) _ (quantity 1" (461.74) _
abn abn T(2x3x8 441.7464

a b n
7. SSwm = 2,2, 2, Y2 — CT = quantity 2 — quantity 6 = 5065.1530 — 4441.7464 = 623.4066
a b n 2
£3(Ev)
8. SSeuber = — CT = quantity 3 — quantity 6 = 4663.6317 — 4441.7464 = 221.8853
a /b n 2
2(i5v)
9. SS,(SS of columns) = — CT = quantity 4 — quantity 6 = 4458.3844 — 4441.7464 = 16.6380
b fa n 2
2(58y)
10. SS;(SS of rows) = — CT = quantity § — quantity 6 = 4623.0674 — 4441.7464 = 181.3210

11. S5, (interaction S§) = §8,,,,, — S5, — §§5 = quantity 8 — quantity 9 — quantity 10
= 221.8853 — 16.6380 — 181.3210 = 23.9263

12. S8, imin (Within subgroups; error §S) = S8, — 88,0 = quantity 7 — quantity 8
= 623.4066 — 221.8853 = 401.5213

As a check on your computations, ascertain that the following relations hold for some of the above quantities: 2 >3 >4 > 6;
3>5=6

Explicit formulas for these sums of squares suitable for computer programs are as follows:
9a. SS,=nbY (T, - )
10a. SS; = na zb; (F, - 72
Ha. $S;5 =15 Y (F - Ty - T+ Ty

a b _ =
12a. SS,imn =12, 2 (Y = ¥)?

881

681
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Such formulas may furnish more exact solutions i
_ utions in computer algorithms (Wilki
tedious to compute on a pocket or tabletop calculator tﬁat is n(%t able togéil?;:nn?ﬁa])vﬁllﬁgsl977)’ although they are far more

Now fill in the anova table,

s -
ource of variation dr S8 MS Expected MS (Model I)
Y, -7 A (columns) a—1 9 9 6+ I
o @a-1 a—1 La
Y-Y B (rows) 19 ——
b—1 (T "3
) ) b= THELF
Y-Y, -Y+ 7Y A x B (interaction) la—1xb—1) [} _n o’ + n $ a2
_ @ 0= 1) @62
Y-Y Within subgroups ab{n — 1) 12 —»1-2..~ a?
- abln — |
Y-F Total abn — | 7 }

slnce the pl €sent exalnple 1S a I\[Odel I anova fOl bo h faCIO S the CXDCCted JM S abOVe are correct. Below are the COIIESpf)ndm
t T i g

Mixed model

Source of variation Model 11 {A fixed. B random)
2, 0 2 2 2 nb_ &,
A 6° +nogp+nhe; o +'15.4B+a_12"‘
B 62 + nolg + nuok o’ + nac}
AxB ot + noly 67 + noly
Within subgroups o’ G°
Anova table
Source of variation ar sS MS F,

A (columns; species) 1 16.6380 16.638 1.740 ns
B (rows: salinities) 2 181.3210 90.660 9.483**
A x B (interaction) 2 23.9263 11.963 1.251 ns
Within subgroups (error) 42 401.5213 9.560

Total 47 623.4066

Fo.osu.an =407 F&os[z.az] =322 Fa.ox(z'u] =515

Since this is a Model I anova, all mean squares are tested over the error MS. For a discussion of significance tests, see Section
9.2.
finee

Conclusions.—Oxygen consumption does not differ significantly between the two species of limpets but differs with the salin:
At 50% seawater, the O, consumption is increased. Salinity appears to affect the two species equally, for there is insufficient evidzn::

of a species x salinity interaction.

061
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TABLE 9.1
Preliminary anova of subgroups in two-way anova. Data from Box 9.1.

Source of variation df S MS
¥ - Y Among subgroups 5 ab—1 221.8853  44.377**
Y — 3’ Within subgroups 42 abn — 1) 401.5213 9.560
Y- Y Total 47 abn—  623.4066

quotients we subtract the correction term. computed as quantity 6. These sub-
tractions are carried out as steps 9 and 10, respectively. Since the rows and
columns are based on equal sample sizes, we do not have to obtain a separate
quotient for the square of each row or column sum but carry out a single divi-
sion after accumulating the squares of the sums.

Let us return for a moment to the preliminary analysis of variance in
Table 9.1, which divided the total sum of squares into two parts; the sum of
squares among the six subgroups; and that within the subgroups, the error sum
of squares. The new sums of squares pertaining to row and column effects clearly
are not part of the error, but must contribute to the differences that comprise
the sum of squares among the four subgroups. We therefore subtract row and
column SS from the subgroup SS. The latter is 221.8853. The row SSis 181.3210,
and the column §S is 16.6380. Together they add up to 197.9590, almost but
not quite the value of the subgroup sum of squares. The difference represents
a third sum of squares, called the interaction sum of squares. whose valuc in
this case is 23.9263.

We shall discuss the meaning of this new sum of squarcs presently. At the
moment let us say only that it is almost always present (but not necessarily
significant) and generally that it need not be independently computed but may
be obtained as illustrated above by the subtraction of the row S§§ and the col-
umn SS from the subgroup SS. This procedure is shown graphically in Figure
9.1, which illustrates the decomposition of the total sum of squares into the sub-
group SS and crror SS. The former is subdivided into the row SS, column SS,
and mteraction SS. The relative magnitudes of these sums of squares will differ
from cxperiment to experiment. In Figure 9.1 they are not shown proportional
to their actual values in the hmpet experiment; otherwise the arca representing
the row §S would have to be about 11 times that allotted to the column SS.

Before we can intelligently test for significance in this anova we must under-
stand the meaning of interaction. We can best explain interaction in a two-way
anova by means of an artificial tustration based on the hmpet data we have
just studied. If we interchange the readimgs for 75% and 50" for A. digitalis
only, we obtain the data table shown in Table 9.2. Only the sums of the sub-
groups, rows, and columns are shown. We complete the analysis of variance
in the manner presented above and note the results at the foot of Table 9.2.
The total and crror S8 are the same as before (Table 9.1). This should not be
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~
Row S8 = 181.3210
Total 88 = 77,570.25 <X Column SS = 16.6380 Subgroup SS = 211.8853
Interaction SS = 23.9263
L Error SS = 401.5214

FIGURE 9.1 )
Diagrammalic representation of the partitioning of the total sums of squares in a two-way orthogenal

anova. The areas of the subdivisions are not shown proportional to the magnitudes of the sums

of squares.

surprising, since we are using the same data. All that we have done is to inter-
change the contents of the lower two cells in the right-hand cplumn of the
table. When we partition the subgroup SS, we do find some differences. We
note that the SS between species (between columns) is unchanged. Since the
change we made was within one column, the total for that column was not
altered and consequently the column S§ did not change. However, the sums

TABLE 9.2

An artificial example to illustrate the meaning of inferaction. The rcadings
for 757 and 50% seawater concentrations of Acmaea digitalis in Box 9.1
have been interchanged. Only subgroup and marginal totals are given

below.
Species
Seawater —
concentrafion A. scabra A digitalis Y
10075 84.49 59.43 143.92
75°% 63.12 98.61 161.73
507 9739 58.70 175602
y 245.00 216.74 461.74
Completed anova
Source of variation df Ss MS
Species 1 16.6380 16.638 ns
Salinities 2 10.3566 5.178 ns
Sp x Sal 2 194 8907 97.445%*
Error 42 401.5213 9.560
Total 47 623.4066
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?;t;l;:hze;gndfatr}lld thirgl. rowfs have been altered appreciably as a result of the
e of the readings for 75% and 50% salinity i igitali
of th % o ty in A. digitalis. Th
for 75% salinity is now ve 0% 5 1 the diffsronce
o ry close to that for 507 salinity, and 1
between the salinities i i o sanniy. and the dierence
, previously quite marked. is now ]
trast, the interaction SS, obtain ing T ot o
, , ed by subtracting the s f
and columns from the sub i : e o 1o
group S8, is now a large quantity. R
the subgroup SS is the same 1 : e ey exameie et o
in the two examples. In the fi ¢
tracted sums of squares due to th ' e i
s of s e effects of both species and saliniti i
only a tiny residual representin i i i
g the interaction. In the second ex:
iy i : . the . ample these
g)lvr(])] r(r)lfam ejfectsl(spemes and salinities) account only for little of the sll)lbgroup
squares, leaving the interaction sum of squ: i
 of ving S quares as a substantial residu:
Whalt 1s the essential difference between these two examples? vl
o ,i:alT;bl‘e f9.3 we have shown the subgroup and marginal means for the
r flt ata rom Table 9.1 and for the altered data of Table 9.2. The original
t;éumsh:rri\jslteI.cle.:ta’r: at 7(15‘3”;] salinity, oxygen consumption is lower than at
salinities, and this is true for both species. Wi
the ¢ ’ ' pecies. We note further that
Ou:c;l;rtc;;oelr:fum;s mo(;c.tﬁ”oxygen than A. digitalis at two of the salinities. Thus
S s about differences due to species or t ini .
' ¢ o salinity can be made
?r{g’el{ independent of each other. However, if we had to interpret the artificial
Sjn;le( ower half of Table 9.3),. we would note that although A. scabra still con-
o s more oxygen than A. digitalis (since column sums have not changed), this
‘1 ere‘nce d.epends greatly on the salinity. At 100% and 507%, A. scabra 7con-
?:Jr?)cs)Cf)IEiSICﬁirc:lrably more oxygen than A. digitalis, but at 75% this relationship
;;bot,v::;e : hus, we are no longer able to make an unequivocal statement
t ¢ amount of oxygen taken up by the two species. We have to qualify
our statement by the seawater concentration at which they are kept. At 100%

TABLE 9.3
Comparison of means of the data in Box 9.1 and Table 9.2.

Seawater e ?'I“""'(’S ————
concentration A. scubra A digitalis Mean
Origmal data from Box 9.1 ) - - o
1(7)(;::, 10.56 7.43 9.00
S, o 7.89 7.34 761
507 12.17 1233 12.25
Mean 10.21 9.03 962
Artificial data from Table 9.2 7
1(7)(5):“ 10.56 7.43 9.00
S(‘)"’? Z.X‘) 12.33 10.11
S0°% 12.17 7.34 976
Mcan 10.21 19.03 9,62
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and 50%. Veuora > Vaigianee DUt at 75%, Foorn < Vit 1 we examine the
effects of salinity in the artificial example, we notice a mild increase in oxygen
consumption at 75%. However. again we have to qualify this statement by the
species of the consuming limpet; scabra consumes least at 75%, while digitalis
consumes most at this concentration.

This dependence of the effect of one factor on the level of another factor
is called interaction. It is a common and fundamental scientific idea. It indicates
that the effects of the two factors are not simply additive but that any given
combination of levels of factors, such as salinity combined with any one species,
contributes a positive or negative increment to the level of expression of the
variable. In common biological terminology a large positive increment of this
sort is called synergism. When drugs act synergistically, the result of the inter-
action of the two drugs may be above and beyond the sum of the separate effects
of each drug. When levels of two factors in combination inhibit each other’s
effects. we call it interference. (Note that “levels™ in anova is customarily used
in a loose sense to include not only continuous factors, such as the salinity n
the present example, but also qualitative factors, such as the two species of
limpets.) Synergism and interference will both tend to magnify the interaction
SS.

Testing for interaction is an important procedure in analysis of variance.
If the artificial data of Table 9.2 were real. it would be of little value to state
that 75% salinity led to slightly greater consumption of oxygen. This statement
would cover up the important differences in the data, which are that scubru
consumes least at this concentration, while digitalis consumes most.

We are now able to write an cxpression symbolizing the decomposttion of
a single variatc in a (wo-way analysis of variance in the manner of Lxpres-
sion (7.2) for single-classilication anova. The expression below assumes that
both factors represent fixed treatment effects. Model 1. This would scem rea-
sonable. since species as well as salinity arc lixed treatments. Variate Y 18
the kth item in the subgroup representing the ith group of treatment A and
the jth group ol treatment B. 1t is decomposed as follows:

R A T -1

where p equals the parametric mean of the population, 2; 18 the fixed treat-
ment cliect for the ith group of treatment A, f§; is the fixed treatment cllect
of the jth group of treatment B, (2f3);; is the interaction ellect in the subgroup
representing the ith group of factor 4 and the jth group of factor B, and €;;
is the error term of the kth item in subgroup ij. We make the usual assumption
that €, 18 normally distributed with a mean of 0 and a variance of a*. 1f onc
or both of the factors represent Model 11 effects, we replace the o and/or f5; in
the formula by A, and/jor Bj.

in previous chapters we have seen that each sum of squares represents a
sum of squared deviations. What actual deviations does an interaction 8§ repre-
sent? We can see this casily by referring back to the anovas of Table 9.1. The
variation among subgroups is represented by (Y — Y), where Y stands for the
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subgroup mean, and Y for the grand mean. When we subtract the deviations

due to rows (R — Y) and those due to columns (C — Y) from those due to sub-
groups, we obtain

(Y-Y)—(R-

~<)
=~
~)

) —(C - -R+Y-C+

~C+
This somewhat involved expression is the deviation due to interaction. When
we evaluate one such expression for each subgroup, square it, sum the squares,
and multiply the sum by n, we obtain the interaction SS. This partition of the
deviations also holds for their squares. This is so because the sums of the prod-
ucts of the separate terms cancel out.

A simple method for revealing the nature of the interaction present in the
data is to inspect the means of the original data table. We can do this in Table

9.3. The original data, showing no interaction, yield the following pattern of
relative magnitudes:

I ‘<II

.
-

=l "'<l|

Scabra Digitalis
100%
\% \
75%
A A
50%

The relative magnitudes of the means in the lower part of Table 9.3 can be sum-
marized as follows:

Scabra l)lqml/l\

10()‘7
v A

75°
A v

507

When the pattern of signs expressing relative magnitudes is not uniform as in
this latter table, interaction is indicated. As long as the pattern of means is
consistent, as in the former table, interaction may not be present. However,
interaction is often present without change in the direction of the differences:
sometimes only the relative magnitudes are affected. In any case, the statistical
test needs 1o be performed to test whether the deviations are larger than can
be expected from chance alonc.

In summary, when the cffect of two treatments applied together cannot be
predicted Irom the average responses of the separate factors, statisticians call
this phenomenon interaction and test its significance by means of an interaction
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mean square. This is a very common phenomenon. If we say that the effect of
density on the fecundity or weight of a beetle depends on its genotype. we
imply that a genotype x density interaction is present. If the success of several
alternative surgical procedures depends on the nature of the postoperative
treatment, we speak of a procedure x treatment interaction. Or if the effect of
temperature on a metabolic process is independent of the effect of oxygen
concentration, we say that temperature x oxygen interaction is absent.

Significance testing in a two-way anova will be deferred until the next
section. However, we should point out that the computational steps 4 and 9
of Box 9.1 could have been shortened by employing the simplified formula for
a sum of squares between two groups, illustrated in Section 8.4. In an analysis
with only two rows and two columns the interaction SS can be computed
directly as

(Sum of one d1agonal — sum of other dlagonal)2

abn

9.2 Two-way anova: Significance testing

Before we can test hypotheses about the sources of variation isolated in Box 9.1,
we must become familiar with the expected mean squares for this design. In
the anova table of Box 9.1 we first show the expected-mean squares for Modei
I, both species differences and seawater concentrations being fixed treatment
effects. The terms should be familiar in the context of your experience in the
previous chapter. The quantities a2, Z° 8% and =% («f) represent added
components duc to treatment for columns, rows, and interaction, respectively.
Note that the within-subgroups or error MS again cstimates the parametric
variance of the items, g2,

The most important fact to remember about a Model I anova is that the
mean square at cach level of variation carries only the added effect due to that
level of treatment. Exeept for the parametric variance of the items, it does not
contain any term [rom a lower line. Thus, the expected M S of lactor A contains
only the parametric variance of the items plus the added term duc to factor A,
but does not also include interaction effects. In Model 1, the significance test
is therefore simple and straightforward. Any source of variation is (ested by the
variance ratio of the appropriate mean squarc over the error MS. Thus, lor the
appropriate tests we employ variance ratios A/Error, B/Error and (A x B)/
Error, where cach boldface term signifies a mean square. Thus A4 —= MS,.
Error = M S, pin-

When we do this in the example of Box 9.1, we lind only factor B, salinity,
significant. Neither factor 4 nor the interaction is significant. We conclude that
the differences in oxygen consumption are induced by varying salinities (O,
consumption responds in a V-shaped manner), and there does not appear to be
sufficient evidence for species differences in oxygen consumption. The tabulation
of the relative magnitudes of the means in the previous section shows that the
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pattern of signs in the two lines is identical. However, this may be misleading,
since the mean of A. scabra is far higher at 100% seawater than at 75%, but that
of A. digitalis 1s only very slightly higher. Although the oxygen consumption
curves of the two species when graphed appear far from parallel (see Figure
9.2), this suggestion of a species x salinity interaction cannot be shown to be
significant when compared with the within-subgroups variance. Finding a signi-
ficant difference among salinities does not conclude the analysis. The data sug-
gest that at 75% salinity there is a real reduction in oxygen consumption.
Whether this is really so could be tested by the methods of Section 8.6.

When we analyze the results of the artificial example in Table 9.2, we find
only the interaction MS significant. Thus, we would conclude that the response
to salinity differs in the two species. This is brought out by inspection of the
data, which show that at 75% salinity A. scabra consumes least oxygen and
A. digitalis consumes most.

In the last (artificial} example the mean squares of the two factors (main
effects) are not significant, in any case. However, many statisticians would not
even test them once they found the interaction mean square to be significant,
since in such a case an overall statement for each factor would have little mcan-
ing. A simple statement of response to salinity would be unclear. The presence
of interaction makes us qualify our statements: “The pattern of response to
changes in salinity differed in the two species.” We would consequently have
to describe separate. nonparallel response curves for the two species. Occa-
sionally, it becomes 1mportant to test for overall significance in a Model 1
anova in spite of the presence of interaction. We may wish to demonstrate
the significance of the effect of a drug, regardless of its significant interaction
with age of the patient. To support this contention, we might wish to test the
mean square among drug concentrations (over the error MS), regardless of
whether the interaction MS is significant.
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25 50 75 100 Oxygen consumption by two species of
% Seawater limpets at three salinities. Data from Box 9.1.
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Box 9.1 also lists expected mean squares for a Model IT anova and a mixed-
model two-way anova. Here, variance components for columns (factor A). for
rows (factor B), and for interaction make their appearance, and they are desig-
nated 62, 03, and 0%, respectively. In the Model 11 anova note that the two
main effects contain the variance component of the interaction as well as their
own variance component. In a Model I anova we first test (4 x B)/Error. If
the interaction is significant, we continue testing 4/(4 x B) and B/(4 x B). But
when 4 x B is not significant, some authors suggest computation of a pooled
error MS = (SS,4.5 + SSuinin) (4 x g + dfwinia) to test the significance of the
main effects. The conservative position is to continue to test the main effects
over the interaction MS, and we shall follow this procedure in this book. Only
one type of mixed model is shown in Box 9.1, in which factor 4 is assumed
to be fixed and factor B to be random. If the situation is reversed, the expected
mean squares change accordingly. In the mixed model, it is the mean square
representing the fixed treatment that carries with it the variance component of
the interaction, while the mean square representing the random factor contains
only the crror variance and its own variance component and does not include
the interaction component. We therefore test the MS of the random main effect
over the crror, but test the fixed trcatment MS over the interaction.

9.3 Two-way anova without replication

In many experiments there will be no replication for each combination of factors
represented by a cell in the data table. In such cases we cannot casily talk of
“subgroups,” since each ccll contains a single reading only. Frequently it may
be too dillicult or too cxpensive to obtain more than one reading per ceil.
or the measurements may be known to be so repeatable that there s hittie
point in estimating their error. As we shall see in the following, a two-way anova
without replication can be properly applied only with certain assumptions.
For some models and tests in anova we must assume that there is no interaction
present.

Our illustration for this design is from a study in mctabolic physiology.
In Box 9.2 we show levels of a chemical, S-PLP, in the blood serum of eight
students before, immediately after, and 2 hours after the admuustration of an
alcohol dose. Each student has been meuasured only once at cach time. What
is the appropriate model for this anova?

Clearly, the times arc Model I. The cight individuals, however, are not likely
to be of spectfic interest. Fos improbable that an investigator would try to ask
why student 4 has an S-PLP level so much higher than that ol student 3. We
would draw morc meaningful conclusions from this problem il we considered
the cight individuals to be randomly sampled. We could then estimate the varia-
tion among individuals with respect to the effect of alcohol over time.

The computations are shown in Box 9.2. They arc the same as those in Box
9.1 except that the expressions to be cvaluated are considerably simpler. Since
n =1, much of the summation can be omitted. The subgroup sum of squares



BOX 9.2
Two-way anova without replication,

Serum-pyridoxal-t-phosphate (S-PLP) content {ng per ml of serum) of blood serum before and after ingestion of alcohol in eight sub-
jects. This is a mixed-model anova.

Factor A: Time

(g = 3)
Factor B: Before
Individuals alcohol Immediately 12 hours
th =8) ingestion after ingestion later 3

1 20.00 12.34 17.45 49.79
2 17.62 16.72 18.25 52.59
3 11.77 9.84 11.45 33.06
4 30.78 20.25 28.70 79.73
5 11.25 9.70 12.50 3345
6 19.17 15.67 20.04 54.88
7 9.33 8.06 10.00 27.39
8 32.96 19.10 3045 82.51
Z 152.88 111.68 148.84 413.40

Source: Data from Leinert et al. {1983).

The eight sets of three readings are treated as replications (blocks) in this analysis. Time is a fixed treatment effect, while differ-
ences between individuals are considered to be random effects. Hence, this is a mixed-model anova.

Preliminary computations
a b
1. Grand total = ) ) Y = 41340

a b
2. Sum of the squared observations =Y Y Y2 = (20.00)* + - - - + (3045)” = 8349.4138

q b 2
z (Z Y) _ (152.88)% + (111.68) + (148.84)*
b 8

b /a 2
z (Z Y) (@979 + - + (8251
a - 3

(1)

ab

3. Sum of squared column totals divided by sample size of a column = = 7249.7578

4, Sum of squared row totals divided by sample size of a row = = 8127.8059

5. Grand total squared and divided by the total sample size = correction term CT =

_ (quantity 1)>  (413.40
h ab T 24

= 7120.8150
a b
6. 8Sm =YY Y2 — CT= quantity 2 — quantity 5 = 8349.4138 — 7120.8150 = 1228.5988

(3

2
")
— CT= quantity 3 — quantity 5 = 7249.7578 — 7120.8150 = 128.9428

b a 2
B(2v)
8. SS;(SS of rows) = —

9. SS..1oc (remainder; discrepance) = SS,,,,; — S5, — $Sp = quantity 6 — quantity 7 — quantity 8
= 1228.5988 — 128.9428 — 1006.9909 = 92.6651

7. 55, (5S of columns) =

— CT= quantity 4 — quantity § = 8127.8059 — 7120.8150 = 1006.990%

002

10T
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) 1 Row SS = 1006.9909
-~
m h I — ) ) N v cr — ,).)
S| sl @ Total §§ = 12285988 Column SS = 1289428 Subgroup $§ = 12285988
3 s 8
S| 4+ 4+
g = = [nteraction 8§ = 92.6651 = remainder
ﬁ ~N= o
3 ©
o T o e T
Error §§ = 0
Nb Nb Nb L_ __________ _l
N FIGURE 9.3
i x Diagrammatic representation of the partitioning of the total sums of squares in a two-way ortho-
[ g § gonal anova without replication, The areas of the subdivisions are not shown proportional to the
o (.:; magnitudes of the sums of squares.
= G . . . - . .
(,, = a3 in this example is the same as the total sum of squares. If this is not immediately
= g g < apparent, consult Figure 9.3, which, when compared with Figure 9.1, illustrates
- that the error sum of squares based on variation within subgroups is missing
in this example. Thus, after we subtract the sum of squares for columns (factor
§ § 8 A) and for rows (factor B) from the total SS, we are left with only a single sum
] I A of squares, which is the equivalent of the previous interaction SS but which is
o § A PN now the only source for an error term in the anova. This SS is known as the
remainder SS or the discrepance.
If you refer to the expected mean squares for the two-way anova in Box 9.1,

you will discover why we made the statement carlier that for some models and
tests in a two-way anova without replication we must assume that the inter-
action 1s not significant. If interaction is present, only a Model Il anova can
be entirely tested, while in a mixed model only the fixed level can be tested
over the remainder mean square. But in a pure Model [ anova, or for the

Conclusions.—Highly significant differences are found with time. There is a sharp decrease in S-PLP level immediately after

ingestion of alcohol, but the level returns to near normal after 12 hours. For testing among individuals, we must assume interaction
between time and individuals to be zero. From the magnitude of the F, value it is fairly evident that there are large differences among

individuals in S-PLP levels. Inspection of the row totals confirms this conclusion.

8
o
o
Q.
4
5 2 random factor in a mixed model, it would be improper to test the main cffects
- 3 B over the remainder unless we could reliably assume that no added effect due
g g =] to interaction is present. General inspection of the data in Box 9.2 convinces
g B g us that the trends with time for any one individual are faithfully reproduced
g v £ for the other individuals. Thus, interaction is unlikely to be present. If, for
s g 5 ® example, some individuals had not responded with a lowcering of their S-PLP
- R . . . .
- @5 e levels after ingestion of alcohol, interaction would have been apparent, and the
test of the mean square among individuals carricd out in Box 9.2 would not
o have been legitimate.
+ Since we assume no interaction, the row and column mean squares are
:°?§ S tested over the error MS. The results are not surprising; casual inspection of
£ 8 ! the data would have predicted our findings. Differences with time are highly
A S o - o [

significant, yielding an F, value of 9.741. The added variance among individuals
is also highly significant, assuming there is no intcraction.

A common application of two-way anova without replication is the repeated
testing of the same individuals. By this we mean that the same group of individuals

BOX 9.2
Continued
Anova table
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is tested repeatedly over a period of time. The individuals are one factor (usually
considered as random and serving as replication), and the time dimension is
the second factor, a fixed treatment effect. For example, we might measure
growth of a structure in ten individuals at regular intervals. When we test for
the presence of an added variance component (due to the random factor), we
again must assume that there is no interaction between time and the individuals;
that is, the responses of the several individuals are parallel through time. An-
other use of this design is found in various physiological and psychological
experiments in which we test the same group of individuals for the appearance
of some response after treatment. Examples include increasing immunity after
antigen inoculations, altered responses after conditioning, and measures of
learning after a number of trials. Thus, we may study the speed with which ten
rats, repeatedly tested on the same maze, reach the end point. The fixed-
treatment effect would be the successive trials to which the rats have been
subjected. The second factor, the ten rats, is random, presumably representing
a random sample of rats from the laboratory population.

One special case, common enough to merit separate discussion, is repeated
testing of the same individuals in which only two treatments (a = 2) are giv-
en. This case is also known as paired comparisons, because each observation
for one treatment is paired with one for the other treatment. This pair is com-
posed of the same individuals tested twice or of two individuals with com-
mon experiences, so that we can legitimately arrange the data as a two-way
anova.

Let us elaborate on this point. Suppose we test the muscle tone of 4 group
of individuals, subject them to severe physical exercise, and measure their muscle
tone once more. Since the same group of individuals will have been tested twice,
we can arrange our muscle tone readings in pairs, cach pair representing recadings
on one individual (before and after excrcise). Such data are appropriately treated
by a two-way anova without replication, which in this case would be a paired-
comparisons test because there are only two treatment classes. This “before and
alter treatment”™ comparison is a very frequent design leading to paired com-
parisons. Another design simply measures two stages in the development of a
group ol organmisms, time being the treatment intervening between the two
stages. The example in Box 9.3 is of this nature. It measures lower face width
in a group of girls at age five and in the same group of girls when they are six
years old. The paired comparison is for each individual girl, between her face
width when she is five years old and her face width at six years.

Paircd comparisons often result from dividing an organism or other in-
dividual unit so that half reccives treatment | and the other half treatment 2,
which may be the control. Thus, if we wish to test the strength of two antigens
or allergens we might inject one into cach arm of a single individual and mea-
surc the diameter of the red arca produced. It would not be wise, from the
point of view ol experimental design. to test antigen 1 on individual | and
antigen 2 on individual 2. These individuals may be differentially susceptible
to these antigens, and we mayv learn httle about the relative potency ol the
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BOX 9.3

Paired comparisors (randomized blocks with a = 2),

Lower face width (skeletal bigonial diameter in cm) for 15 North American white
girls measured when 5 and again when 6 years old.

)
U] 2 &) D=Y,- ¥,
Individuals 3-year-olds 6-year-olds > (difference)
1 7.33 7.53 14.86 0.20
2 7.49 1.70 15.19 21
3 7.27 7.46 1473 19
4 793 8.21 16.14 28
5 7.56 7.81 15.37 25
6 7.81 8.01 15.82 .20
7 7.46 7.72 15.18 .26
8 6.94 7.13 14.07 19
9 7.49 7.68 1517 .19
10 744 7.66 15.10 22
11 7.95 8.11 16.06 16
12 747 7.66 15.13 19
13 7.04 7.20 14.24 .16
14 7.10 7.25 14.35 15
15 7.64 7.79 1543 15
>Y 111.92 114.92 226.84 3.00
yy? 336.3300 881.8304 3435.6992 0.6216
Source: From a larger study by Newman and Meredith (1956).
Two-way anova without replication
Anova table
Source of
variation df SS MS F, Expected MS
Ages (columns; b
factor A) 1 03000 0.3000 388.80** o+, + pyay Yot
Individuals
(rows; factor B) 14 26367 0.188,34 (244.14** ¢? + ao}
Remainder 1400108 0.000,771,43 a? + aig
Total 29 29475
Foo1y1,14) = 8.86 Foor12.1 = 416 (Conservative tabled value)

Conclusions.—The variance ratio for ages is highly significant. We conclude
that faces of 6-year-old girls are wider than those of 5-year-olds. If we are willing
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BOX 9.3
Continued

to assume that the_imeraction 04p is zero, we may test for an added variance
component among individual girls and would find it significant.

The t test for paired comparisons

D_—(ﬂx — Uy)

fg ==
35
where D is the mean difference between the paired observations.
= XD 300
D=2 o200
b T 0.20

and sp = s D/\/I; is the standard error of D calculated from the observed differences
in column (4):

5y = \/202 —(QDP/b \/0.6216 - (3.00%/15) _ [0.0216
b—1 14 - 14
= /0.001,542,86 = 0.039,2792

and thus
o Sp_ 00392792
NN T

We assume that the true difference between the means of the two groups, uy — u
equals zero: »

= 0.010,141,9

b-0_020-0 o0 w
s 00101419 with b—1= 144f.

This yields P « 0.01. Also 2 = 388.89, which equals the previous F,.

L, =

antigens, since this would be confounded by the differential responses of the
subjects. A much better design would be first to inject antigen 1 into the left arm
and antigen 2 into the right arm of a group of w individuals and then to analyze
the data as a two-way anova without replication, with n rows (individuals) and
2 columns (treatments). It is probably immaterial whether an antigen 1s injected
into the right or left arm, but if we were designing such an experiment and
knew little about the reaction of humans to antigens, we might, as a precaution,
randomly allocate antigen 1 to the left or right arm for different subjects, antigen
2 being injected into the opposite arm. A similar example is the testing of certain
plant viruses by rubbing a concentration of the virus over the surface of a leaf
and counting the resulting lesions. Since different leaves are susceptible in dif-
ferent degrees, a conventional way of mcasuring the strength of the virus is to
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wipe it over the half of the Icaf on one side of the midrib, rubbing the other
half of the leaf with a control or standard solution.

Another design leading to paired comparisons is to apply the treatment to
two individuals sharing a common experience, be this genetic or environmental.
Thus. a drug or a psychological test might be given to groups of twins or sibs,
one of each pair receiving the treatment, the other one not.

Finally, the paired-comparisens technique may be used when the two in-
dividuals to be compared share a single experimental unit and are thus subjected
to common environmental experiences. If we have a set of rat cages, each of
which holds two rats, and we are trying to compare the effect of a hormone
injection with a control, we might inject one of each pair of rats with the
hormone and use its cage mate as a control. This would yield a 2 x n anova
for n cages.

One reason for featuring the paired-comparisons test separately is that it
alone among the two-way anovas without replication has an equivalent, alter-
native method of analysis— the ¢ test for paired comparisons, which is the
traditional method of analyzing 1it.

The paired-comparisons case shown in Box 9.3 analyzes face widths of five-
and six-ycar-old girls, as already mentioned. The question being asked is
whether the faces of six-year-old girls are significantly wider than those of five-
year-old girls. The data are shown in columns (1) and (2} for 15 individual girls.
Column (3) features the row sums that are necessary for the analysis of variance.
The computations for the (wo-way anova without replication are the same as
those alrcady shown [or Box 9.2 and thus arc not shown in detail. The anova
table shows that there 1s a highly significant difference in face width between
the two age groups. Il interaction is assumed to be zero, there is a large added
variance component among the individual girls, undoubtedly representing
genetic as well as environmental differences.

The other method of analyzing paired-comparisons designs is the well-
known t test for paired comparisons. 1t is quite simple to apply and is illustrated
in the sccond halfl of Box 9.3. It tests whether the mean of sample differences
between pairs of rcadings in the two columns is significantly different from a
hypothetical mean, which the null hypothesis puts at zero. The standard crror
over which this is tested s the standard crror of the mean difference. The dif-
ference column has to be calculated and is shown in column (4) of the data
table in Box 9.3. The computations are quite straightforward, and the conclu-
stons are the same as lor the two-way anova. This 1s another mstance in which
we obtain the value of I, when we square the value of 1

Although the paired-comparisons ¢ test is the traditional method of solving
this type of problem, we prefer the two-way anova. [ts computation is no more
time-consuming and has the advantage of providing a measure of the variance
component among the rows (blocks). This 1s useful knowledge, because i there
15 no significant added variance component among blocks, one might simplify
the analysis and design of future, similar studies by employing single classifi-
cation anova.
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Exercises

9.1 Swanson, Latshaw, and Tague (1921) determined soil pH electrometrically for
various soil samples from Kansas. An extract of their data (acid soils) is
shown below. Do subsoils differ in pH from surface soils (assume that there is
no interaction between localities and depth for pH reading)?

County Soil type Surface pH Subsoil pH

Finney Richfield silt loam 6.57 8.34
Montgomery Summit silty clay loam 6.77 6.13
Doniphan Brown silt loam 6.53 6.32
Jewell Jewell silt loam 6.71 8.30
Jewell Colby silt loam 6.72 8.44
Shawnee Crawford silty clay loam 6.01 6.80
Cherokee Oswego silty clay loam 499 442
Greenwood Summit silty clay loam 5.49 7.90
Montgomery Cherokee silt loam 5.56 5.20
Montgomery Oswego silt loam 5.32 532
Cherokee Bates silt loam 592 5.21
Cherokee Cherokee silt loam 6.55 5.66
Cherokee Neosho silt loam 6.53 5.66
ANS. MS between surface and subsoils = 0.6246, MS_ . s.a = 0.6985, F, = 0.849
which is clearly not significant at the 5% level.

9.2 The following data were extracted from a Canadian record book of purebred

dairy cattle. Random samples of 10 mature (five-year-old and older) and 10
two-year-old cows were taken from cach of five breeds (honor roll, 305-day
class). The average butterfat percentages of these cows were recorded. This
gave us a total of 100 butterfat percentages, broken down into five breeds
and into two age classes. The 100 butterfat percentages are given below.
Analyze and discuss your results. You will note that the tedious part of
the calculation has been done for you.

Ayshire Canadiuan Guerusey Holstein-Friesian Jersey

Mature  2-yr Maure  2-yr Mature  2-yr Mature  2-vr Mature  2-yr
374 444 392 429 4.54 530 340 379 480 575

4.01 4.37 495 524 518 4.50 3.55 3.66 6.45 5.14

377 425 447 443 575 459 3.83 3.58 5.18 5.25

378 371 428  4.00 504 504 395 338 449 476

4.10 408 407  4.62 4.64 483 443 371 5.24 518

406 390 410 429 479 455 370 3.94 5770 422

427 441 438 485 472 497 3.30 399 541 5.98

394 411 398 4.66 388 5.38 3.93 3.55 477 485

4.11 4.37 446 440 5.28 5.39 3.58 3.55 5.18 6.55

4.25 3.53 5058 433 466 597 354 343 523 572

Z Y 4003 4117 4366 4511 48.48  50.52 37.20 0 3608 5245 5340

Y 4003 4117 4306 4511 4.848 5052 3721 Jol® 5245 5340

wahn

Y Y2 = 2059.6109
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9.3

9.4

Blakeslee (1921) studied length-width ratios of second seedling leaves of two
types of Jimson weed called globe (G) and nominal (N). Three seeds of each
type were planted in 16 pots. Is there sufficient evidence to conclude that globe
and nominal differ in length-width ratio?

Pot Types
identification

number G N

16533 1.67 1.53 1.6] 218 223 232
16534 .68 1.70 1.49 200 212 218
16550 1.38 176 1.52 241 211 260
16668 1.66 148 1.69 193 200 2.00
16767 1.38 1.61 1.64 232 223 190
16768 1.70 171 171 248 211 200
16770 .58 1.59 1.38 200 218 216
16771 149 152 168 194 213 229
16773 148 144 158 193 195 210
16775 128 145 150 177 203 2.08
16776 1.55 145 144 206 1.85 1.92
16777 1.26 157 144 200 194 1.80
16780 136 122 1.4 187 187 2.26
16781 147 143 1ol 224 200 223
16787 1.52 156 1.56 1.79 208 1.89
16789 1.37 138 140 L85 210 2.00

ANS. M8, = 00177, MS, . = 0.0203, MSype = 7.3206 (1, = 360.62%%),
MS o, = 00598 (F, = 3.378**). The cflect of pots is considered 1o be a Model 11
lactor, and types, a Model 1 factor.

The following data were extracted from a more catensive study by Sokal and
Karten (1964). The data represent mean dry weights (inmg) of three genotypes
of beetles, Tribolium castaneum, reared at a density of 24 beetles per gram of
flour. The four series of experiments represent replications.

Genotypes

Series t o+ +5 hi
| 0.958 0.986 0.925
2 0.971 1.051 0.952
3 0.927 0.891 0.829
4 0.971 1.010 0.955

Test whether the genotypes differ in mean dry weight.

'I"_hc mcan length of developmental period (in days) for three strains of house-
ﬂ¥cs at seven densttics 1s given. (Data by Sullivan and Sokal, 1963.) Do these
fliecs differ in development period with density and among strains? You may
assume absence of strain x density interaction.
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Strains
Density

per container OL BELL bwb
60 9.6 9.3 9.3
80 10.6 9.1 9.2
160 9.8 9.3 9.5
320 10.7 9.1 10.0
640 it 1.1 10.4
1280 10.9 1.8 10.8
2560 12.8 10.6 10.7

ANS. MS, ..y = 0.3426, MS,. = 1.3943 (F, = 4.070%). MS ey = 20905
(F, = 6.1019%¥).

9.6 The following data are extracted from those of French (1976), who carried out
a study of energy utilization in the pocket mouse Perognathus longimembris
during hibernation at different temperatures. Is there evidence that the amount
of food available aflects the amount of encrgy consumed at different tempera-
tures during hibernation?

Restricted food

Ad-libitum food

s ( 18 & C 18 (
Energy Energy Energy Energy
Animal used Animal tsed Animal used Animal used

Ho theal g 1o, tkeal g) Ho. thealiyg) no. (healig)
1 062.69 5 72.60 13 95.73 17 10119
2 54.07 6 70.97 14 63.95 18 76.88
3 065.73 7 7432 [N 14430 19 74 08
4 62,98 8 53.02 16 144.30 20 81.40

CHAPTER 10

Assumptions of
Analysis of Variance

We shall now examine the underlying assumptions of the analysis of variance,
methods for testing whether these assumptions are valid, the consequences for
an anova if the assumptions are violated, and steps to be taken if the assump-
tions cannot be mect. We should stress that before you carry out any anova
on an actual research problem, you should assure yourself that the assump-
tions listed in this chapter scem reasonable. If they arc not, you should carry
out one of several possible alternative steps to remedy the situation.

In Section 10.1 we bricfly list the various assumptions ol analysis ol vari-
ance. We describe procedures for testing some of them and bricfly state the
consequences if the assumptions do not hold, and we give instructions on how
to proceed if they do not. The assumptions include random sampling, inde-
pendence, homogeneity of variances, normality, and additivity.

In many cases, departure from the assumptions of analysis of variance
can be rectified by transforming the original data by using a new scale. The
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rationale behind this is given in Section 10.2, together with some of the common
transformations.

When transformations are unable to make the data conform to the assump-
tions of analysis of variance, we must use other techniques of analysis, analogous
to the intended anova. These are the nonparametric or distribution-free tech-
niques, which are sometimes used by preference even when the parametric
method (anova in this case) can be legitimately employed. Researchers often
like to use the nonparametric methods because the assumptions underlying
them are generally simple and because they lend themselves to rapid compu-
tation on a small calculator. However, when the assumptions of anova are
met, these methods are less efficient than anova. Section 10.3 examines three
nonparametric methods in licu of anova for two-sample cascs only.

10.1 The assumptions of anova

Randomness. All anovas require that sampling of individuals be at random.
Thus, in a study of the effects of three doscs of a drug (plus a control) on five
rats each, the five rats allocated to each treatment must be selected at random.
If the five rats cmployed as controls are either the youngest or the smallest
or the heaviest rats while those allocated to some other treatment are selected
in some other way, it 1s clear that the results are not apt to yield an unbiased
estimate of the true trcatment cffects. Nonrandomness of sample selection may
well be reflected in lack of independence of the items, in heterogeneity of vari-
ances, or in nonnormal distribution —all discussed in this section. Adequate
safeguards to ensure random sampling during the design of an experiment, or
during sampling from natural populations, are cssential.

Independence. An assumption stated in cach explicit expression for the ex-
pected value of a variate {for example, Expression (7.2) was Y, =y + o, + €;))
15 that the error term €;; is a random normal variable. In addition, for com-
pleteness we should also add the statement that it 15 assumed that the €'s
are mmdependently and identically {as explained below under "Homogencity of
variances”) distributed.

Thus, if you arranged the variates within any onc group in some logical
order independent of their magnitude (such as the order in which the measure-
ments were obtained), you would expect the €;'s to succeed cach other in a
random scquence. Consequently, you would assume a long sequence of large
positive values followed by an equally long sequence ol negative values Lo be
quite unlikely. You would also not expect positive and negative values to alter-
nate with regularity.

How could departures from independence arise”? An obvious example would
be an experiment in which the experimental units were plots of ground laid out
in a field. In such a case it (s often found that adjacent plots of ground give
rather similar yields. 1t would thus be important not to group all the plots
containing the same treatment mto an adjacent serics of plots but rather to
randomize the allocation of treatments among the experimental plots. The phys-
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ical process of randomly allocating the treatments to the experimental plots
ensures that the €’s will be independent.

Lack of independence of the €’s can result from correlation in time rather
than space. In an experiment we might measure the effect of a treatment by
recording weights of ten individuals. OQur balance may suffer from a malad-
justment that resuits in giving successive underestimates, compensated for by
several overestimates. Conversely, compensation by the operator of the balance
may result in regularly alternating over- and underestimates of the true weight.
Here again, randomization may overcome the problem of nonindependence of
errors. For example, we may determine the sequence in which individuals of
the various groups are weighed according to some random procedure.

There is no simple adjustment or transformation to overcome the lack of
independence of crrors. The basic design of the experiment or the way in wlhi‘ch
it is performed must be changed. If the €’s are not independent, the validity
of the usual F test of significance can be seriously impaired.

Homogeneity of variances. In Section 8.4 and Box 8.2, in which we de-
scribed the 1 test for the difference between two means, you were told that
the statistical test was valid only if we could assume that the variances of the
two samples were equal. Although we have not stressed it so far, this assump-
tion that the €;’s have identical variances also underlies the equivalent anova
test for two samples—and in fact any type of anova. Equality of variances in
a set of samples is an important precondition for several statistical tests. Syn-
onyms for this condition are homogeneity of variances and homoscedasticity.
This latter term is coined from Greek roots meaning equal scatter; the converse
condition (incquality of variances among samples) is called heteroscedasticity.
Because we assume that each sample variance is an estimate of the same para-
metric error variance, the assumption of homogeneity of variances makes in-
tuitive sense.

We have already seen how to test whether two samples are homoscedastic
prior to a 1 test of the differences between two means (or the mathematically
equivalent two-sample analysis of variance): we use an F test for the hypotheses
Hy 02 = o} and H,:a? # 6%, as illustrated in Scction 7.3 and Box 7.1. For
more than two samples there is a “guick and dirty” method, preferred by many
because of its simplicity. This is the F,, test. This test relics on the tabled
cumulative probability distribution of a statistic that is the variance ratio of the
fargest to the smallest of several sample vartances. This distribution is shown in
Table VL Let us assume that we have six anthropological samples of 10 bone
lengths cach, for which we wish to carry out an anova. The variances of the
six samples range from 1.2 to 10.8. We compute the maximum variance ratio
s2.. /520 = 0¥ = 9.0 and compare it With F.,)- critical values of which are
found in Table VL. Fora =6 and v =n — 1 =9, F,,, is 7.80 and 12.1 at the
5 and 19 levels, respectively. We conclude that the variances of the six sam-
ples are significantly heterogencous.

What may cause such heterogeneity? In this case, we suspect that some of
the populations are inherently more variable than others. Some races or species
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are relatively uniform for one character, while others are quite variable for the
same character. In an anova representing the results of an experiment, it may
well be that one sample has been obtained under less standardized conditions
than the others and hence has a greater variance. There are also many cases
in which the heterogeneity of variances is a function of an improper choice of
measurement scale. With some measurement scales, variances vary as functions
of means. Thus, differences among means bring about heterogeneous variances.
For example, in variables following the Poisson distribution the variance is in
fact equal to the mean, and populations with greater means will therefore have
greater variances. Such departures from the assumption of homoscedasticity
can often be easily corrected by a suitable transformation, as discussed later in
this chapter.

A rapid first inspection for hetcroscedasticity is to check for correlation
between the means and variances or between the means and the ranges of the
samples. If the variances increase with the means (as in a Poisson distribution),
the ratios s%/Y or 5/Y = V will be approximately constant for the samples.
If means and variances are independent, these ratios will vary widely.

The consequences of moderate heterogeneity of variances are not too seri-
ous for the overall test of significance, but single degree of freedom compari-
sons may be far from accurate.

[f transformation cannot cope with heteroscedasticity, nonparametric
methods (Section 10.3) may have to be resorted to.

Normality. We have assumed that the error terms ¢;; of the variates in each
sample will be independent, that the variances of the error terms of the several
samples will be cqual, and, finally, that the error terms will be normally dis-
tributed. If there is serious question about the normahty of the data, a graphic
test, as illustrated in Section 5.5, might be applied to each sample separately.

The consequences of nonnormality of error are not too serious. Only very
skewed distribution would have a marked effect on the significance level of
the F test or on the efficiency of the design. The best way to correct for lack
of normality is (o carry out a transformation that will make the data normally
distributed, as cxplained in the next section. If no simple transformation is satis-
factory, a nonparametric test, as carried out in Section 10.3, should be sub-
stituted for the analysis of variance.

Additivity. In two-way anova without replication it is necessary to assume
that interaction is not present if one i1s to make tests of the main effects in a
Model I anova. This assumption of no interaction in a two-way anova is some-
times also referred to as the assumption of additivity of the main eflects. By this
we mean that any single observed variate can be decomposed into additive
components represeating the treatment effects of a particular row and column
as well as a random term special to it. If interaction is actually present, then
the F test will be very ineflicicnt, and possibly misleading if the cflect of the
interaction is very large. A check of this assumption requires either more than
a single obscrvation per cell (so that an error mean square can be computed)
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or an.independent estimate of the error mean square from previous comparable
experiments.

Interaction can be due to a variety of causes. Most frequently it means
that a given treatment combination, such as level 2 of factor 4 when com-
bined with level 3 of factor B, makes a variate deviate from the expected value.
Such a deviation is regarded as an inherent property of the natural system
under study, as in examples of synergism or interference. Similar effects occur
when a given replicate is quite aberrant, as may happen if an exceptional plot
is included in an agricultural experiment, if a diseased individual is included in
a physiological experiment, or if by mistake an individual from a different species
is included in a biometric study. Finally, an interaction term will result if the
effects of the two factors 4 and B on the response variable Y are multiplicative
rather than additive. An example will make this clear.

In Table 10.1 we show the additive and multiplicative trcatment eflects
in a hypothetical two-way anova. Let us assume that the expected population
mean p s zero. Then the mean of the sample subjected to treatment | of fac-
tor A and treatment | of factor B should be 2, by the conventional additive
model. This is so because each factor at level 1 contributes unity to the mean.
Similarly, the expected subgroup mean subjected to level 3 for factor 4 and
level 2 for factor B is 8, the respective contributions to the mean being 3 and 5.
However, if the process is multiplicative rather than additive, as occurs in a
variety of physicochemical and biological phenomena, the expected values will
be quite different. For treatment 4, B,. the expected valuc equals 1, which is
the product of 1 and 1. For treatment 4,B,. the expected value is 15, the prod-
uct of 3 and 5. If we were to analyze multiplicative data of this sort by a
conventional anova, we would find that the interaction sum of squares would
be greatly augmented because of the nonadditivity of the treatment eflects. In
this case, there is a simple remedy. By transforming the variable into logarithms
(Table 10.1), we arc able (o restore the additivity of the data. The third item
in each cell gives the logarithm of the expected value, assuming multiplicative

TABLE 10.1
Mustration of additive and multiplicative cffects.

Factor A
Factor B oy — | oy =2 oy = 3
2 3 4 Additive eflects
f =1 ! 2 3 Multiplicative effects
0 0.30 0.48 Log of multiplicative effects
6 7 8 Additive effects
=15 5 10 15 Multiplicative ellects
0.70 1.00 1.18 Log of multiplicative eflects
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relations. Notice that the increments are strictly additive again (SS,, 5 = 0).
As a matter of fact, on a logarithmic scale we could simply write a, = 0,
a; = 030,05 =048, 8, =0, 8, = 0.70. Here is a good illustration of how trans-
formation of scale, discussed in detail in Section 10.2, helps us meet the assump-
tions of analysis of variance.

10.2 Transformations

If the evidence indicates that the assumptions for an analysis of variance or for
a 1 test cannot be maintained, two courses of action are open to us. We may
carry out a different test not requiring the rejected assumptions, such as one
of the distribution-free tests in lieu of anova, discussed in the next section. A
second approach would be to transform the variable to be analyzed in such a
manner that the resulting transformed variates meet the assumptions of the
analysis,

' Let us look at a simple example of what transformation will do. A single
variate of the simplest kind of anova (completely randomized, single-classifica-
tion, Model 1) decomposes as follows: Yj = u + o; + €. In this model the com-
poneq(s are additive, with the error term €;; normally distributed. However,
we might encounter a situation in which the components were multiplicative
in effect, so that ¥; = Hou€;, which is the product of the three terms. In such
a case the assumptions of normality and of homoscedasticity would break
down. In any one anova, the parametric mean yu is constant but the treatment
effect «; differs from group to group. Clearly, the scatter among the variates
¥;; would double in a group in which a; Is twice as great as in another. As-
sumc that g = |, the smallest €;; = 1, and the greatest, 3; then if o; = 1, the range
of the Y's will be 3 — 1 = 2. However, when a; = 4, the corresponding range
will be four times as wide, from 4 x | =4 to 4 x 3 = 12, a range of 8. Such
dulu will be heteroscedastic. We can correct this situation simply by transform-
g our model into logarithms. We would therefore obtain log Y; = log u +
log o; + log €;;, which is additive and homoscedastic. The entire analysis of
variance would then be carried out on the transformed variates,

At this point many of you will feel more or less uncomfortable about what
we have done. Transformation seems too much like “data grinding.” When you
learn that often a statistical test may be made significant after transformation
of a set of data, though it would not be so without such a transformation,
you may feel even morc suspicious. What is the Justification for transforming
the data? 1t takes some getting used to the idea, but there is really no scien-
tific necessity to cmploy the common linear or arithmetic scale to which we
arc accustomed. You are probably aware that teaching of the “new math” in
clementary schools has done much o dispel the naive notion that the decimal
system of numbers is the only “natural”™ one. In a similar way, with some ex-
perience in science and in the handling of statistical data, you will appreciate
the fact that the linear scale. so familiar to all of us from our carliest cxpe-
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rience, occupies a similar position with relation to other scales of measuicment
as does the decimal system of numbers with respect to the binary and octal
numbering systems and others. If a system is multiplicative on a linear scalc,
it may be much more convenient to think of it as an additive system on a
logarithmic scale. Another frequent transformation is the square root of a vari-
able. The square root of the surface area of an organism is often a more
appropriate measure of the fundamental biological variable subjected to phys-
iological and evolutionary forces than is the area. This is reflected in the normal
distribution of the square root of the variable as compared to the skewed dis-
tribution of areas. In many cases experience has taught us to express cxperi-
mental variables not in linear scale but as logarithms, square roots, reciprocals,
or angles. Thus, pH values are logarithms and dilution series in microbiological
titrations are expressed as reciprocals. As soon as you are ready to accept the
idea that the scale of measurement is arbitrary, you simply have to look at the
distributions of transformed variates to decide which transformation most
closely satisfies the assumptions of the analysis of variance before carrying out
an anova.

A fortunate fact about transformations is that very often several departures
from the assumptions of anova are simultaneously cured by the same trans-
formation to a ncw scale. Thus, simply by making the data homoscedastic, we
also make them approach normality and ensure additivity of the treatment
effects.

When a transformation is applied, tests of significance arc performed on
the transformed data, but estimates of means are usually given in the familiar
untransformed scale. Since the transformations discussed in this chapter are
nonlinear, confidence limits computed in the transformed scale and changed
back to the original scale would be asymmetrical. Stating the standard error
in the original scale would thercfore be mislecading. In reporting results of re-
scarch with vanables that require transformation, furnish means in the back-
transformed scale followed by their (asymmctrical) confidence limits rather than
by their standard errors.

An easy way to find out whether a given transformation will yield a dis-
tribution satisfying the assumptions of anova is to plot the cumulative distribu-
tions of the several samples on probability paper. By changing the scale of the
second coordinate axis from lincar to logarithmic, squarc root, or any other one,
we can see whether a previously curved line, indicating skewness, straightens
out to indicate normality (you may wish to refresh your memory on these
graphic techniques studied in Section 5.5). We can look up upper class hmits
on transformed scales or employ a variety of available probability graph papers
whosc second axis is in logarithmic, angular, or other scale. Thus, we not only
test whether the data become more normal through transformation, but we can
also get an estimate of the standard deviation under transformation as mca-
sured by the slope of the fitted line. The assumption of homoscedasticity implics
that the slopes for the several samples should be the same. If the slopes are very
heterogencous, homoscedasticity has not been achicved. Alternatively, we can
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examine goodness of fit tests for normality (see Chapter 13) for the samples
under various transformations. That transformation yielding the best fit over
all samples will be chosen for the anova. It is important that the transformation
not be selected on the basis of giving the best anova results, since such a proce-
dure would distort the signtficance level.

The logarithmic transformation. The most common transformation applied
is conversion of all variates into logarithms, usually common logarithms. When-
ever the mean is positively correlated with the variance (greater means are ac-
companied by greater variances), the logarithmic transformation is quite likely
to remedy the situation and make the variance independent of the mean. Fre-
quency distributions skewed to the right are often made more symmetrical by
transformation to a logarithmic scale. We saw in the previous section and in
Table 10.1 that logarithmic transformation is also called for when effects are
multiplicative.

The square root transformation. We shall use a square root transformation
as a detailed illustration of transformation of scale. When the data are counts,
as of insects on a leaf or blood cells in a hemacytometer, we frequently find
the square root transformation of valuc. You will remember that such distri-
butions are likely to be Poisson-distributed rather than normally distributed
and that in a Poisson distribution the variance is the same as the mean. There-
fore, the mean and variance cannot be independent but will vary identically.
Transforming the variates to square roots will generally make the variances
independent of the means. When the counts include zero values, it has been
found desirable to code all variates by adding 0.5. The transformation then 1s
JY + 4

Table 10.2 shows an application of the squarce root transformation. The
sample with the greater mean has a sigmificantly greater variance prior to trans-
formation. After transformation the variances are not significantly different. For
reporting means the transformed means are squared again and confidence limits
arc reporied in lieu ol standard crrors.

The arcsine transformation. This transformation {(also known as the angular
transformation) s especially appropriate o pereentages and proportions. You
may remember from Section 4.2 that the standard deviation of a binomial
distribution is 6 = \//pq/k. Since = p.g =1 p,and k 1s constant for any one
problem, it is clear that in a binomial distribution the variance would be a func-
tion of the mean. The arcsine translormation preserves the independence of
the two.

The transformation finds 0 = arcsin /p. where p is a proportion. The term
“arcsin”™ is synonymous with inverse sinc or sin ', which stands lor “the angle
whose sine is” the given quantity. Thus, if we compute or look up arcsin
\/”().431 = ().6565, we find 41.03", the angle whose sine is 0.6565. The arcsine trans-
formation stretches out both tails of a distribution of percentages or propor-
tions and compresses the middle. When the percentages in the original data fall
between 3070 and 707, 1t s generally not necessary to apply the arcsine trans-
formation.

TABLE 10.2 »
An application of the square root transformation. The data represent the number of adult Drosophila

emerging from single-pair cultures for two different medium formulations {(medium A contained
DDT).

03] 9
Number of Square root of (3) ("l)
flies emerging number of flies Medium A Medium B
Y JY f /
0 0.00 1 —
1 1.00 5 —
2 1.41 6 —
3 1.73 — —
4 2.00 3 —
5 2.24 — —
6 245 — —
7 2.65 e 2
8 2.83 — 1
9 3.00 — 2
10 3.16 — 3
11 3.32 — 1
12 3.46 -— 1
13 361 1
14 374 — 1
15 3.87 — 1
16 4.00 — E
15 15
Untransformed variable
Y 1.933 11.133
52 1.495 9.410
Square root transformation
JY 1.299 3.307
sZy 0.2634 0.2099 B
Tests of equality of variances
Untransformed Transformed
2 9.410 ooshy, 02634 ‘
! = ' =2 c o= L= T = 255 ns
F,= \‘f = o5 6.294** Foozspa.nay = 298 F, S2y, 02099
Back-transformed (squared) means Medium A Medium B
(JY ) 1.687 10.937
95% confidence limits B
L, = JY — tyosty 1297 — 2.145 02534 3307 — 2.145 0200
= 1015 = 3.053
Ly =Y 4 togssyy 1.583 3.561
Back-transformed (squared) confidence limits
1: 1.030 9.324
L 2.507 12.681
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10.3 Nounparametric methods in lieu of anova

If none of the above transformations manage to make our data meet the as-
sumptions of analysis of variance, we may resort to an analogous nonpara-
metric method. These techniques are also called distribution-free methods, since
they are not dependent on a given distribution (such as the normal in anova),
but usually will work for a wide range of different distributions. They are called
nonparametric methods because their null hypothesis is not concerned with spe-
cific parameters (such as the mean in analysis of variance) but only with the
distribution of the variates. In recent years, nonparametric analysis of vari-
ance has become quite popular because it is simple to compute and permits
freedom from worry about the distributional assumptions of an anova. Yet we
should point out that in cases where those assumptions hold entirely or even
approximately, the analysis of variance is generally the more efficient statis-
tical test for detecting departures from the null hypothesis.

We shall discuss only nonparamctric tests for two samples in this section.
For a design that would give rise to a t test or anova with two classes, we
employ the nonparametric Mann-Whitney U test (Box 10.1). The null hypothesis
1s that the two samples come from populations having the same distribution.
The data in Box 10.1 are measurements of heart (ventricular) function in two
groups of patients that have been allocated to their respective groups on the
basis of other criteria of ventricular dysfunction. The Mann-Whitney U test
as illustrated in Box 10.1 is a semigraphical test and is quite simple to apply.
It will be especially convenient when the data are alrcady graphed and there
are not too many items in each sample.

Note that this method does not really require that cach individual observa-
tion represent a precise measurement. So long as you can order the observa-
tions. you are able to perform these tests. Thus, for example, suppose you
placed some meat out in the open and studied the arrival times of individuals
of two species of blowflies. You could record exactly the time of arnival of
cach individual fly, starting from a point zero in time when the meat was set
out. On the other hand. you nught simply rank arrival times of the two species,
noting that individual 1 of species B came first, 2 mdividuals from species 4
next. then 3 individuals of B, followed by the simultancous arrival of one of
cach of the two specics (a tie). and so lorth. While such ranked or ordered
data could not be analyzed by the parametric methods studied carlier, the
techniques of Box 10.1 are entirely applicable.

The method of calculating the sample statistic U for the Mann-Whitney
test is straightforward, as shown in Box 10.1, 1t is desirable 1o obtain an intuitive
understanding of the rationale behind this test. In the Mann-Whitney test we
can conceive of two extreme situations: in one case the two samples overlap
and coincide entirely: in the other they are quite separate. lo the latter case, if
we take the sample with the lower-valued variates, there will be no points of the
contrasting sample below it that 1s, we can go through every observation in the
lower-valued sample without having any items of the higher-valued onc below

Bla)
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BOX 10.1 .
Mann-Whitney U test for two samples, ranked observations, not paired.

A measure of heart function (left ventricle ejection fraction) measured in two
samples of patients admitted to the hospital \}nder suspicion of hegrt attack. The
patients were classified on the basis of physical examinations during admission
into different so-called Killip classes of ventricular dysfl'm(cnon. We compare the
eft ventricle ejection fraction for patients classified as Killip classes I anq IIL The
higher Killip class signifies patients with more severe symptons. The findings were
already graphed in the source publication, and step 1 illustrates that only a gf&ph
of the data is required for the Mann-Whitney U test. Designate the sample size of
the larger sample as n, and that of the smaller sample as n,. In this case, n, = 29,
n, = 8. When the two samples are of equal size it does not matter which is desig-

nated as ny.

1. Graph the two samples as shown below. Indicate the ties by placing dots at the

same level.
0.8
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2 : :
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2. For each observation in one sample (it is convenient to use the smaller §ample),
count the number of observations in the other sample vyhlch are lower in value
{(below it in this graph). Count 4 for each tied observation. For example, there
are 14 observations in class I below the first observation in class 1. The half
is introduced because of the variate in class I tied with the lowest variate in
class JI1. There are 2} observations below the tied second and third observa-
tions in class 111. There are 3 observations below the fourth and filth vanates
in class I11, 4 observations below the sixth vapate, and 6 and 7 observations,
respectively, below the seventh and eight variates in class I1L. The sum of these
counts C = 295. The Mann-Whitney statistic U, is the greater of thcl two
quantities C and (n,n, — C), in this case 294 and [(29 x 8) — 29}] = 2023.
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Box 10.1

Continued

Testing the significance of U,

No tied variates in samples (or variates tied within samples only). When n, < 20,

compare U, with critical value for Uy, ,,; in Table XI. The null hypothesis is
rejected if the observed value is too large.

In cases where ny > 20, calculate the following quantity

o= Us - n1n2/2
* ﬂ‘nz(fl; + 1, + 1)
12

which is approximately normally distributed. The denominator 12 is a constant.
Look up the significance of t, in Table III against critical values of t,;,; for a one-
tailed or two-tailed test as required by the hypothesis. In our case this would yield

2025—(29)8)2 865
(29)8)(29 + 8 + 1) /734667
12

A further complication arises from observations tied between the two groups.
Our example is a case in point. There is no exact test. For sample sizes n, < 20,
use Table XI, which will then be conservative. Larger sample sizes require a more
elaborate formula. But it takes a substantial number of ties to affect the outcome
of the test appreciably. Corrections for ties increase the t, value slightly; hence
the uncorrected formula is more conservative. We may conclude that the two

samples with a ¢, value of 3.191 by the uncorrected formula are significantly dif-
ferent at P < 0.01.

_u

it. Conversely, all the points of the lower-valued sample would be below every
point of the higher-valued one if we started out with the latter. Our total count
would therefore be the total count of one sample multiplied by every observation
in the second sample, which yiclds n,n,. Thus, since we arc told to take the
greater of the two values, the sum of the counts C or n;n, — C, our result in
this casc would be n n,. On the other hand, if the two samples coincided com-
pletely, then for each point in one sample we would have those points below it
plus a half point for the tied value representing that observation in the second
sample which is at exactly the same level as the observation under consideration.
A little experimentation will show this value to be [n(n — 1)/2] + (1/2) = n?/2.
Clearly, the range of possible U values must be between this and nn,, and the
critical value must be somewhere within this range.

Our conclusion as a result of the tests tn Box 10.1 1s that the two admission
classes characterized by physical examination differ in their ventricular dysfunc-
tion as measured by left ventricular cjection fraction. The sample characterized
as more severely ill has a lower ejection fraction than the sample characterized

: b
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The Mann-Whitney U test is based on ranks, and it measures differences in
location. A nonparametric test that tests differences between two distributions
is the Kolmogorov-Smirnov two-sample test. Its null hypothesis is identity in dis-
tribution for the two samples, and thus the test is sensitive to differences in
location, dispersion, skewness, and so forth. This test is quite simple to carry out.
1t is based on the unsigned differences between the relative cumulative frequency
distributions of the two samples. Expected critical values can be looked up in a
table or evaluated approximately. Comparison between observed and expected
values leads to decisions whether the maximum difference between the two
cumulative frequency distributions is significant.

Box 10.2 shows the application of the method to samples in which both
n, and n, < 25. The example in this box features morphological measurements

[

BOX 10.2

Kolmogorov-Smirnov two-sample test, testing differences in distributions of two
samples of continuous observations. (Both n, and n, < 25.)

Two samples of nymphs of the chigger Trombicula lipovskyi. Variate measured is
length of cheliceral base stated as micrometer units. The sample sizes are ny = 16,
n, = 10,

Sample A Sample B
Y Y
104 100
109 105
112 107
114 107
116 108
118 11
118 116
119 120
121 121
123 123
125
126
126
128
128
128

Source: Data by D. A, Crossley

Computational steps

1. Form cumulative frequencies F of the items in samples 1 and 2. Thus in col-
umn (2} we note that there are 3 measurements in sample A at or below 112.5
micrometer units. By contrast there are 6 such measurements in sample B
{column (3)).

2. Compute relative cumulative frequencies by dividing frequencies in columns (2)
and (3) by n, and n,, respectively, and enter in columns (4) and (5).
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Box 10.2
Continued
3. Compute d, the absolute value of the difference between the relative cumulative

4.
5,
6.

frequencies in columns (4) and (5), and enter in column (6).
Locate the largest unsigned difference D. It is 0.475.
Multiply D by n,n,. We obtain (16)( 10)(0.475) = 76.

Compare n,n,D with its critical value in Table XIIL where we obtain a val
of 84 for P = 0.05. We accept the null hypothesis that the two samples ‘;m:::
beep taken fgom populations with the same distribution. The Kolmogorov-
Smlmov test is less powerful than the Mann-Whitney U test shown in Box 10.1
with respect to the alternative hypothesis of the latter, i.c., differences in location,
However, Kolmogorov-Smirnov tests differences in both shape and location
of the distributions and is thus a more comprehensive test.

(n & 8] ) 18 ©®
Sample A Sample B f_‘_ f_? d= F, F,

Y Fy F, ny n; N 73: - ;7:
100 1 0.100 0.4
101 0 1 0 0.100 O.Igg
102 0 1 0 0.100 0.100
103 0 1 0 0.100 0.100
104 1 1 0.062 0.100 0.038
105 1 2 0.062 0.200 0.138
106 1 2 0.062 0.200 0.138
107 i 4 0.062 0.400 0.338
108 i 5 0.062 0.500 0.438
109 2 5 0.125 0.500 0.375
110 2 5 0.125 0.500 0.375
111 2 6 0.125 0.600 0475« D
112 3 6 0.188 0.600 0412
113 3 6 0.188 0.600 0412
114 4 6 0.250 0.600 0.350
115 4 6 0.250 0.600 0.350
116 5 7 0.312 0.700 0.388
117 5 7 0.312 0.700 0.388
118 7 7 0.438 0.700 0.262
119 8 7 0.500 0.700 0.200
120 8 8 0.500 0.800 0.300
121 9 9 0.562 0.900 0.338
122 9 9 0.562 0.900 0.338
123 10 10 0.625 1.000 0.375
124 10 10 0.625 1.000 0.375
125 11 10 0.688 1.000 0312
126 13 10 0.812 1.000 0.188
127 13 10 0.812 1.000 0.188
128 16 10 1.000 1.000 0
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of two samples of chigger nymphs. We use the symbol F for camulative frequen-
cies, which are summed with respect to the class marks shown in column (1),
and we give the camulative frequencies of the two samples in columns (2) and
(3). Relative expected frequencies are obtained in columns (4} and (5) by dividing
by the respective sample sizes, while column (6) features the unsigned difference
between relative cumulative frequencies. The maximum unsigned difference is
D = 0.475. 1t is multiplied by n,n, to yield 76. The critical value for this statistic
can be found in Table XIII, which furnishes critical values for the two-tailed two-
sample Kolmogorov-Smirnov test. We obtain n,n,D4 ,0 = 76 and n,n,D, o5 =
84. Thus, there is a 10% probability of obtaining the observed difference by
chance alone, and we conclude that the two samples do not differ significantly
in their distributions.

When these data are subjected to the Mann-Whitney U test, however, one
finds that the two samples are significantly different at 0.05 > P > 0.02. This
contradicts the findings of the Kolmogorov-Smirnov test in Box 10.2. But that
is because the two tests differ in their sensitivities to different alternative hy-
potheses—the Mann-Whitney U test is sensitive to the number of interchanges
in rank (shifts in location) necessary to separate the two samples, whereas the
Kolmogorov-Smirnov test measures differences in the entire distributions of the
two samples and is thus less sensitive to differences in location only.

It is an underlying assumption of all Kolmogorov-Smirnov tests that the
variables studied are continuous. Goodness of fit tests by means of this statistic
are treated in Chapter 13.

Finally, we shall present a nonparametric method for the paired-compari-
sons design, discussed in Section 9.3 and illustrated in Box. 9.3. The most widcly
used method is that of Wilcoxon's signed-ranks test, illustrated in Box 10.3. The
example to which it is applied has not yet been encountered in this book. It
records mean litter sizc in two strains of guinea pigs kept in large colonies
during the years 1916 through 1924, Each of these values is the average of a
large number of litters. Note the parallelism in the changes in the variable in
the two strains. During 1917 and 1918 (war years for the United States), a
shortage of carctakers and of food resulted in a decrease in the number of
offspring per litter. As soon as better conditions returned, the mean litter size
increased. Notice that a subsequent drop in 1922 is again mirrored in both
lincs, suggesting that these fluctuations arc cnvironmentally caused. It is
therefore quite appropriate that the data be treated as paired comparisons, with
years as replications and the strain differences as the fixed treatments to be
tested.

Column (3) in Box 10.3 lists the differences on which a conventional paired-
comparisons I test could be performed. For Wilcoxon’s test these differences
arc ranked without regard 1o sign in column (4), so that the smallest absolute
difference is ranked | and the largest absolute difference (of the nine differences)
is ranked 9. Tied ranks are computed as averages of the ranks; thus if the fourth
and fifth difference have the same absolute magnitude they will both be assigned
rank 4.5. After the ranks have been computed, the original sign of each difference
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BOX 10.3
Wilcoxon’s signed-ranks test for two groups, arranged as paired observations,
Mean litter size of two strains of guinea pigs, compared over n = 9 years,

) 2 3

Year Strain B Strain 13 (D) Rar(x‘}ic)(R)
1916 2.68 2.36 +0.32 +9
1917 2.60 241 +0.19 +8
1918 243 2.39 +0.04 +2
1919 2.90 2.85 +0.,05 +3
1920 2.94 282 +0.12 +7
1921 2.70 273 ~0.03 -1
1922 2.68 2.58 +0.10 +6
1923 2.98 2.89 +0.09 +5
1924 2.85 2.78 +0.07 +4
Absolute sum of negative ranks 1
Sum of positive ranks 44

Source: Data by S. Wright.

Procedure

1. Compute the differences between the n pairs of observations. These are entered

in column (3), labeled D.

2. Rank these differences from the smallest to the largest without regard to sign.

3. Assign to the ranks the original signs of the differences.

4. Sum the positive and negative ranks separately. The sum that is smaller in

absolute value, T, is compared with the values in Table XII for n = 9.

~ Since T, = 1, which is equal to or less than the entry for one-tailed o = 0.005
in the table, our observed difference is significant at the 1% level. Litter size in

strain B is significantly different from that of strain [3.

For large samples (n > 50) compute

t, =

where T, is as defined in step 4 above. Compare the computed value with ¢

i Table 1.

afa)

-
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is assigned to the corresponding rank. The sum of the positive or of the negative
ranks, whichever one is smaller in absolute value, is then computed (it is labeled
T,) and is compared with the critical vaiue T in Table XII for the corre-
sponding sample size. In view of the significance of the rank sum, it is clear
that strain B has a litter size different from that of strain 13.

This is a very simple test to carry out, but it is, of course, not as efficient
as the corresponding parametric ¢ test, which should be preferred if the necessary
assumptions hold. Note that one needs minimally six differences in order to
carry out Wilcoxon’s signed-ranks test. With only six paired comparisons, all
differences must be of like sign for the test to be significant at the 5% level.

For a large sample an approximation using the normal curve is available,
which is given in Box 10.3. Note that the absolute magnitudes of the differences
play a role only insofar as they affect the ranks of the differences.

A still simpler test is the sign test, in which we count the number of positive
and negative signs among the differences (omitting all differences of zero). We
then test the hypothesis that the n plus and minus signs are sampled from a
population in which the two kinds of signs are present in equal proportions,
as might be expected if there were no true difference between the two paired
samples. Such sampling should follow the binomial distribution, and the test
of the hypothesis that the parametric frequency of the plus signs 1s p = 0.5 can
be made in a number of ways. Let us learn thesc by applying the sign test to
the guinca pig data of Box 10.3. There arc nine differcnces, of which eight arc
positive and one is negative. We could follow the methods of Section 4.2
(illustrated in Table 4.3) in which we calculate the cxpected probability of
sampling one minus sign in a sample of nine on the assumption of p = § = 0.5.
The probability of such an occurrence and all “worse™ outcomes equals 0.0195.
Since we have no a priori notions that one strain should have a greater litter
size than the other, this is a two-tailed test, and we double the probability to
0.0390. Clearly, this is an improbable outcome, and we reject the null hypothesis
that p = § = 0.5.

Since the computation of the exact probabilitics may be quite tedious if no
table of cumulative binomial probabilitics i1s at hand, we may take a sccond
approach, using Table 1X, which furnishes confidence hmits for p for various
sample sizes and sampling outcomes. Looking up sample size 9 and Y = |
(number showing the property), we find the 95% confidence limits to be 0.0028
and 0.4751 by interpolation, thus excluding the value p = § = 0.5 postulated
by the null hypothesis. At least at the 5% significance level we can conclude
that it 1s unlikely that the number of plus and minus signs 1s equal. The con-
fidence limits imply a two-tailed distribution; if we intend a one-tailed test, we
can infer a 0.025 significance level from the 95% confidence limits and a 0.005
level from the 99°0 himits. Obviously, such a onc-tailed test would be carried
out only if the results were in the direction of the alternative hypothesis. Thus,
i the alternative hypothesis were that strain 13 in Box 10.3 had greater litter
size than strain B, we would not bother testing this example at all, since the
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observed proportion of years showing this relation is less than half. For larger
samples, we can use the normal approximation to the binomial distribution as
follows: t, = (Y — p)/oy = (Y — kp)/\/g, where we substitute the mean and
standard deviation of the binomial distribution learned in Section 4.2. In
our case, we let n stand for k and assume that p = § = 0.5. Therefore, ¢, =
(Y — Ln)/v/3n = (Y — in)/A/n. The value of ¢, is then compared with Lo IN
Table II1, using one tail or two tails of the distribution as warranted. When the
sample size n > 12, this is a satisfactory approximation.

A third approach we can use is to test the departure from the expectation
that p = § = 0.5 by one of the methods of Chapter 13.

Exercises

10.1  Allee and Bowen (1932) studied survival time of goldfish (in minutes) when placed
in colloidal silver suspensions. Experiment no. 9 involved 5 replications, and
experiment no. 10 involved 10 replicates. Do the results of the two experiments
differ? Addition of urea, NaCl, and Na,S to a third series of suspensions ap-
parently prolonged the life of the fish.

Colloidal silver

Urea and

Experiment no. 9 Experiment no. [0 salts added
210 150 330
180 180 300
240 210 300
210 240 420
210 240 360

120 270
180 360
240 360
120 300
150 120

Analyze and interpret. Test equality of vanances. Compare anova results with
those obtained using the Mann-Whitney U test for the two comparisons under
study. To test the effect of urea it might be best to pool Experiments 9 and 10,
il they prove not to differ significantly. ANS. Test for homogeneity of Experi-
ments 9 and 10, U, = 33. ns. For the comparison of Experiments 9 and 10 versus
urea and salts, U, = 36, P < 0.00].

10.2  Inastudy of flower color in Butterflyweed (Asclepias tuberosa), Woodson (1964)
obtained the following results:

Geoyraphic

region Y n 5
Cl 293 226 4.59
Sw2 15.8 94 10.15

SW3 6.3 23 1.22
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The variable recorded was a color score (ranging from 1 for pure yellow to 40
for deep orange-red) obtained by matching flower petals to sample colors 1n
Maerz and Paul’s Dictionary of Color. Test whether the samples are homo-
scedastic. ) . ‘
Test for a difference in surface and subsoil pH in the data of Exercise 9.1, using
Wilcoxon’s signed-ranks test. ANS. T, = 38; P > 0.10.

Number of bacteria in | cc of milk from three cows counted at three periods
(data from Park, Williams, and Krumwiede, 1924):

Cow no. At time of milking After 24 hours After 48 hours
1 12,000 14,000 57,000
2 13,000 20,000 65,000
3 21,500 31,000 106,000

(a) Calculate means and variances for the three periods and examine the relation
between these two statistics. Transform the variates to logarithms and com-
pare means and variances based on the transformed data. Discuss.

{b) Carry out an anova on transformed and untransformed data. Discuss your
results.

Analyze the measurements of the two samples of chigger nymphs in Box 10.2

by the Mann-Whitney U test. Compare the results with those shown in Box 10.2

for the Kolmogorov-Smirnov test. ANS. U, = 123.5, P < 0.05.

Allee et al. (1934) studied the rate of growth of Ameiurus melas in conditioned

and unconditioned well water and obtained the following results for the gain in

average length of a sample fish. Although the original variates are not avai]able.
we may still test for differences between the two treatment classes. Use the sign
test to test for differences in the paired replicates.

Average gain in length
(in mullimeters)

Conditioned Unconditioned
Replicatc water water
1 2.20 1.06
2 1.05 0.06
3 3.25 3.55
4 2.60 1.00
5 1.90 1.10
6 1.50 0.60
7 2.25 1.30
8 1.00 0.90
9 —0.09 —0.59
10 0.83 0.58
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Regression

Wec now turn to the simultaneous analysis of two variables. Even though we
may have considered more than one variable at a time in our studies so far
(for example, seawater concentration and oxygen consumption in Box 9.1, or
age of girls and their lace widths in Box 9.3), our actual analyses were of only
one variable. However, we frequently measure two or more variables on each
individual, and we consequently would like to be able to express more precisely
the nature of the relationships between these variables. This brings us to the
subjects of regression and correlation. In regression we estimate the relationship
of onc variable with another by expressing the one in terms of a lincar (or a
more complex) function of the other. We also use regression to predict values
of one variable in terms of the other. In correlation analysis, which is sometimes
confused with regression, we estimate the degree to which two variables vary
together. Chapter 12 deals with correlation, and we shall postpone our effort
to clarily the relation and distinction between regression and corrclation until
then. The vanables involved in regression and correlation are either continuous
or meristic; il meristic, they are treated as though they were continuous. When
variables arc qualitative (that is, when they are attributes), the methods of
regression and correlation cannot be used.
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In Section 11.1 we review the notion of mathematical functions and in-
troduce the new terminology required for regression analysis. This is followed
in Section 11.2 by a discussion of the appropriate statistical models for regres-
sion analysis. The basic computations in simple linear regresston are shown in
Section 11.3 for the case of one dependent variate for each independent variate.
The case with several dependent variates for each independent variate is treated
in Section 11.4. Tests of significance and computation of confidence intervals
for regression problems are discussed in Section 11.5.

Section 11.6 serves as a summary of regression and discusses the various
uses of regression analysis in biology. How transformation of scale can straighten
out curvilinear relationships for ease of analysis is shown in Section 11.7. When
transformation cannot linearize the relation between variables, an alternative
approach is by a nonparametric test for regression. Such a test is illustrated in
Section 11.8.

11.1 Introduction to regression

Much scientific thought concerns the relations between pairs of variables hy-
pothesized to be in a cause-and-effect relationship. We shall be content with
establishing the form and significance of functional relationships between two
variables, leaving the demonstration of cause-and-effect relationships to the
established procedures of the scientific method. A function is a mathematical
relationship enabling us to predict what values of a variable Y correspond to
given values of a variable X. Such a relationship, generally written as Y = f(X),
is [amiliar to all of us.

A typical linear regression is of the form shown in Figure 11.1, which
illustrates the effect of two drugs on the blood pressure of two species of

Y =a+bX
Y . . .
1201 = 20+ 15X  Drug A on ajmal ¥
&0
T oo =30+ 7.5X  Drug 13 on animal Q
£ .
= 80 " =204 75X Drug B on animal P
2
s 60
o
&
240
2
S 2
m
i | 1. ] 1 | J I ‘\’
0 1 2 3 1 5 6 7 8
Micrograms of drug/ee blood
MGURE 111

Blood pressure of an animal m mmMHg as a function of drug concentration in ug per ce of blood.
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animals. The relationships depicted in this graph can be expressed by the
formula Y = a + bX. Clearly, Y is a function of X. We call the variable Y the
dependent variable, while X is called the independent variable. The magnitude
of blood pressure Y depends on the amount of the drug X and can therefore
be predicted from the independent variable, which presumably is free to vary.
Although a cause would always be considered an independent variable and an
eflect a dependent variable, a functional relationship observed in nature may
actually be something other than a cause-and-effect relationship. The highest
line is of the relationship Y = 20 + 15X, which represents the effect of drug
A on animal P. The quantity of drug is measured in micrograms, the blood
pressure in millimeters of mercury. Thus, after 4 ug of the drug have been given,
the blood pressure would be Y = 20 + (15)(4) = 80 mmHg. The independent
variable X 1s multiplied by a coefficient b, the slope factor. In the example
chosen, b = 15; that is, for an increase of one microgram of the drug, the blood
pressure is raised by 15 mm.

In biology, such a relationship can clearly be appropriate over only a limited
range of values of X. Negative values of X are mecaningless in this case; it is
also unlikely that the blood pressure will continue to increase at a uniform rate.
Quite probably the slope of the functional relationship will flatten out as the
drug level rises. But, for a limited portion of the range of variable X (micrograms
of the drug), the linear relationship ¥ = « + hX may be an adequate description
of the functional dependence of Y on X.

By this formula, when the independent variable equals zero, the dependent
variable equals a. This point is the interesection of the function line with the
Y axis. It is called the Y intercept. In Figure 1.1, when X = (. the function
just studied will yield a blood pressure of 20 mmHg, which is the normal blood
pressure of animal P in the absence of the drug.

The two other functions in Figure 11.1 show the effects of varying both
a, the Y intercept, and b, the slope. In the lowest line, Y = 20 + 75X, the Y
intereept remains the same but the slope has been halved. We visualize this as
the effect of a different drug, B, on the same organism P. Obviously, when no
drug is administered, the blood pressure should be at the same Y intercept,
since the identical organism is being studied. However, a different drug is likely
to exert a different hypertensive effect, as reflected by the different slope. The
third relationship also describes the effect of drug B, which is assumed to remain
the same, but the experiment is carried out on a different species, Q, whose
normal blood pressure is assumed to be 40 mmHg. Thus, the equation for the
effect of drug B on species Q is written as Y = 40 + 7.5X. This line is parallel
to that corresponding to the second equation.

I'rom your knowledge of analytical gcometry you will have recognized the
slope factor b as the slope of the function Y =« + bX, generally symbolized
by m. In calculus, b is the derivative of that same function (dY/dX =h). In
biostatistics, b is called the regression cocfficient, and the function is called a
regression equation. When we wish to stress that the regression coeflicient is of
variable Y on variable X, we write by .

11.2 Models in regression

In any real example, observations would not lie perfectly along a regression line
but would scatter along both sides of the line. This scatter is usually due to
inherent. natural variation of the items (genetically and environmentally caused)
and also due to measurement error. Thus, in regression a functional relationship
does not mean that given an X the value of ¥ must be a 4+ bX, but rather that
the mean (or expected value) of Y is a + bX. '

The appropriate computations and significance tests in regression relate to
the following two models. The more common of these, Model 1 regressiqn, is
especially suitable in experimental situations. 1t is based on four assumptions.

1. The independent variable X is measured without error. We therefore say
that the X's are “fixed.” We mean by this that whereas Y, the dependent
variable, is a random variable, X does not vary at random but is under the
control of the investigator. Thus, in the example of Figure 11.1 we have
varied dose of drug at will and studied the response of the random
variable blood presssure. We can manipulate X in the same way that we
were able to manipulate the treatment effect in a Model I anova. As a
matter of fact, as you shall see later, there is a very close relationship
between Model | anova and Model | regression.

2. The expected value for the variable Y for any given value. X 1s dcscribgd
by the linear function g, = o + iX. This is the same relation we have just
encountered. but we use Greek letters instead of a and b, since we are
describing a parametric relationship. Another way of stating this
assumption is that the parametric means gty of the values of Y are a
function of X and lic on a straight line described by this cquation.

3. For any given value X, of X_ the Y's are independently and normally
distributed. This can be represented by the equation Y, = a + iX; 4 €,
where the ¢;'s arc assumed to be normally distributed crror terms with a
mean of zero. Figure 1.2 illustrates this concept with a regression line
similar to the ones in Figure 1.1 A given experiment can be repeated
several times. Thus, for instance, we could administer 2, 4, 6, 8, and 10 pg
of the drug to cach of 20 individuals ol an animal species and obtain a

HGURE 11.2

Blood pressure of an animal
inmmilg as a function of drug
concentration in g per cc of
blood. Repeated sampling for
a given drug concentration.

(Mierograms of dreag ee blood®
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frequency distribution of blood pressure responses Y to the independent
variates X = 2, 4, 6, 8, and 10 ug. In view of the inherent variability of
biological material, the responses to each dosage would not be the same in
every individual; you would obtain a frequency distribution of values of Y
(blood pressure) arcund the expected value. Assumption 3 states that these
sample values would be independently and normally distributed. This is
indicated by the normal curves which are superimposed about several
points in the regression line in Figure 11.2. A few are shown to give you an
idea of the scatter about the regression line. In actuality there is, of course,
a continuous scatter, as though these separate normal distributions were
stacked right next to each other, there being, after all, an infinity of
possible intermediate values of X between any two dosages. In those rare
cases in which the independent variable is discontinuous, the distributions
of Y would be physically separate from each other and would occur only
along those points of the abscissa corresponding to independent variates.
An example of such a case would be weight of offspring (¥) as a function
of number of oflspring (X) in litters of mice. There may be three or

four offspring per litter but there would be no intermediate value of X
representing 3.25 mice per litter.

Not every experiment will have more than one reading of Y for each
value of X. In fact, the basic computations we shall learn in the next
section are for only one value of Y per value of X, this being the more
common case. However, you should realize that even in such instances the
basic assumption of Model I regression is that the single variate of Y
corresponding to the given value of X is a sample from a population of
independently and normally distributed variates.

4. The final assumption is a familiar onc. We assume that these samples
along the regression line are homoscedastic; that is, that they have a
common variance a2, which is the variance of the €'s in the expression in
item 3. Thus, we assume that the variance around the regression line is
constant and independent of the magnitude of X or Y.

Many regression analyses in biology do not meet the assumptions of Model
[ regression. Frequently both X and Y are subject to natural variation and/or
measurement error. Also, the variable X is somctimes not fixed, that is, under
control of the investigator. Suppose we sample a population of female flics and
measure wing length and total weight of each individual. We might be interested
in studying wing length as a function of weight or we might wish to predict
wing length for a given weight. In this case the weight, which we treat as an
independent variable, is not fixed and certainly not the “causc™ of differences
in wing length. The weights of the flics will vary for genetic and ecnvironmental
reasons and will also be subject to measurement error. The general case where
both variables show random variation is called Model 11 regression. Although,

as will be discussed in the next chapter, cases of this sort arc much betier
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analyzed by the methods of correlation analysis, we sometimes wish to describe
the functional relationship between such variables. To do so, we need to resort
to the special techniques of Model II regression. In this book we shall limit
ourselves to a treatment of Model 1 regression.

11.3 The linear regression equation

To learn the basic computations necessary to carry out a Model I linear regres-
sion, we shall choose an example with only one Y value per independent variate
X, since this i1s computationally simpler. The extension to a sample of values
of Y for each X is shown in Section 11.4. Just as in the case of the previous
analyses, there are also simple computational formulas, which will be presented
at the end of this section.

The data on which we shall learn regression come from a study of water loss
in Tribolium confusum, the confused flour beetle. Nine batches of 25 beetles were
weighed (individual beetles could not be weighed with available equipment),
kept at different relative humidities, and weighed again after six days of starva-
tion. Weight loss in milligrams was computed for each batch. This is clearly a
Model I regression, in which the weight loss is the dependent variable Y and
the relative humidity is the independent variable X, a fixed treatment effect
under the control of the experimenter. The purpose of the analysis is to estab-
lish whether the relationship between relative humidity and weight loss can be
adequately described by a linear regression of the general form Y =a + bX.

The original data are shown in columns (1) and (2) of Tablc 11.1. They are
plotied in Figure 11.3, from which it appears that a negative relationship exists
between weight loss and humidity; as the humidity increases, the weight loss
decreases. The means of weight loss and relative humidity, ¥ and X, respectively,
are marked along the coordinate axes. The average humidity is 50.39%, and the
average weight loss is 6.022 mg. How can we fit a regression line to these data,
permitting us to estimate a value of Y for a given value of X? Unless the actual
observations lic exactly on a straight line, we will need a criterion for deter-
mining the best possible placing of the regression line. Statisticians have gen-
erally followed the principle of least squares, which we first encountered in
Chapter 3 when learning about the arithmetic mean and the variance. If we
were {o draw a horizontal line through X, Y (that is, a line parallel to the X
axis at the level of Y), then deviations to that line drawn parallel to the Y
axis would represcnt the deviations from the mean for these observations with
respect to variable Y (see Figure 11.4). We learned in Chapter 3 that the sum of
these observations Z(Y — Y) = Ty = 0. The sum of squares of these deviations,
Z(Y — Y)? = £y% is less than that from any other horizontal line. Another
way of saying this is that the arithmetic mean of Y represents the least squares
horizontal line. Any horizontal line drawn through the data at a point other
than Y would yield a sum of deviations other than zero and a sum of deviations
squared greater than X y2. Therefore, a mathematically correct but impractical



BLE 11.1

asic computations in regression. Weight loss (in mg) of nine batches of 23 Tribolium beetles after six days of starvation at nine different humidities.

(12)

{11}

(10)

9)

(7)

6)

14)

Weight

loss

(in mg)

dy y =

X

humidity

o
<

~

Xy

(Y — 1)

(X -X)

Y

7.1921
4.1747
1.2361
0.1547
0.0193
04153

2.6818
20432
1.1118
0.3933
—0.1389
—0.6444
—1.3363
—1.8419
—2.2677

0.2762 0.0763
0.0748 0.0056

—~0.4638 0.2151

8.7038
8.0652
7.1338
6.4153
5.8831
5.3776
4.6857
4.1801
3.7543
54.1989
6.022

8.7498
4.4859
0.4199
0.0034

—149.0536

2539.1521
1473.7921
436.39

2958

—50.39
—38.39
—-20.89

8.98
8.14
6.67
6.08

—81.3100

2118
0.648
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67
—0.4286
—0.3184
—2.3251

—33.6976
—63.0594
—98.0882
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[ag]
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g
o
(o]

—0.3353 0.1124

0.0169 0.0003
0.4524 02047
—0.0057 0.0000

0.0149
0.0369
1.8010
3.3197
5.2992

1.7857
3.3926
5.1425

0.0009 23.5130

0.0199 0.0004

—0.0343 0.0012

0.058

—-7.39

1211

5.83
4.68
4.20

62.5

75.5
85

[.822

3461

0.6160

24.1307

0.0011

—441.8176

6.022

9

el o

im

iean

0.0880"

3.0163

— 552272

1037.6736

am (n— 1)

2 Sum divided by n — 2.

Nelson (1964}
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w 5 . Weight loss (in mg) of nine batches of 25
% 4 b . Tribolium beetles after six days of starva-
% * tion at nine different relative humidities.
K 3 r Data from Table 11.1, after Nelson (1964).
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method for finding the mean of Y would be to draw a series of horizontal lines
across a graph, calculate the sum of squares of deviations from it, and choose
that line yielding the smallest sum of squares. )

In lincar regression, we still draw a straight line through our observations,
but it is no longer necessarily horizontal. A sloped regression line will indicate
for each value of the independent variable X; an estimated value of the de-
pendent variable. We should distinguish the estimated value of Y, which we
shall hereafter designate as f’, (read: Y-hat or Y-caret), and the observed values,
conventionally designated as Y. The regression equation therefore should read

Y=a+hX (1.1}

data of Figure 11.3.

w0 _

£ 6 }

PR FIGURE 11.4
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b
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which indicates that for given values of X, this equation calculates estimated
values Y (as distinct from the observed values Y in any actual case). The devia-
tion of an observation Y, from the regression line is (Y, — f’,-) and is generally
symbolized as dy. x. These deviations can still be drawn parallel to the Y axis,
but they meet the sloped regression line at an angle (see Figure 11.5). The sum
of these deviations is again zero (£ dy. y = 0), and the sum of their squares yields
a quantity (Y — Y)? = £d} , analogous to the sum of squares % y2. For rea-
sons that will become clear later, £ d2  is called the unexplained sum of squares.
The least squares linear regression line through a set of points is defined as that
straight line which results in the smallest value of Zdj x. Geometrically, the
basic idea is that one would prefer using a line that is in some sense close to
as many points as possible. For purposes of ordinary Model I regression analy-
sts, 1t 1s most useful to define closeness in terms of the vertical distances from
the points to a line, and to use the line that makes the sum of the squares
of these deviations as small as possible. A convenient consequence of this cri-
terion is that the linc must pass through the point X, ¥. Again, it would be
possible but impractical to calculate the correct regression slope by pivoting
a ruler around the point X, Y and calculating the unexplained sum of squares
L dj.x for each of the innumerable possible positions. Whichever position gave
the smallest value of £d? ., would be the least squares regression linc.

The formula for the slope of a line based on the minimum value of Tdy
is obtained by means of the calculus. It is

Xy
b|'<.\' = Z 1
>

Let us caleulate b = £ xy/2 x2 for our weight loss data.

We first compute the deviations from the respective means of X and Y,

as shown in columns (3) and (4) of Table 11.1. The sums of these deviations,

(11.2)

o0
E
% FIGURE 11.5
= Deviations from the regression line for the
= data of Figure 11.3.
2
=
2
| -
\
T
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X x and Xy, are slightly different from their expected value of zero because of
rounding errors. The squares of these deviations yield sums of squares and
variances in columns (5) and (7). In column (6) we have computed the products
xy, which in this example are all negative because the deviations are of unlike
sign. An increase in humidity results in a decrease in weight loss. The sum of
these products X" xy is a new quantity, called the sum of products. This is a poor
but well-established term, referring to X xy, the sum of the products of the devia-
tions rather than £ XY, the sum of the products of the variates. You will
recall that X y? is called the sum of squares, while £Y? is the sum of the squared
variates. The sum of products is analogous to the sum of squares. When divided
by the degrees of freedom, it yields the covariance, by analogy with the vari-
ance resulting from a similar division of the sum of squares. You may recall first
having encountered covariances in Section 7.4. Notc that the sum of products
can be negative as well as positive. If it is negative, this indicates a negative
slope of the regression line: as X increascs, Y decreascs. In this respect it differs
from a sum of squares, which can only be positive. From Table [ 1.1 we find that
Exy = —441.8176, £ x* = 8301.3889, and b = X xy/T x? = —0.053,22. Thus,
for a one-unit increase in X, therc is a decrease of 0.053,22 units of Y. Relating
il to our actual example, we can say that for a 1% increase in relative humidity,
there 1s a reduction of 0.053,22 mg in weight loss.

You may wish to convince yoursell that the formula for the regression
coefficient is intuitively reasonable. It is the ratio of the sum of products of
deviations for X and Y to the sum of squares of deviations for X. If we look
at the product for X, a single value of X, we obtain x;y,. Similarly, the squared
deviation for X; would be x7, or x,x,. Thus the ratio x,y/x.x; reduces to y,/x;.
Although X x3/% x? only approximates the average of y,/x; for the n values of
X, the latter ratio indicates the direction and magnitude of the change in Y
for a unit change in X. Thus, il y, on the average equals x;. b will cqual 1. When
Vi = —x, b= -1 Also, when |v| > |x]. b > [l|; and conversely, when [y| <
x| b < 1)

How can we complete the equation Y = a + bX? We have stated that the
regression line will go through the point X, Y. At X = 50.39. ¥ = 6.022; that is,
we use Y, the observed mean ol Y, as an estimate Y of the mean. We can sub-
stitute these means o Fxpression (11.1):

Y =a+bhX

Y =a+bX

a=7Y - hX

a = 6022 — (-0.053,22)50.39
= &.7038

Therclore,

Y = 8.7038 — 0.053.22X
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This is the equation that relates weight loss to relative humidity. Note that when
X is zero (humidity zero), the estimated weight loss is greatest. It is then equal
to a = 8.7038 mg. But as X increases to a maximum of 100, the weight loss de-
creases to 3.3818 mg.

We can use the regression formula to draw the regression line: simply esti-
mate ¥ at two convenient points of X, such as X = 0 and X = 100, and draw
a straight line between them. This line has been added to the observed data
and is shown in Figure 11.6. Note that it goes through the point X, Y. In
fact, for drawing the regression line, we frequently use the intersection of the two
means and one other point.

Since

a=Y —bX
we can write Expression (11.1), Y =a+bX,as

Y =(Y - bX)+ bX

=Y+ bX —X)
Therefore,
Y=Y +bx
Also,
Y - Y =bx
§ = bx (11.3)

where § is defined as the deviation ¥ — Y. Next, using Expression (11.1), w
estimate Y for every one of our given values of X. The estimated values Y are
shown in column (8) of Table 11.1. Comparc them with the observed values

&

g

=

] FIGURE 11.6

g . L

= Linear regression fitted to data of
_—g Figure 11.3.

=
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of Y in column (2). Overall agrcement between the two columns of values is

good. Note that except for rounding errors, LY = 3Y and hence Y = )_’.AHow-
ever, our actual Y values usually are different from the estimated values Y. This
is due to individual variation around the regression line. Yet, the regression line
is a better base from which to compute deviations than the arithmetic average
Y, since the value of X has been taken into account in constructing it.

When we compute deviations of each observed Y value from its estimated
value (Y — Y) = d, . ; and list these in column (9), we notice that these deviations
exhibit one of the properties of deviations from a mean: they sum to zero except
for rounding errors. Thus Zdy .y =0, just as Ly = 0. Next, we compute in
column (10) the squares of these deviations and sum them to give a new sum
of squares, £d3 .y = 0.6160. When we compare (Y — Y)? = £y? = 24.1307
with (Y — ¥)? = £d2 , = 0.6160, we note that the new sum of squares is
much less than the previous old one. What has caused this reduction? Allowing
for different magnitudes of X has eliminated most of the variance of Y from
the sample. Remaining is the unexplained sum of squares £ ds . x, which expresses
that portion of the total SS of Y that is not accounted for by differences in X.
It is unexplained with respect to X. The difference between the total SS, Xy,
and the unexplained SS, Zdi . . is not surprisingly called the explained sum of
squares, £ 9, and is based on the deviations § = ¥ — Y. The computation of
these deviations and their squares is shown in columns (11) and (12). Note that
¥ § approximates zero and that T # = 23.5130. Add the unexplained SS (0.6160)
to this and you obtain £ y? = L {* + T di . , = 24.1290, which is equal (except
for rounding errors) to the independently calculated value of 24.1307 in column
(7). We shall return to the meaning of the unexplained and explained sums of
squares in later sections.

We conclude this section with a discussion of calculator formulas for com-
puting the regression equation in cases where there is a single value of Y for
each value of X. The regression coeflicient ¥ xy/Z x* can be rewritten as

n

/;,,_X:Z(X'"X)”l =¥ (11.4)

SUX XY

The denominator of this expression is the sum ol squares of X. Its computational
formula, as first encountered in Section 39, is X x* = £ X? (X X)?/n. We shall
now learn an analogous formula for the numerator of Expression (11.4), the sum
of products. The castomary formula is

e (20

n

(11.5)

The quantity X XY is simply the accumulated product of the two variables.
Expression (11.5) is derived in Appendix A1.5. The actual computations for a



242 CHAPTER 11 / REGRESSION

regression equation (single value of Y per value of X) are illustrated in Box 11.1,
employing the weight loss data of Table 11.1.

To compute regression statistics, we need six quantities initially. These are
nEX,2X%XTY, Y2 and L XY. From these the regression equation is calcu-
lated as shown in Box 11.1, which also illustrates how to compute the explained

BOX 11.1
Computation of regression statistics. Single value of Y for each value of X,

Data from Table 11.1.

Weight loss

in mg(Y) 898 814 667 608 3590 583 468 420 372
Percent relative

humidity (X) 0 120 295 430 530 625 755 850 930

Basic computations

1. Compute sample size, sums, sums of the squared observations, and the sum of
the X ¥’s.

n=9 Y X =4535 Y Y =5420
3 X2 =31,15275 Y Y? = 350.5350 Y XY = 2289.260
2. The means, sums of squares, and sum of products are
X =50389 ¥ =6022
Y x% = 8301.3889 Yy =24.1306

Yxp=3XY- (ZX)(Z d

453.5)(54. 20
= 2289.260 — ( )9( —441.8178
3. The regression coefficient is
ny —441.8178 - 005322

T Sx? T 8301.3889
4. The Y intercept is
a=Y — b, X = 6022 — (—0.053,22)(50.389) = 8.7037
5. The explained sum of squares is
C(YxyP (4418178

P e e == D3 5145
LY =5 T 013889
6. The unexplained sum of squares is
Ydi . x=Yy*~3 9t =24 — 23.5145 = 0.6161
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sum of squares T 2 = (Y — ¥)? and the unexplained sum of squares Ld? . y =
T(Y — ¥)% That

2
Zdy X—ZYZ(ZZ);J}Z) (11.6)

is demonstrated in Appendix A1.6. The term subtracted from X y? is obviously
the explained sum of squares, as shown in Expression (11.7) below:

2
Zﬁzzzbzxzzbzzxzzig?;;zle (11.7)

o Qoxy)?
Yit= 3 x?

11.4 More than one value of Y for each value of X

We now take up Model I regression as originally defined in Section 11.2 and
illustrated by Figure 11.2. For each value of the treatment X we sample Y
repcatedly, obtaining a sample distribution of Y values at cach of the chosen
points ol X. We have selected an experiment from the laboratory of one of us
(Sokal) in which Tribolium beetles were reared {rom eggs to adulthood at four
different densities. The percentage survival (o adulthood was calculated for
varying numbers of replicates at these densities. Following Section 10.2, these
percentages were given arcsine transformations, which are listed in Box 1.2,
These transformed values are more likely to be normal and homoscedastic than
are percentages. The arrangement of these data is very much like that of a single-
classification modcl | anova. There are four different densitics and several sur-
vival values at cach density. We now would like to determine whether (here
arc differences in survival among the four groups, and also whether we can
cstablish a regression of survival on density.

A first approach, therefore, 1s to carry out an analysis of variance, using
the methods of Section 8.3 and Table 8.1. Our aim in doing this is illustrated
in Figure 11.7 (sce page 247). If the analysis of variance were not significant, this
would indicate, as shown in Figure 11.7A, that the means are not significantly
different from cach other, and it would be unlikely that a regression line fitted
to these data would have a slope significantly different from zero. However,
although both the analysis of variance and lincar regression test the same null
hypothesis  equality of means- ~the regression test is more powerful (less type
[ error; sce Section 6.8) against the alternative hypothesis that there is a lincar
relationship between the group means and the independent variable X. Thus,
when the means increase or decrease slightly as X increascs it may be that they
arc not different enough for the mean square among groups to be significant by
anova but that a significant regression can still be found. When we tind a marked
regression of the means on X, as shown in Figure 11.7B, we usually will find
a significant difference among the means by an anova. However, we cannot turn
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BOX 11.2
Computation of regression with more than one value of Y per value of X,
The variates Y are arcsine transformations of the percentage survival of the

bettle Tribolium castaneum at 4 densities (X = number of eggs per gram of flour
medium).

Density = X
(a=4)

S/g 20/g 50/g 100/g

61.68 68.21 58.69 53.13
58.37 66.72 58.37 49.89
Survival; in degrees 69.30 63.44 58.37 49.82

61.68 60.84

69.30
3y 32033 25921 17543 15284
n; 5 4 3 3
Y, 64.07 64.80 58.48 50.95
Yon=15
Y)Y =90781

Source: Data by Sokal (1967).

The anova computations are carried out as in Table 8.1.

Anova table

Source of variation df S8 MS F,
Y- }=_’ Among groups 3 423.7016 141.2339 11.20**
Y — Y Within groups 11 138.6867 12.6079
Y~ Y Total 14 562.3883

The groups differ significantly with respect to survival.

We proceed to test whether the differences among the survival values can be
accounted for by lincar regression on density. If F, < [1/(a — 1)] Fyizan, -ap it
is impossible for regression to be significant.

Computation for regression analysis

1. Sum of X weighted by sample size = ‘2 nX
= 5(5) + 4(20) + 3(50) + 3(100)
= 555

BOX 11.2
Continoed

2. Sum of X? weighted by sample size = }a: nX?
= 5(5) + 4(20)* + 3(50)* + 3(100)
= 39,225

3. Sum of products of X and ¥ weighted by sample size

=3 nx?=% X(ﬁ Y) = 5(32033) + - - - + 100{152.84)

= 30,841.35
a 2
)

4. Correction term for X = CTy = ~—

PR
t't 2 2
- (quax: ity 1)* _ (555 _ 20,535.00
15
P

5. Sum of squares of X =3 x* =Y mX?~ CTy
= quantity 2 — quantity 4 = 39,225 - 20,535
= 18,690

6. Sum of products = ) xy

— quantity 3 - quantity 1 x '3 Y

PR
55)(907.
= 3084135 — 9._-1(,1?50.-311 = ~2747.62
2
7. Explained sum of squares = Y §* = (2}%—%}«
_ (quantity 6)* (—2747.62)>
" quantity 5 18,690 403.9281

8. Unexplained sum of squares = 3 d}.y = SS;0up — 2.
= S8 goups — Quantity 7
= 423.7016 — 403.9281 = 19.7735

245
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BOX 11.2
Continued
Completed anova table with regression

Source of variation df S8 MS F,
Y — ¥ Among densities (groups) 3 4237016 1412339 11.20%*
Y- i’ Linear regression 1 4039281 403.9281 40.86*
Y — Y Deviations from regression 2 19.7735 9.8868 <1ns
Y — ¥ Within groups n 138.6867 12.6079
Y-Y Total 14 5623883

In addition to the familiar mean squares, MS,o, and M8, .., we now have
the mean square due to linear regression, M Sy, and the mean square for deviations
from regression, MSy . x (=5%. ¢). To test if the deviations from linear regression are
significant, compare the ratio F, = MSy . y/MS, min With Fo, 3 5a,, -4 Since we
find F, < 1, we accept the nuli hypothesis that the deviations?rom linear regression
are zero.

To test for the presence of linear regression, we therefore tested MS; over the
mean square of deviations from regression s2 . , and, since F, = 403.9281/9.8868 =
40.86 is greater than Fgqsqy.2) = 18.5, we clearly reject the null hypothesis that
there is no regression, or that = 0.

9. Regression coefficient (slope of regression line)

_ Yxy quantity6 —2747.62

=}y y = = - = = —0,147,01
T ¥ x* T quantity 5 18,690

10. Y intercept =a = ¥ — by. X
a n

_ 23 Y quantity 9 x quantity 1
T Ta - a

PR o
_ 90781 (-0.147,01)555

=75~ s = 60.5207 + 5.4394 = 65,9601

Hence, the regression equation is ¥ = 65.9601 — 0.147,01X.

this argument around and say that a significant difference among means as
shown by an anova nccessarily indicates that a significant lincar regression can
be fitted to these data. In Figure 11.7C, the means follow a U-shaped function
(a parabola). Though the means would likely be significantly different from each
other, clearly a straight line fitted to these data would be a horizontal line
halfway between the upper and the lower poiats. In such a set of data, linear
regression can explain only little of the variation of the dependent varniable.
However. a curvilinear parabolic regression would fit these data and remove
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Differences among means and linear regression. General trends only are indicated by these figures.
Significance of any of these would depend on the outcomes of appropriate tests.

most of the vartance of Y. A similar casc is shown in Figure 11.7D, in which
the means describe a periodically changing phenomenon, rising and falling al-
ternatingly. Again the regression line for these data has slope zero. A curvilinear
(cyclical) regression could also be fitted to such data, but our main purposc in
showing this example is to indicate that there could be heterogencity among
the means of Y apparcntly unrelated to the magnitude of X. Remember that
in rcal examples you will rarcly ever get a regression as clear-cut as the lincar
case in 11.7B, or the curvilincar one in 11.7C, not will you necessarily get hetero-
gencity of the type shown in 11.7D, in which any straight line fitted to the data
would be horizontal. You are more likely to get data in which linear regression
can be demonstrated, but which will not fit a straight line well. Sometimes the
residual deviations of the means around linear regression can be removed by
changing from lincar to curvilinear regression (as is suggested by the pattern of
points in Figure [1.7E), and sometimes they may remain as inexplicable residual
heterogeneity around the regression line, as indicated in Figure 11.7F.

We carry out the computations following the by now familiar outline lor
analysts of variance and obtain the anova table shown in Box 11.2. The three
degrees of freedom among the four groups yield a mean square that would be
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highly significant if tested over the within-groups mean square. The additional
steps for the regression analysis follow in Box 11.2. We compute the sum of
squares of X, the sum of products of X and Y, the explained sum of squares
of Y, and the unexplained sum of squares of Y. The formulas will look unfamiliar
because of the complication of the several Y's per value of X. The computations
for the sum of squares of X involve the multiplication of X by the number of
items in the study. Thus, though there may appear to be only four densities,
there are, in fact, as many densities (although of only four magnitudes) as there
are values of Y in the study. Having completed the computations, we again
present the results in the form of an anova table, as shown in Box 11.2. Note
that the major quantities in this table are the same as in a single-classification
anova, but in addition we now have a sum of squares representing linear re-
gression, which is always based on one degree of freedom. This sum of squares
is subtracted from the SS among groups, leaving a residual sum of squares
(ol two degrees of freedom in this case) representing the deviations from linear
regression.

We should understand what these sources of variation represent. The linear

model for regression with replicated Y per X is derived directly from Expression
(7.2), which is

Yi=pu+o+¢;

The treatment effect o, = fix; + D,, where fix is the component due to linear
regression and D; is the deviation ol the mean Y; [rom regression, which is
assumed to have a mean of zero and a variance of 0% Thus we can write

Yy=pn+ fx;+ D + ¢

The SS due to lincar regression represents that portion of the §§ among groups
that is explained by lincar regression on X. The SS due to deviations from
regression represents the residual variation or scatter around the regression line
as illustrated by the various examples in Figure 11.7. The S§ within groups is a
mcasure of the variation of the items around cach group mean.

We first test whether the mean square for deviations from regression
(MSy .y = s7.y) is significant by computing the variance ratio of MSy y over
the within-groups MS. In our case, the deviations from regression are clearly
not significant, since the mean square for deviations is less than that within
groups. We now test the mean square for regression, MS,, over the mean
square for deviations from regression and find it to be signtficant. Thus linear
regression on density has clearly removed a significant portion of the variation
of survival values. Significance of the mean square for deviations from regression
could mcan cither that Y is a curvilinear function of X or that there is a large
amount ol random hetcrogeneity around the regression line (as already discussed
in connection with Figure 11.7; actually a mixture of both conditions may
prevail).

Some workers, when analyzing regression examples with several Y variates
at cach value of X. oroceed as follows when the deviations from reeression are
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not significant. They add the sum of squares for deviations and that witlne
groups as well as their degrees of freedom. Then they calculate a pooled crven
mean square by dividing the pooled sums of squares by the pooled deprec ol
freedom. The mean square for regression is then tested over the poolcq crio
mean square, which, since it is based on more degrees.of freedom,'\fvlll be a
better estimator of the error variance and should permit more sensitive tests.
Other workers prefer never to pool, arguing that pooling the two sums ol
squares confounds the pseudoreplication of having severz.il Y variates gt each
value of X with the true replication of having more X points to determine the
slope of the regression line. Thus if we had only three X points but one hundred
Y variates at each, we would be able to estimate the mean value of Y for each
of the three X values very well, but we would be estimating the slope (?f the
line on the basis of only three points, a risky procedure. The §ecgnd attitude,
forgoing pooling, is more conservative and will decrcase the likelihood that a
nonexistent regression will be declared significant. . '

We complete the computation of the regression co'cfﬁmcnt and regression
equation as shown at the end of Box 11.2. Our conclusions are that as density
increases, survival decrcases, and that this relationship can be expressed by a
significant linear regrcsgion of the form Y = 65.960‘1 —0.147,01 X, where X is
density per gram and Y is the arcsine transformation of percentage survival.
This relation is graphed in Figure 11.8. .

The sums of products and regression slopes ol both exampl.cs'dlscusscd S0
far have been negative, and you may begin to believe that this is always.s(\
However, it is only an accident of choice of these two examples. In the exercises
at the end of this chapter a positive regression cocflicient will be encountered.

When we have equal sample sizes of Y values for cuch value of X, the com-
putations become simpler. First we carry out the anova in the manner of Box
8.1. Steps 1 through 8 in Box 11.2 become simpliﬁcd‘ because the uncqual sample
sizes n; are replaced by a constant sample size n, which can generally t?e factored
out of the various expressions. Also, X%n; = an. Significance tests applicd to such
cases are also simplified.

70

FIGURE 11.8
Linear regression fitted to data of Box 11.2.
Sample means are identified by plus signs.
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11.5 Tests of significance in regression

\ye have so far interpreted regression as a method for providing an estimate
¥i. given a value of X . Another interpretation is as a method for explaininé
some of the variation of the dependent variable Y in terms of the variation of
the mdep.endent variable X. The $S of a sample of Y values, T2, is computed
by summing and squaring deviations y=Y— Y.InFigure 11.9 w,e can see that
the deV.lathIl ¥ can be decomposed into two parts, y and dy . It is also clear
from Figure 11.9 that the deviation f = ¥ — 7 represents the deviation of the
estimated value Y from the mean of Y. The height of § is clearly a function
of x. We .ha.ve already seen that § = px (Expression (11.3)). In analytical ge-
ometry lhlS.IS called the point-siope form of the cquati'on. If b, the slope of the
regression ]11.’1(3., were steeper, §* would be relatively larger for a given value of
X. The remamning portion of the deviation y is dy x- It represents the residual
:/;rlatlon of the variable Y after the cxplained variation has been subtracted.
" t c):/m:s(c); ih)‘ialry}j}?d;\ by writing out these deviations explicity as

For each of these deviations we can compute a corresponding sum of

squarcs. Appendix A 1.6 gives the calculator formula for the unexplained sum
of squares,

S =g - G
Transposed, this yiclds
RS s
2= ZZ‘ + Y dy

()"‘) . D ST . CoNY 2
COUrSe, 2 7 corresponds to y, Ldi o dy . and

S DR

FMIGURE 11.9

Schematic diagram 1o show relations in-
volved in partitioning the sum of squares of
the dependent variable.
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corresponds to § (as shown in the previous section). Thus we are ablc to pain

tion the sum of squares of the dependent variabie in regression in a wiy
analogous to the partition of the total SS in analysis of variance. You may
wonder how the additive relation of the deviations can be matched by an
additive relation of their squares without the presence of any cross products.
Some simple algebra in Appendix A1.7 will show that the cross products cancel
out. The magnitude of the unexplained deviation dy .y is independent of the
magnitude of the explained deviation 9, just as in anova the magnitude of the
deviation of an item from the sample mean is independent of the magnitude of
the deviation of the sample mean from the grand mean. This relationship
between regression and analysis of variance can be carried further. We can
undertake an analysis of variance of the partitioned sums of squares as follows:

Source of variation df SS MS Expected MS
.~ Explained L5 Oxyy N 5 , ,
(estimated Y from 1 L= “Z‘{f stoof x+ B
mean of Y)

_ Uncxplained, crror
Y~ Y {observed Ylrom 0 —2 Ydi y=3y" 397 sty oy
estimated Y)
2
Yo ¥ Total (observed Y, _ D (,Z,,Yl s
from mean of Y)

The explained mean square, or meun square due 1o linear regression, meas-
ures the amount of variation in Y accounted for by variation of X. It is tested
over the unexplained mean square, which measures the residual variation and
is used as an error MS. The mean square due to linear regression, s3, is based
on one degree of freedom, and consequently (n — 2) df remain for the error MS
since the total sum of squares possesses n - | degrees of freedom. The test is of
the null hypothesis H,,: ff = 0. When we carry out such an anova on the weight
loss data of Box 111, we obtain the following results:

Source of variation df SS MS I,
Explained - due to lincar
regression 1 23.5145 235145 2071 8**
Unexplained  error around
regression line 7 0.6161 0.08801
Total 8 24.1306

The significance test is F, = si/sy. . [t is clear from the observed value of F,
that a large and significant portion of the variance of Y has been explained
by regression on X,
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BOX 11.3

Standard errors of regression statistics and their degrees of freedom.

number of values of X when the number of Y values

For explanation of this box, see Section 11.5: v identifies degrees of freedom; a

for each X is n;; n = sample size when there is a single Y value for each value of X.

Single Y value
for each value of X

Sor each value of X

More than one Y value
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V=n—2
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{Sample mean)

|
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{Estimated Y for a given value X
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We now proceed to the standard errors for various regression statistics,
their employment in tests of hypotheses, and the computation of confidence
limits. Box 11.3 lists these standard errors in two columns. The right-hand
column is for the case with a single Y value for each value of X. The first row
of the table gives the standard error of the regression coefficient, which is simply
the square root of the ratio of the unexplained variance to the sum of squares
of X. Note that the uncxplained variance s3. is a fundamental quantity that
is a part of all standard errors in regression. The standard error of the regres-
sion coefficient permits us to test various hypotheses and to set confidence limits
to our sample estimate of b. The computation of s, is illustrated in step 1 of Box
11.4, using the weight loss example of Box 11.1.

BOX 114
Significance tests and computation of confidence limits of regression statistics. Single
value of Y for each value of X.

Based on standard errors and degrees of freedom of Box 11.3; using example of
Box 11.1.

n=9 X =5038 V=602
by.x = —0053,22 ¥ x? = 8301.3889
2
SEoy= Zfli‘- _ o1l 0.088,01

1. Standard error of the regression coeflicient:

i _
. [0.08800 -
= fer X = [0 o 0.000,010,602 = 0.003,256,1
VTN \Azm.ssw 000,010 000323

2, Testing significance of the regression coefficent:

b-0 -005322
= = ez e |,
=T T 0.003,256,1 6.345
t0.001[7] == 5‘408 P << 0.001

3. 95% confidence limits for regression coefficient:
to.ospre = 2.365(0.003,256,1) = 0.007.70

Ly =b — tg o578 = —0.053,22 — 0.007,70 = —0.060,92

Ly = b+ tg o5pny8s = —0.053,22 + 0.007,70 = —0.045,52

4. Standard error of the sampled mean ¥ (at X):

2
=[x /9959?:91 = 0,098,883
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BOX 114
Continuved

5, 95% confidence limits for the mean gy corresponding to X(Y = 6022y
to.osynS¥ = 2.365(0.098,888,3) = 0.233,871
L, = ¥ — tg g5y = 6022 — 0.2339 = 5.7881
Ly = ¥ + to o5y = 6.022 +0.2339 = 6.2559
6. Standard error of ¥,, an estimated Y for a given value of X;:

1 (X,—Xp?
o=l |

For example, for X, = 100% relative humidity
1 (100 — 50.389)
= /0.088,01(0.407,60) = 1/0.035.873 = 0.189.40

7. 95% confidence limits for iy, corresponding to the estimate Y, = 33817 at
X; = 100% relative humidity:

to.osynSy = 2.365(0.189,40) = 0.447,93
Ll = [ane 10_05[7]5‘9 = 3.3817 ol 0.4479 == 2.9338
L, = ¥ + toosey = 3.3817 + 0.4479 = 3.8296

%

The significance test illustrated in step 2 tests the “significance” of the regres-
sion cocfficient; that is, it tests the null hypothesis that the sample value ol b
comes from a population with a parametric value =0 for the regression
cocihicient. This is a ¢ test, the appropriate degrees of freedom being n — 2 = 7.
If we cannot reject the null hypothesis, there is no evidence that the regression
is significantly deviant from zero in cither the positive or negative direction.
Our conclusions for the weight loss data are that a highly significant ncgative
regression is present. We saw earlier (Section 8.4) that * = F. When we square
t, = — 16.345 from Box |1.4, we obtain 267.16, which (within rounding error)
cquals the value of F, found in the anova carlier in this section. The signifi-
cance test in step 2 of Box 11.4 could, of course, also be used to test whether
b is significantly different from a parametric value ff other than zero.

Setting confidence limits to the regression coefficient presents no new features,
since b is normally distributed. The computation is shown in step 3 of Box
11.4. In view of the small magnitude of s,, the confidence interval 15 quite
narrow. The confidence limits are shown in Figure 11.10 as dashed lines repre-
senting the 95% bounds of the slope. Note that the regression linc as well as its
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FIGURE 11.10
95% confidence limits to regression line of
Figure 11.6.

Weight loss in mg
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confidence limits passes through the means of X and Y. Variation in b therefore
rotates the regression linc about the point X, Y.

Next, we calculate a standard error for the observed sample mean Y. You
will recall from Section 6.1 that s = sj/n. However, now that we have regressed
Y on X, we are able to account for (that is, hold constant) some of the varia-
tion of Y in terms of the variation of X. The variance of Y around the point
X, Y on the regression line is less than s3: it is s7 y. At X we may therefore
compute confidence limits of Y, using as a standard crror of the mean s, =
Js2./n with n - 2 degrees of freedom. This standard crror is computed in step
4 of Box 114, and 957% confidence limits for the sampled mean Y at X arc
calculated 1n step 5. These limits (5.7881 6.2559) are considerably narrower
than the confidence hmits for the mean based on the conventional standard
error sy, which would be from 4.687 to 7.357. Thus, knowing the relative humi-
dity greatly reduces much of the uncertainty in weight loss.

The standard crror for Y is only a special case of the standard error for
any estimated value Y alony the regression line. A new factor, whose magnitude
is in part a function of the distance of a given value X, from its mean X, now
enters the error variance. Thus, the further away X, is from its mean, the greater
will be the error of estimate. This factor is scen in the third row of Box 11.3
as the deviation X; X, squared and divided by the sum of squares of X.
The standard error for an estimate Y, for a relative humidity X, = 100 is
given in step 6 of Box 11.4. The 95% confidence limits for py . the parametric
value corresponding to the estimate Y. are shown in step 7 of that box. Note
that the width of the confidence interval is 3.8296 29338 = (0.8958, consid-
crably wider than the confidence interval at X calculated in step 5. which was
6.2559 - 57881 = 0.4678. If we calculate a serics of confidence limits for dif-
ferent values of X, we obtain a biconcave confidence belt as shown in Figure
{1.11. The farther we get away from the mean, the less reliable are our estimates
of Y. because of the uncertainty about the true slope, f8, of the regression lne.
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FIGURE 11.11
95% confidence limits to regression estimates
for data of Figure 11.6.
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Furthermore, the linear regressions that we fit are often only rough approx-
imations to the more complicated functional relationships between biological
variables. Very often there is an approximately linear relation along a cer-
tain range of the independent variable, beyond which range the slope changes
rapidly. For example, heartbeat of a poikilothermic animal will be directly pro-
portional to temperature over a range ol tolerable temperatures, but beneath
and above this range the heartbeat will eventually decrease as the animal freezes
or suffers heat prostration. Hence common sense indicates that one should be
very cautious about extrapolating from a regression equation if one has any
doubts about the linearity of the relationship.

The confidence limits for «, the parametric value of a, are a special case of
those for py, at X; = 0, and the standard error of a is therefore

X
n'y J

Tests of significance in regression analyses where therc is more than one
variate Y per value of X are carried out in a manner similar to that ol Box
11.4, except that the standard errors in the left-hand column of Box 11.3 are
employed.

Another significance test in regression is a test of the differences between
two regression lines. Why would we be interested in testing differences between
regression slopes? We might find that different toxicants yield different dosage-
mortality curves or that different drugs yield different relationships between
dosage and response (see, for example, Figure 11.1). Or genctically differing
cultures might yield different responses to increasing density, which would be
important for understanding the effect of natural selection in these cultures. The
regression slope of onc varnable on another is as fundamental a statistic of a
sample as is the mean or the standard deviation, and in comparing samples
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it may be as important to compare regression coefficients as it is to compare
these other statistics.

The test for the difference between two regression coefficients can be carried
out as an F test. We compute

b, — b,)?
Fs — E 1 22)
L +&{ 2
(ZX%)(Z’C%) Y- X
where 52, is the weighted average s7.y of the two groups. Its formula is

2 Qa7 )+ Qdi X

Y- X

Vs

For one Y per value of X, v, = n, + n, — 4, but when there is more than one
variate Y per value of X, v, = a, + a, — 4. Compare F with F, ...

11.6 The uses of regression

We have been so busy learning the mechanics of regression analysis that we
have not had time to give much thought to the various applications of re-
gression. We shall take up four more or less distinct applications in this scction.
All are discussed in terms of Model 1 regression.

First, we might mention the study of causation. 1f we wish to know whether
variation in a variable Y is caused by changes in another variable X, we
manipulate X in an experiment and see whether we can obtain a significant
regression of Y on X. The idea ol causation is a complex, philosophical one
that we shall not go into here. You have undoubtedly been cautioned from
your carlicst scicntific experience not (o conluse concomitant variation with
causation. Variables may vary together, yet this covariation may be accidental
or both may be functions of a common cause affecting them. The latter cases
arc usually examples of Model Il regression with both variables varying freely.
When we manipulate one variable and find that such manipulations affect a
sccond variable, we generally arc satisfied that the variation of the independent
variable X is the cause of the vartation of the dependent variable Y (not the
causc of the variable!). However, even here it is best to be cautious. When we
find that heartbeat rate in a cold-blooded animal is a function of ambicnt
temperature, we may conclude that temperature is one of the causes of dil-
ferences in hearbeat rate. There may well be other factors affecting rate of
heartbeat. A possible mistake 1s to invert the causc-and-effect relationship. It
1s unlikely that anyone would suppose that hearbeat rate affects the temperature
of the gencral cnvironment, but we might be mistaken about the causc-and-
ctlect relationships between two chemical substances in the blood, for instance.
Despite these cautions, regression analysis is a commonly used device for
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screening out causal relationships. While a significant regression of Y on X does
not prove that changes in X are the cause of variations in Y, the converse state-
ment is true. When we find no significant regression of Y on X, we can in all
but the most complex cases infer quite safely {allowing for the possibility of
type 11 error) that deviations of X do not affect Y.

The description of scientific laws and prediction are a second general area
of application of regression analysis. Science aims at mathematical description
of relations between variables in nature, and Model I regression analysis permits
us to estimate functional relationships between variables, one of which is sub-
ject to error. These functional relationships do not always have clearly inter-
pretable biological meaning. Thus. in many cases it may be difficult to assign
a biological interpretation to the statistics @ and h, or their corresponding
parameters x and fi. When we can do so, we speak of a structural mathematical
model, one whose component parts have clear scientific meaning. However,
mathematical curves that arc not structural models arc also of value in science.
Most regression lines are empirically firted curves, in which the functions simply
represent the best mathematical fit (by a criterion such as least squares) to an
observed set of data.

Comparison of dependent variates is another application of regression. As
soon as it is established that a given variable is a function of another one, as
in Box 11.2, where we found survival of beetles to be a function of density, one
is bound to ask to what degree any obscrved difference in survival between two
samples of bectles 1s a function of the density at which they have been raised.
It would be unfair to compare beetles raised at very high density (and expected
to have low survival) with those raised uader optimal conditions of low density.
This is the same point ol view that makes us disinclined to compare the mathe-
matical knowledge of a filth-grader with that of a college student. Since we
could undoubtedly obtiin a regression of mathematical knowledge on vears of
schooling in mathematics, we should be comparing how far a given wndividual
deviates from his or her expected value based on such a regression. Thus, relative
to his or her classmates and age group, the fifth-grader may be far better than
1s the college student relative to his or her peer group. This suggests that we
calculate adjusted 'Y values that allow for the magnitude of the independent
variable X. A conventional way of calculating such adjusted Y values is to
estimate the Y vaiue one would expect if the independent vanable were equal
to its mean X and the observation retained its observed deviation (dy - y) from
the regression line. Since ¥ = ¥ when X = X, the udjusted ¥ value can be com-
puted as

Y=Y tdy y=Y — bx (11.8)

Statistical control is an application of regression that is not widely known
among biologists and represents a scientific philosophy that 1s not well estab-
lished in bilology outside agricultural circles. Biologists frequently categorize
work as either descriplive or experimental, with the implication that only the
latter can be analytical. However, statistical approaches applied to descriptive
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work can, in a number of instances, take the place of experimemal(techmqﬁez
quite adcquatcly—occasionally they are even to pe preferred. These dppr:;(;belze
are attempts to substitute statistical manipulation of a concoml.tlz;ntlrvff ole
for control of the variable by experimental means. An example will clarity
teChrIilgtu:s assume that we are studying the effects ol various .dlets on blood
pressure in rats. We find that the variability of blooc} pressure in our rat p(})}p-
ulation is considerable, even before we introduce Q1ﬁerel1ce§ n'x diet. Furtlgz
study reveals that the variability is largc?ly due to differences 151 gge’ amirilgcallt
rats of the experimental population. This can be demonstrated byla sxgxf pean:
linear regression of blood pressure on age. To reduce the vanability o blood
pressure in the population, we should keep the age of the rats constant. Lhe
reaction of most biologists at this point VYI“ be to repeat the experlhmen;}{s}ini
rats of ouly one age group: this 1s a valid, cgmmonsense approach, w ic -
part of the experimental method. An alternative approach is supenor in sow
cases. when it is impractical or too costly to ho[d the variable co'nstanft. . E
might continue to use rats of variable ages and simply record the dge’o e'dcd
rat as well as its blood pressurc. Then we regress b]oqd pressure on qg;dcml
use an adjusted mean as the basic blood press.ure‘readmg for ea§h indivi ‘ua .
We can now cvaluate the effect of differences m.dlct on }hc}:sc adjusted mcar}xs.
Or we can analyze the effects of diet on unexplained deviations, f).',, 0 afler‘t :e
experimental blood pressures have been regressed on age (which amounts to
the S\‘;/Tueutzlrz%)he advantages of such an approach? Often it will bc 1111pos§}ble
to secure adequate numbers of individuals all of the same age. By usxng‘r§gr§§>f?111
we are able to utilize all the individuals in the populatu?n. The use of shfl'llbll‘u)l(
control assumes that it is relatively easy to record Lhc independent vglrltlblc y
and. of course, that this variable can be measured without error. whu;:h‘ woul ]
be generally true of such a variable as age of a ]flbqrutory a.mmz’ll. ‘bltmst.ls;lr
control may also be preferable because we oblam- information (W.Lir ‘} 'wti l
range of both Y and X and also because we (Tbtum added knowled ge d)ou\
the relations between these two variables. which would not be so il we re-
stricted oursclves to a single age group.

117 Residuals and transformations in regression

An cxamination of regression residuals, dy .y, may detect outligrs ina s;\mch;
Such outlicrs may reveal systematic dcparlur‘csAfrom regression lh\t cz)nfx‘. C
adjusted by transformation of scale, or by the fitting of a curyllmc;u Vm'g‘rc?m'on
line. When it is believed that an outlier s due Lo an obscrv;um‘nal o1 ruoldmg
error, or to contamination of the sample studied. rcm‘m{ul ol such an oul‘llcr[
may improve the regression fit considerably. In cxamining lhc‘ mugnrnudc Io
residuals, we should also allow for the Correspondmg deviation from X. ()ljt ):—
ing values of Y, that correspond to deviant vgrmt'es X, w1ll'hzlvc"d g‘rc‘atcvr)
influence in determining the slope of the regression line than will variates close
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to X. We can examine the residuals in column (9) of Table 11.1 for the weight
loss data. Although several residuals are quite large, they tend to be relatively
close to Y. Only the residual for 0% relative humidity is suspiciously large and,
at the same time, is the single most deviant observation from X. Perhaps the
reading at this extreme relative humidity does not fit into the generally linear
relations described by the rest of the data.

In transforming cither or both variables in regression, we aim at simplifying
a curvilinear relationship to a linear one. Such a procedure generally increases
the proportion of the variance of the dependent variable explained by the
independent variable, and the distribution of the deviations of points around
the regression line tcnds to become normal and homoscedastic. Rather than fit
a complicated curvilinear regression to points plotted on an arithmetic scale,
it is far more expedient to compute a simple lincar regression for variates plotted
on a transformed scale. A general test of whether transformation will improve
linear regression is to graph the points to be fitted on ordinary graph paper as
well as on other graph paper in a scale suspected to improve the relationship.
If the function straightens out and the systematic deviation of points around a
visually fitted line is reduced, the transformation is worthwhile.

We shall briefly discuss a few of the transformations commonly applied in
regression analysis. Square root and arcsine transformations (Section 10.2) are
not mentioned below, but they are also effective in regression cascs involving
data suited to such transformations.

The loyarithmic transformation is the most frequently used. Anyone doing
statistical work is therefore well advised to keep a supply of semilog paper
handy. Most frequently we transform the dependent variable Y. This trans-
formation is indicated when percentage changes in the dependent variable vary
directly with changes in the independent vartable. Such a relationship is in-
dicated by the equation Y = ae®, where ¢ and b are constants and e is the
base of the natural logarithm. After the transformation, we obtain log Y =
log ¢ + b(log ¢)X. In this expression log ¢ is a constant which when multiplied
by b yiclds a new constant factor b which is equivalent to a regression coeffi-
cient. Similarly, log a 1s a new Y intercept, a'. We can then simply regress log Y
on X 1o obtain the function log Y = &' + »’X and obtain all our prediction
equations and confidence mtervals in this form. Figure 11.12 shows an example
of transforming the dependent variate to logarithmic form, which results in
considerable straightening of the response curve.

A logarithmic transformation of the independent variable in regression is
eflective when proportional changes in the independent variable produce linear
responses in the dependent vartable. An example might be the decline in weight
of an organism as density increases, where the successive increases in density
nced o be in a constant ratio in order to effect equal decreases in weight. This
belongs to a well-known class of biological phenomena, another example of
which is the Weber-Fechner law in physiology and psychology, which states
that a stimulus has to be increased by a constant proportion in order to produce
a constant increment in response. Figure 11.13 illustrates how logarithmic
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transformation of the independent variable results in the straightening of the
regression line. For computations one would transform X into logarithms.

Logarithmic transformation for both variables is applicable in situations
in which the true relationship can be described by the formula ¥ = aX* The re-
gression equation is rewritten as log ¥ = log a + b log X and the computation
1s done in the conventional manner. Examples are the greatly disproportionate
growth of various organs in some organisms, such as the sizes of antlers of deer
or horns of stage beetles, with respect to their general body sizes. A double
logarithmic transformation is indicated when a plot on log-log graph paper
results In a straight-line graph.

Reciprocal transformation. Many rate phenomena (a given performance per
unit of time or per unit of population). such as wing beats per second or num-
ber of eggs laid per female. will yicld hyperbolic curves when plotted in original
measurement scale. Thus, they form curves described by the general mathemat-
ical cquations hXY =1 or (a + hX)Y = 1. From these we can derive 1/Y —
bXorl/Y=a+ bX. By transforming the dependent variable into its reciprocal,
we can frequently obtain straight-line regressions.

Finally, some cumulative curves can be straightened by the probit trans-
formation. Refresh your memory on the cumulative normal curve shown in
Figure 5.5. Remember that by changing the ordinate of the cumulative normal
Into probability scale we were able to straighten out this curve. We do the
same thing here except that we graduate the probability scale in standard
deviation units. Thus, the 50 point becomes 0 standard deviations, the 84.13%
point becomes + | standard deviation. and the 2.27°; point becomes 2 stan-
dard deviations. Such standard deviations. corresponding to a cumulative per-
centage, are called normal equiralent deviates (NED). If we use ordinary graph
paper and mark the ordinate in NED units. we obtain a straight line when
plotting the cumulative normal curve against it. Probits arc simply normal
cquivalent deviates coded by the addition of 5.0, which will avoid negative
values for most deviates. Thus, the probit value 5.0 corresponds to a cumulative
frequency of 50, the probit value 6.0 corresponds to a cumulative frequency of
84.13%, and the probit value 3.0 corresponds to a cumulative frequency of
2.27%.

Figure 11.14 shows an example of mortahty percentages for increasing doses
of an insecticide. These represent differing points of a cumulative frequency
distribution. With increasing dosages an cver greater proportion of the sample
dies until at a high enough dose the entire sample s killed. Tt s often found
that if the doses of toxicants are transformed into logarithms, the tolerances
of many organisms to these poisons are approximately normaily distributed.
These transformed doses are often called dosages. Increasing dosages lead to
cumulative normal distributions of mortalitics. often called dosage-mortality
curtes. These curves are the subject matter of an entire field of biometric
analysis, bioassay. to which we can refer only in passing herc. The most common
technique in this lield is probit analysis. Graphic approximations can be carried
out on so-called prohit paper. which is probability graph paper in which the
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abscissa has been transformed into logarithmic scale. A regression line is ﬁtlcd
to dosage-mortality data graphed on probit paper (see Figure 11.14().. From
the regression line the 50% lethal does is estimated by a process of inverse
prediction, that is, we estimate the value of X (dosage) corresponding to a kill
of probit 5.0, which is equivalent to 50%.

11.8 A nonparametric test for regression

When transformations are unabic to lincarize the relationship between the
dependent and independent variables, the rescarch w:orkcr may wi;s'h to carry
out a simpler. nonparametric test in liew of regression an_ulysns_. Suchla test
furnishes neither a prediction equation nor a functional rclalmnshlp‘_bul it does
test whether the dependent variable Y 1s a monotonically increasing (o.r de-
creasing) function of the independent variable X. The simplest such tcs_l is the
ordering test, which is cquivalent to computing Kendall's rank correlation co-
efficient (sce Box 12.3) and can be carried out most casily as such..ln fa.cl, in
such a case the distinction between regression and correlation, which will be
discussed in detail in Section 12,1, breaks down. The testis carried out as fo]]oyvs.

Rank variates X and Y. Arrange the independent vanable X in increasing
order of ranks and calculate the Kendall rank corrclation of Y with X. The
computational steps for the procedure are shown in Box 12.3._ If we carry out
this computation for the weight loss data of Box 11.1 (rcvcm.ng the ordycr of
percent relative humidity, X, which is negatively related to weight loss, Y, we
obtain a quantity N = 72, which is significant at P < 0.01 when ]o(‘)kcdlup in
Table XIV. There is thus a significant trend of weight loss as a IUIlCllOH- of
relative humidity. The ranks of the weight losses are a perfect monotonic function
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on the ranks of the relative humidities. The minimum number of points required
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for significance by the rank correlation method is S.

Exercises

11.1

11.2

The following temperatures (Y) were recorded in a rabbit at various times (X)
after it was inoculated with rinderpest virus (data from Carter and Mitchell, 1958).

Time after
injection Temperature

(h) (‘F)

24 102.8
32 104.5
48 106.5
56 107.0
72 103.9
80 103.2
96 103.1

Graph the data. Clearly, the last three data points represent a different phenom-
enon from the first four patrs. For the first four points: (a) Calculate b. (b)
Calculate the regression equation and draw in the regression line. (c) Test the
hypothesis that =0 and set 95% confidence limits. (d) Set 95% confidence
limits to your estimate of the rabbit’s temperature 50 hours after the injection.
ANS. a = 100, b = 0.1300, F, = 59.4288, P < 0.05, Y., = 106.5.

The following table is extracted from data by Sokoloff (1955). Adult weights
of female Drosophila persimilis rcared at 24°C arc affected by their density as
larvae. Carry out an anova among densities. Then calculate the regression of
weight on density and partition the sums of squares among groups into that
explained and unexplained by linear regression. Graph the data with the regres-
ston hine fitted to the means. Interpret your results.

Mean weight

Larval of adults s of weights
density (in mg) (not s;) n
] 1.356 0.180 9
3 1.356 0.133 34
S 1.284 0.130 50
6 1.252 0.105 63
10 0.989 0.130 83
20 0.664 0.141 144
40 0.475 0.083 24

Davis (1955) reported the following results in a study of the amount of cnergy
metabolized by the English sparrow, Passer domesticus, under various constant
temperature conditions and a ten-hour photoperiod. Analyzc and interpret

ANS. MS; = 6575043, MS, , = B2IRO, MS,nin = 39330, deviations are not

11.5

11.6
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EXERCISES
Temperature Calories
('C) Y n s
N
0 249 6 1.77
4 234 4 1.99
10 242 4 2.07
18 18.7 5 1.43
26 15.2 7 1.52
34 13.7 7 2.70
114  Using the complete data given in Exercise 11.1, calculate the regression equa-

tion and compare it with the one you obtained for the first four points. Discuhss
the effect of the inclusion of the last three points in the analysis. Compute the
residuals from regression. . A -
The following results were obtained in a study of oxygen consumption (mll;;,%
liters/mg dry weight per hour) in Heliothis zed by Phillips and Newsom ( )
under controlled temperatures and photoperiods.

Temperature Photoperiod
0 (h)
— S
10 14
18 0.51 1.61
21 0.53 1.64
24 0.89 1.73

Compute regression for each photoperiod sgpamlely and tesll: f0r120|$3§:‘n;13
of slopes. ANS. For 10 hours: b = 0.0633, s3.x = 0.019,267. For :

2 2 = 0.000,60. ‘ -
(l):(c)r:gi(lzo‘o?ydé‘vel«?p(:(r:emuI period (in days) of the potato lea!‘hoppeq:, Il:r]:tpoal\:]:;
fubue. from cgg to adult at various constant 1cmpcr:nuresV(Kous. o .e“ds(‘“ d
Decker. 1966). The original data were weighted means, but ‘Or‘pul!)d()bt:hl o‘ i
analysis we shall consider them as though they were single observed values.

Mean length of
developmental

Temperature period in days

{('F) Y

59.8 58.1
67.6 273
70.0 268
70.4 263
74.0 19.1
753 19.0
78.0 16.5
80.4 159
814 14.8
3.2 142
88.4 144
91.4 14.6
RIS 12
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Analyze and interpret. Compute deviations from the regression line (¥, — Y)
and plot against temperature.

The experiment cited in Exercise 1.3 was repeated using a 15-hour photoperiod,
and the following results were obtained:

Temperature Calories
(°C) Y n s
0 243 6 193
10 251 7 1.98
18 222 8 3.67
26 13.8 10 4.01
34 16.4 6 2.92

Test for the equality of slopes of the regression lines for the 10-hour and 15-hour
photoperiod. ANS. F, = 0.003.

Carry out a nonparametric test for regression in Exercises 11.1 and 11.6.
Water temperature was recorded at various depths in Rot Lake on August 1, 1952,
by Vollenweider and Frei (1953).

Depth (m) 0 I 2 3 4 5 6 9 12 155
Temperature ("C) 248 232 222 212 188 138 96 63 58 356

Plot the data and then compute the regression line. Compute the deviations
from regression. Does temperature vary as a linear function of depth? What do
the residuals suggest? ANS. a = 23384, h = —1.435 F, = 452398, P < 0.01.

CHAPTER 12

Correlation

In this chapter we continue our discussion of bivariate statistics. In Chapter
11, on regression, we dealt with the functional relation of one variable upon
the other; in the present chapter, we treat the measurement of the amount of
association between two variables. This general topic is called correlation
analysis.

It is not always obvious which type of analysis - regression or correlation—
onc should employ in a given problem. There has been considerable conlu-
sion in the minds of investigators and also in the literature on this topic. We
shall try to make the distinction between these two approaches clear at the
outsct in Section 12.1. In Section 12.2 you will be introduced to the product-
moment corrclation cocflicient, the common correlation coefficient of the hit-
erature. We shall derive a formula for this coefficient and give you something
of its theoretical background. The close mathematical relationship between
regression and correlation analysis will be examined in this section. We shall
also compute a product-moment correlation coefficient in this section. In Sec-
tion 12.3 we will talk about various tests of significance involving correlation
cocflicients. Then, in Section 12.4, we will introduce some of the applications of
correlation cocfthicients.
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Section 12.5 contains a nonparametric method that tests for association.
It is to be used in those cases in which the necessary assumptions for tests in-
volving correlation coefficients do not hold, or where quick but less than fully
efficient tests are preferred for reasons of speed in computation or for con-
venience.

12.1 Correlation and regression

There has been much confusion on the subject matter of correlation and re-
gression. Quite frequently correlation problems are treated as regression prob-
lems in the scientific literature, and the converse is equally true. There are
several reasons for this confusion. First of all, the mathematical relations be-
tween the two methods of analysis are quite close, and mathematically one can
easily move from one to the other. Hence, the temptation to do so is great. Sec-
ond, earlier texts did not make the distinction between the two approaches
sufficiently clear, and this problem has still not been entirely overcome. At least
one textbook synonymizes the two, a step that we feel can only compound
the confusion. Finally, while an investigator may with good reason intend to
use one of the two approaches, the nature of the data may be such as to make
only the other approach appropriate.

Let us examinc these points at some length. The many and close mathe-
matical relations between regression and correlation will be detailed in Section
12.2. It suflices for now to state that for any given problem, the majority of
the computational steps are the same whether one carries out a regression or a
correlation analysis. You will recall that the fundamental quantity required
for regression analysis is the sum of products. This is the very same quantity
that serves as the base for the computation of the correlation coefficient. There
arc some simple mathematical relations between regression coeflicients and
correlation coeflicients for the same data. Thus the temptation exists to com-
pute a correlation cocllicient corresponding 1o a given regression coellicient.
Yet, as we shall sce shortly, this would be wrong unless our intention at the
outsct were to study association and the data were appropriate for such a com-
putation.

Let us then look at the intentions or purposes behind the two types of
analyses. In regression we intend to describe the dependence of a variable Y
on an independent variable X. As we have seen, we employ regression equations
for purposes of lending support to hypotheses regarding the possible causation
of changes in Y by changes in X; for purposes of prediction, of variable Y
given a value of variable X; and for purposes of explaining some of the varia-
tion of Y by X, by using the latter variable as a statistical control. Studies
of the effects of temperature on heartbeat rate, nitrogen content of soil on
growth rate in a plant, age of an animal on blood pressure, or dose of an
insccticidde on mortality ol the inscet population are all typical examples of
regression for the purposes named above,
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In correlation, by contrast, we are concerned largely whether two vari-
ables are interdependent, or covary—that is, vary together. We do not express
one as a function of the other. There is no distinction between independent
and dependent variables. It may well be that of the pair of variables whose
correlation is studied, one is the cause of the other, but we neither know nor
assume this. A more typical (but not essential) assumption is that the two vari-
ables are both effects of a common cause. What we wish to estimate is the degree
to which these variables vary together. Thus we might be interested in the cor-
relation between amount of fat in diet and incidence of heart attacks in human
populations, between foreleg length and hind leg length in a population of mam-
mals, between body weight and egg production in female blowflies, or between
age and number of seeds in a weed. Reasons why we would wish to demon-
strate and measure association between pairs of variables nced not concern us
yet. We shall take this up in Section 12.4. It suffices for now to state that when
we wish to establish the degree of association between pairs of variables in a
population sample, correlation analysis is the proper approach.

Thus a correlation coefficient computed from data that have been properly
analyzed by Model 1 regression is meaningless as an estimate of any popula-
tion correlation coefficient. Conversely, suppose we were to evaluate a regres-
sion coeflicient of onc variable on another in data that had been properly
computed as correlations. Not only would construction of such a functional
dependence for these variables not meet our intentions. but we should point
out that a conventional regression coefficient computed from data in which
both variables are measured with error-—as is the case in correlation analysis—
furnishes biased estimates of the functional relation.

[ven if we attempt the correct method in line with our purposes we may
run afoul of the nature of the data. Thus we may wish to establish cholesterol
content of blood #8 a function of weight, and to do so we may take a random
sample of men of the same age group, obtain cach individual’s cholesterol con-
tent and weight, and regress the former on the latter. However, both these
variables will have been measured with crror. Individual variates of the sup-
posedly independent variable X will not have been deliberately chosen or con-
trolicd by the experimenter. The underlying assumptions ol Model | regression
do not hold, and fitting a Modcl | regression to the data s not legitimate,
although you will have no difliculty finding instances of such improper prac-
tices in the published rescarch literature. If 1t is really an cquation describing
the dependence of Y on X that we are after, we should carry out a Model 1l
regression. However, if it 1s the degree of association between the variables
(interdependence) that is of interest, then we should carry out a correlation
analysis, for which these data are suitable. The converse difficulty is trying to
obtain a correlation coceflicient from data that are properly computed as a re-
gression  that is, are computed when X is fixed. An example would be heart-
beats of a poikilotherm as a function of temperature, where several temperatures
have been applied in an experiment. Such a correlation coeflicient is easily ob-
tained mathematically but would simply be a numerical value, not an estimate
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TABLE 12.1
The relations between correlation and regression. This table indicates the correct computation for
any combination of purposes and variables, as shown.

Nature of the two variables

Purpose of investigator Y random, X fixed Y,, Y, both random
Establish and estimate Model I regression. Model I1 regression.
dependence of one variable (Not treated in this
upon another. {Describe book.)

functional relationship
and/or predict one in terms
of the other.)

Establish and estimate Meaningless for this Correlation coeflicient.
association (interdependence) case. If desired, an (Significance tests
between two variables. estimate of the entirely appropriate only
proportion of the if Yy, Y, are distributed
variation of Y explained as bivariate normal
by X can be obtained variables.)

as the square of the
correlation coefficient
between X and Y.

of a parametric measure of correlation. There is an interpretation that can be
given to the squarc of the correlation coeflicient that has some relevance to a
regression problem. However, it Is not in any way an estimate of a parametric
correlation.

This discussion is summarized in Table 12.1, which shows the relations
between correlation and regression. The two columns of the table indicate the
two conditions of the pair of variables: in one case one random and measured
with crror, the other variable fixed; in the other case, both variables random.
In this text we depart from the usual convention of labeling the pair of vari-
ables Y and X or X, X, lor both correlation and regression analysis. In re-
gression we continue the use of Y for the dependent variable and X for the
independent variable, but in correlation both ol the variables are in fact random
variables, which we have throughout the text designated as Y. We therefore
reler to the two variables as ¥, and Y,. The rows of the table indicate the
intention of the investigator in carrying out the analysis, and the four quad-
rants of the table indicate the appropnate procedures for a given combination
of intention of investigator and naturc of the pair of variables.

12.2 The product-moment correlation coeflicient

There are numerous correlation coeflicients in statistics. The most common
of these s called the product-moment correlation coefficient, which in its current
formulation is due to Karl Pearson. We shall derive its formula through an
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You have seen that the sum of products is a measure of covariation, and
it is therefore likely that this will be the basic quantity from which to obtain
a formula for the correlation coefficient. We shall label the variables whose
correlation is to be estimated as Y, and Y,. Their sum of products will therefore
be Zy,y, and their covariance [1/(n — 1)] Zy,y, = s;,. The latter quantity is
analogous to a variance, that is, a sum of squares divided by its degrees of
freedom.

A standard deviation is expressed in original measurement units such as
inches, grams, or cubic centimeters. Similarly, a regression coefficient is ex-
pressed as so many units of Y per unit of X, such as 5.2 grams/day. However,
a measure of association should be independent of the original scale of measure-
ment, so that we can compare the degree of association in one pair of variables
with that in another. One way to accomplish this is to divide the covariance
by the standard deviations of variables Y, and Y,. This results in dividing each
deviation y, and y, by its proper standard deviation and making it into a
standardized deviate. The expression now becomes the sum of the products of
standardized deviates divided by n — 1:

_ L (12.1)

This is the formula for the product-moment correlation coefficient ry y, between
variables Y, and Y,. We shall simplify the symbolism to

Z SAREINNR (1

(m—1)s;s, 3,8,

]
(S %]

Expression (12.2) can be rewritten in another common form. Since

sy 1= s*n - 1) = \/}-‘Vl n— 1) =J> »?

n
Expression (12.2) can be rewritten as
IRY)
) Bl (12.3)
\/Z Vi Z Vi
To state Expression (12.2) more generally for variables Y, and Y, we can write
1t as

Fy2

Z ViV
R 24 S 12.4
ik (n — 1)s;s5, (124)

The correlation coeflicient 1y, can range from + 1 for perlect association
to —1 for perfect negative association, This is intuitively obvious when we
consider the correlation of a variable Y; with itself. Expression (12.4) would then
yield rj; = Z_yj_v_,/\/iyf Ly =Xy}/Zy? =1, which yields a perfect correla-
tion ol + . Il deviations in one variable were paired with opposite but equal
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because the sum of products in the numerator would be negative. Proof that the
correlation coefficient is bounded by +1 and — 1 will be given shortly.

If the variates follow a specified distribution, the bivariate normal distribu-
tion, the correlation coefficient rj, will estimate a parameter of that distribution
symbolized by pj.

Let us approach the distribution empirically. Suppose you have sampled
a hundred items and measured two variables on each item, obtaining two
samples of 100 variates in this manner. If you plot these 100 items on a graph
in which the variables Y, and Y, are the coordinates, you will obtain a scatter-
gram of points as in Figure 12.3A. Let us assume that both variables, Y, and Y,,
are normally distributed and that they are quite independent of each other,
so that the fact that one individual happens to be greater than the mean in
character Y; has no effect whatsoever on its value for variable Y,. Thus this
same individual may be greater or less than the mean for variable Y,. If there
is absolutely no relation between Y, and Y, and if the two variables are stan-
dardized to make their scales comparable, you will find that the outline of the
scattergram is roughly circular. Of course, for a sample of 100 items, the circle
will be only imperfectly outlined; but the larger the sample, the more clearly
you will be able to discern a circle with the central area around the intersec-
tion Y,, Y, heavily darkened because of the aggregation there of many points. If
you keep sampling, you will have to superimpose new points upon previous
points, and if you visualize these points in a physical sense, such as grains of
sand, a mound peaked in a bell-shaped fashion will gradually accumulate. This
is a three-dimensional realization of a normal distribution, shown in perspective
in Figure 12.1. Regarded from cither coordinate axis, the mound will present
a two-dimensional appearance, and its outline will be that of a normal distribu-
tion curve, the two perspectives giving the distributions of Y, and Y,, respec-
tively.

If we assume that the two variables Y, and Y, arc not independent but are
positively correlated to some degree, then if a given individual has a large value
of Y, it is more likely than not to have a large value of Y, as well. Similarly,
a small value of Y, will likely be associated with a small value of Y,. Were you
to sample items from such a population, the resulting scattergram (shown in

A e e e Y,

FIGURE 2.1
Bivariate normal [requency distribution. The parametric correlation p between variables Y, and Y,
equals zero. The frequency distribution may be visualized as a bell-shaped mound.
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FIGURE 12.2

Bivariate normal frequency distribution. The parametric correlation p between variables Y, and Y,
equals 0.9. The bell-shaped mound of Figure 12.1 has become elongated.

Figure 12.3D) would become elongated in the form of an ellipse. This is so
because those parts of the circle that formerly included individuals high for one
variable and low for the other (and vice versa), are now scarcely represented.
Continued sampling (with the sand grain model) yiclds a three-dimensional
elliptic mound, shown in Figure 12.2. Il correlation is perfect, all the data will
fall along a single regression line (the identical line would describe the regression
of Y, on Y, and of Y, on Y,), and il we let them pile up in a physical model,
they will result in a flat, essentially two-dimensional normal curve lying on this
regression line.

The circular or elliptical shape of the outline of the scattergram and of the
resulting mound is clearly a [unction of the degree of corrclation between the
two variables, and this is the parameter pj, of the bivariate normal distribution.
By analogy with Fxpression (12.2), the parameter pj, can be delined as

pu— (125)
: e

where g, 1s the parametric covariance of variables Y, and Y, and o; and o, arc

the parametric standard deviations of variables ¥, and Y, as before. When two

variables are distributed according to the bivariate normal, a sample correlation

cocflicient rj, cstimates the parametric correlation cocflicient p; . We can make

some statements about the sumpling distribution of pj, and set confidence limits
to 1t

Regrettably, the clliptical shape of scattergrams of correlated variables s

not usually very clear unless cither very large samples have been tuken or the

parametric correlation py is very high. To illustrate this point, we show in

Figure 12.3 several graphs illustrating scattergrams resulting rom samples of

100 items from bivariate normal populations with differing values of p;,. Note
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that in the first graph (Figure 12.3A), with p; = 0, the circular distribution is
only very vaguely outlined. A far greater sample is required to demonstrate the
circular shape of the distribution more clearly. No substantial difference is noted
in Figure 12.3B, based on p; = 0.3. Knowing that this depicts a positive correla-
tion, one can visualize a positive slope in the scattergram; but without prior
knowledge this would be difficult to detect visually. The next graph (Figure
12.3C, based on py, = 0.5) is somewhat clearer, but still does not exhibit an
unequivocal trend. In general, correlation cannot be inferred from inspection
of scattergrams based on samples from populations with p; between —0.5 and
+0.5 unless there are numerous sample points. This point is illustrated in the
last graph (Figure 12.3G), also sampled from a population with p; = 0.5 but
based on a sample of 500. Here, the positive slope and elliptical outline of the
scattergram are quite evident. Figure 12.3D, based on p; = 0.7 and n = 100,
shows the trend more clearly than the first three graphs. Note that the next
graph (Figure 12.3E), based on the same magnitude of p; but representing
negative correlation, also shows the trend but is more strung out than Figure
12.3D. The difference in shape of the ellipse has no relation to the negative
nature of the correlation; it is simply a function of sampling error, and the com-
parison of these two figures should give you some idea of the variability to be
expected on random sampling from a bivariate normal distribution. Finally,
Figure 12.3F, representing a correlation of p; = 0.9, shows a tight association
between the variables and a reasonable approximation to an ellipse of points.

Now let us return to the expression for the sample correlation coefficient
shown in Expression (12.3). Squaring this cxpression results in

2 Q YI,Vz)z

iz _Zylzzyg
- (Z y1y2)? !

X En

Look at the left term of the last expression. It is the square of the sum of
products of variables Y, and Y,, divided by the sum of squares of Y,. If this
were a regression problem, this would be the formula for the explained sum of
squares of variable Y, on variable Y,, £ 2. In the symbolism of Chapter 11,
on regression, it would be  §% = (X xy)?/Z x%. Thus, we can write

"2
2 LY (12.6)

The square of the correlation coefficient, therefore, is the ratio formed by the
explained sum ol squarcs of variable Y, divided by the total sum ol squares
of variable Y,. Equivalently,

A2
ri, = % ii (12.61)
1
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which can be derived just as easily. (Remember that since we are not really
regressing one variable on the other, it is just as legitimate to have Y; explained
by Y, as the other way around.} The ratio symbolized by Expressions (12.6) and
(12.6a) is a proportion ranging from 0 to 1. This becomes obvious after a little
contemplation of the meaning of this formula. The explained sum of squares
of any variable must be smaller than its total sum of squares or, maximally, if
all the variation of a variable has been explained, it can be as great as the total
sum of squares, but certainly no greater. Minimally, it will be zero if none of the
variable can be explained by the other variable with which the covariance has
been computed. Thus, we obtain an important measure of the proportion of
the variation of one variable determined by the variation of the other. This
quantity, the square of the correlation coefficient, r3,, is called the coefficient
of determination. It ranges from zero to 1 and must be positive regardiess of
whether the correlation coefficient is negative or positive. Incidentally, here is
proof that the correlation coefficient cannot vary beyond -1 and + 1. Since
its square is the coefficient of determination and we have just shown that the
bounds of the latter are zero to 1, it is obvious that the bounds of its square
root will be +1.

The coefficient of determination is useful also when one is considering the
relative importance of correlations of different magnitudes. As can be seen by a
reexamination of Figure 12.3, the rate at which the scatter diagrams go from a
distribution with a circular outline to one resembling an ellipse seems to be
more directly proportional to r? than to r itself. Thus, in Figurc 12.3B, with
p? = 0.09, it is difficult to detect the correlation visually. However, by the time
we reach Figure 123D, with p? =049, the presence of correlation is very
apparent.

The coeflicient ol determination is a quantity that may be useful in regres-
ston analysis also. You will recall that in a regression we used anova to partition
the total sum of squares into explained and unexplained sums of squares. Once
such an analysis of variance has been carried out, one can obtain the ratio of
the explained sums of squares over the total §§ as a measure of the proportion
of the total variation that has been explained by the regression. However, as
already discussed in Section 12.1, it would not be meaningful to take the square
root of such a cocflicient of determination and consider it as an estimate of the
parametric correlation of these variables.

We shall now take up a mathematical relation between the coefficients of
correlation and regression. At the risk of being repetitious, we should stress
again that though we can casily convert onc coeflicient into the other, this docs
not mean that the two types of coeflicients can be used interchangeably on the
same sort of data. One important relationship between the correlation coeffi-
cient and the regression coeflicient can be derived as follows from Expression
(12.3)

Z)’l.}fz 72)’1}'2. 1

IS Y S S
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12.2 / THE PRODUCT-MOMENT CORRELATION COEFFICIENT 277

Multiplying numerator and denominator of this expression by /) yi, we

obtain
P > Vi) .\/ZY%___ZYU’Z.VZY%
PUVIAVER VI D VEM

Dividing numerator and denominator of the right term of this expression by

Jn — 1, we obtain
\/TT%'
D) Yy, Nn—1 b, oL (12.7)

Fi2 = Zy% \/ﬁ}z" 2-1S2
n-—1

Similarly, we could demonstrate that

Sz
roa=by =
Sy

(12.7)

and hence

5 s
[72-1:"12V2 b1-2="12;1 (12.7b)

Sy 2

In these expressions b, ., is the regression coeflicient for variable Y, on Y,. We
see, therefore, that the correlation coefficicnt is the regression slope multiplied
by the ratio of the standard deviations of the variables. The correlation coefli-
cient may thus be regarded as a standardized regression coefficient. If the two
standard deviations are identical, both regression coefficients and the correla-
tion coefficicnt will be identical in value.

Now that we know about the coelTicient ol corrclation, some ol the carlier
work on paired comparisons (see Section 9.3) can be put into proper perspective.
In Appendix A1.8 we show for the corresponding parametric expressions that
the vanance of a sum of two variables is

Sty ey = ST 4 83+ 2r58,5, (12.8)

where s, and s, arc standard deviations of Y, and Y,, respectively, and r; is
the corrclation coeflicient between these variables. Similarly, for a difference
between two variables, we obtain

2 = 2 (2 - G
Sty —va) =81+ 83— 2r88, (12.9)

What Expression (12.8) indicates is that if we make a new composilc
variable that is the sum of two other variables, the variance of this new variable
will be the sum of the variances of the variables of which it 1s composcd plus
an added term, which is a function of the standard deviations of these two
variables and of the correlation between them. It is shown in Appendix A 1.8 that
this added term is twice the covariance of Y, and Y,. When the two variables
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BOX 121
Computation of the product-moment correlation coefficient.

Relationships between gill weight and body weight in the crab Pachygrapsus
crassipes. n = 12,

) )
Y h
Gill Body
weight in weight
milligrams in grams
159 14.40
179 1520
100 11.30
45 2.50
384 22.70
230 14.90
100 1.41
320 15.81
80 4.19
220 15.39
320 17.25
210 9.52

Source: Unpublished data by L. Miller.

Computation

1. ZYl =159 + -+ + 210 = 2347
2. ZYf = 1592 - 4+ 2107 = 583,403
3. ZYZ = 14.40 + - - + 9.52 = 144.57
4 T Y3 = (14401 + - - + (9.52)% = 2204.1853
S. ZY, Y, = 14.40(159) + - - - + 9.52(210) = 34,837.10
2
6. Sum of squaresof ¥, = ¥y = Y ¥? — (_Z_)_’.'_)_
n
. o s
= quantity 2 — QAN I cos o3 _ 3477
n 12
= 124,368.9167

7. Sum of squares of Y, = 3" 2 = Yy ("Z_&Lz
n

= quantity 4 — ‘J22NNY O = 2204.1853 —

(144.57y
VI

= 462.4782
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BOX 12.1
Continued

QY.
8. Sum of products =Y y,y, =y VY, — (—Z--{)rfmzw?l

5 quantity 1 x quantity 3

= quantity -
.57
= 34.837.10 — (2317)-%445——) = 6561.6175
9. Product-moment correlation coefficient (by Expression (12.3)):
I R quantity 8
t VY. ¥iY ¥t \/quantity 6 x quantity 7

6561.6175 _ 6561.6175

J(124.368.9167)(462.4782) 57,517,912.7314

_ 6561.6175

= e == (18652 & 0.87
7584.0565

being summed are uncorrelated, this added covariance term will be zero, and
the variance of the sum will simply be the sum of variances of the two variables.
This 1s the reason why, in an anova or in a t test of the difference between the
two means, we had to assume the independence of the two variables to permit
us to add their vanances. Otherwise we would have had to allow for a covari-
ance term. By contrast, in the patred-comparisons technique we expect corre-
lation between the variables, since the members in cach pair share 1 common
experience. The paired-comparisons test automatically subtracts a covariance
term, resulting in a smaller standard crror and conscquently in a larger value
of 1. since the numerator of the ratio remains the same. Thus, whenever corre-
lation between two variables is positive, the variance of their differences will
be considerably smaller than the sum of thetr variances; this is the reason why
the paired-comparisons test has to be used in place of the ¢ test for duference of
means. These considerations are equally true for the corresponding analyses
ol vartance. single-classification and (wo-way anova.

The computation of a product-moment correlation coeflicient is quite
simple. The basic quantities needed are the same six required lor computation
of the regression coeflicient (Scection 11.3). Box 12.1 illustrates how the coctti-
cient should be computed. The example is based on a sample of 12 crabs m
which gill weight Y, and body weight Y, have been recorded. We wish to know
whether there is a correlation between the weight of the gill and that of the body,
the latter representing a measure of overall size. The existence of a positive
correlation might lead you to conclude that a bigger-bodied crab with its re-
sulting greater amount of metabolism would require farger gills in order to
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provide the necessary oxygen. The computations are illustrated in Box 12.1. The
correlation coeflicient of 0.87 agrees with the clear slope and narrow elliptical
outline of the scattergram lor these data in Figure 12.4.

12.3 Significance tests in correlation

The most common significance test is whether it is possible for a sample cor-
relation cocellicient to have come from a population with a parametric correla-
tion coctlicient of zero. The null hypothesis is therefore H: p = 0. This implies
that the two variables are uncorrelated. If the sample comes from a bivanate
normal distribution and p = 0, the standard error of the correlation coetlicient

is s, = vl — r?)/(n — 2). The hypothesis is tested as a ¢ test with n — 2 degrees
of [recedom, 1, = (r — 0)/\/(1 —r)/n—2)= rv/(n - 2)/(1 = r?). We should em-
phasize that this standard crror applics only when p = 0, so that it cannot be
applied to testing a hypothesis that p is a specific value other than zero. The ¢
test for the significance of r 1s mathematically equivalent to the 1 test for the
significance of b, in cither case measuring the strength of the association between
the two varnables being tested. This 1s somewhat analogous to the situation
m Model | and Model 11 single-classification anova, where the same F test es-
tablishes the significance regardless of the model.

Significance tests following this formula bave been carried out system-
atically and are tabulated in Table VIII, which permits the direct inspection
of 4 sample correlation coctlicient for significance without further computation.
Box 122 1llustrates tests ol the hypothesis Hy,: p = 0, using Table VII as well
as the totest discussed at first.
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BOX 122 '
Tests of significance and confidence limits for correlation coefficients.

Test of the null hypothesis Hy: p = 0 versus H: p # 0

The simplest procedure is to consult Table VIIL where the critical values ol r
are tabulated for df = n — 2 from 1 to 1000. If the absolute value of the observed
r is greater than the tabulated value in the column for two variables, we reject
the null hypothesis.

Examples. Tn Box 12.1 we found the correlation between body weight and
gill weight to be 0.8652, based on a sample of n = 12. For 10 degrees of freedom
the critical values are 0.576 at the 5% level and 0.708 at the 1% level of sngqlﬁ-
cance. Since the observed correlation is greater than both of these, we can reject

ull hypothesis, Ho: p =0, at P <00L )
the nTalblg pV‘;II is basgd %pon the following test, which may be carried out when
the table is not available or when an exact test is needed at significance levels or
at degrees of freedom other than those furnished in the table. The null hypothesis
is tested by means of the ¢ distribution (with n — 2 df) by using the standard error

of r. When p =0, o
_ =
LRV T

r=0) /m~5
ty = e =T [T
(1~ r3f(n—2) (1-r9)
For the data of Box 12.1, this would be
1, = 08652 /(12 — /(1 — 0.8652%) = 0.8652/10/0.25143
= 0.8652+/39.7725 = 0.8652(6.3065) = 5.4564 > L5 6011101

For a one-tailed test the 0.10 and 0.02 values of ¢ should.be used for 5%
and 1% significance tests, respectively. Such tests would apply if the alternative
hypothesis were H: p >0 or Hy: p <0, rather than Hy: p # 0. _

When n is greater than 50, we can also make use of the z transformation
described in the text. Since o, = 1/\/17 - 3, we test

z -0
LIy
& 1//n =3 Zvn

Since z is normally distributed and we are using a parametric standard dex:ylatlon,
we compare t, with £, of employ Table IL, “Areas of the normal curve. If we
had a sample correlation of r = 0.837 between length‘of right- and left-wing veins
of bees based on n = 500, we would find z = 1.2111 in Table X. Then

1= 1.2111./497 = 26997
This value, when looked up in Table IL yields a very small probability (< 107%).

Therefore,

Test of the null hypothesis Hy: p = py, where p; #0

To test this hypothesis we cannot use Table VIII or the 1 test given above, but
must make use of the z transformation.
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BOX 12.2
Continued

Suppose we wish to test the null hypothesis Hy: p =
A : 1p= 405 versus H;:p #
+0.5 for the case just considered. We would use thcofollowing expression: e

2= —
I = e = {2 — )N~ 3
s O/ -
where z and { are the z transformations of r and P, respecti i
) r ; , respectively. Again we com-
pare t; with t,;,,, or look it up in Table IL From Table VIII wg ﬁng "
Forr=0837 =z=12111
Forp=0500 {=0.5493
Therefore

t,= (L2111 — 0.5493)(\/497) = 14,7538

The probability of obtaining such a value of r, by random sampling is P < 10~¢

{see Table II). Tt is most unlikely that the parametri i i
and Ieftaring veins ot y parametric correlation between right-

Confidence limits

If n > 50, we can set confidence limits to r using the z transformation. We first
convert the sample r to z, set confidence limits to this z, and then transform these

limits back to the r scale. We shall find 95% confidence limi i
vein length data. nfidence limits for the above wing

Forr = 0.837, z = 1.2111, « = 0.05,

1960
3 222953

= 12111 — 0.0879 = 1.1232

Ly=2 =ty =z — 1005190 _ 314

t
Ly=z+ 2230w 12011 + 0.0879 = 1.2990

n-3

We retransform these z values to the r scale by finding the corresponding argu-
ments for the z function in Table X.

L, = 0.808 and L, =~ 0862

are the 95% confidence limits around r = 0.837.

Test of the difference between two correlation coefficients

For two correlation coefficients we may y
ay test H,: p, = ve 3 .
follows: Y ol PL = py versus Hy:py # p, as

zy -z,

\/»“l _;-,_1*
ne -3 n, =3
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BOX 12.2

Continued

Since z, — z, is normally distributed and we are using a parametric standard
deviation, we compare t, with t,;,,; or employ Table II, “Areas of the normal
curve.”

For example, the correlation between body weight and wing length in Dro-
sophila pseudoobscura was found by Sokoloff (1966} to be 0.552 in a sampie of
ny = 39 at the Grand Canyon and 0.665 in a sample of n, = 20 at Flagstafl,
Arizona.

Grand Canyon: 7, = 0.6213 Flagstaff: z, = 0.8017
‘= 06213 - 08017  —0.1804  —0.1804
U s+ JoOB6E01 029428

By linear interpolation in Table 11, we find the probability that a value of t, will
be between +0.6130 to be about 2(0.229,41) = 0.458,82, so we clearly have no
evidence on which to reject the null hypothesis.

= —0.6130

i

When p is close to + 1.0, the distribution of sample values of r 1s markedly
asymmetrical, and, although a standard error is available for r in such cases,
it should not be applied unless the sample is very large (n > 500), a most in-
frequent case of little interest. To overcome this difficulty, we transform r to a
function z, developed by Fisher. The formula for = is

. ln(' *") (12.10)
2 Ior

You may rccognize this as = = tanh ! r, the formula for the inverse hy-
Y g

perbolic tangent of r. This function has becn tabulated in Table X, where values
of = corresponding to absolute values of r are given. Inspection of Expression
{12.10) will show that when r = 0, = will also cqual zcro, since | In | cquals
zero. However, as r approaches 41, (1 + r)/(1 — r) approaches . and O
consequently, z approaches +infinity. Therefore, substantal differences be-
tween r and Z occur at the higher values for r. Thus, when ris 0115, 2 = 0.1155.
For r = —0.531, we obtain = = —0.5915; r = 0.972 yiclds = = 2.1273. Notc by
how much = exceeds rin this last pair of values. By {inding a given valuc of - in
Table X, we can also obtain the corresponding value of r. Inverse interpolation
may be necessary. Thus, = = 0.70 corresponds to r = 0.604, and a value of
z = — 276 corresponds to r = —0.992. Some pocket calculators have built-in
hyperbolic and inverse hyperbolic functions. Keys for such functions would
obviate the need for Table X.

The advantage of the z trunsformation is that while corrclation coetlicients
arce distributed in skewed fashion for values of p # 0. the values of z are ap-
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{ (zeta), following the usual convention. The expected variance of z is

- (12.11)

This is an approximation adequate for sample sizes n > 50 and a tolerable
approximation even when n > 25. An interesting aspect of the variance of z
evident from Expression (12.11) is that it is independent of the magnitude of r,
but is simply a function of sample size n.

As shown in Box 12.2, for sample sizes greater than 50 we can also use
the z transformation to test the significance of a sample r employing the hy-
pothesis Hy: p = 0. In the second section of Box 12.2 we show the test of a null
hypothesis that p # 0. We may have a hypothesis that the true correlation
between two variables is a given value p different from zero. Such hypotheses
about the expected correlation between two variables are frequent in genetic
work, and we may wish to test observed data against such a hypothesis. Al-
though there is no a priori reason to assume that the true correlation be-
tween right and left sides of the bee wing vein lengths in Box 12.2 is 0.5, we
show the test of such a hypothesis to illustrate the method. Corresponding to
p = 0.5, there is {, the parametric value of z. It is the z transformation of p.
We note that the probability that the sample r of 0.837 could have been sampled
from a population with p = 0.5 is vanishingly small.

Next, in Box 12.2 we see how to set confidence limits to a sample cor-
relation coeflicient r. This is donec by means of the z transformation; it will
result in asymmetrical confidence limits when these are retransformed to the
r scale, as when setting confidence limits with variables subjected to square
root or logarithmic transformations.

A test for the significance of the difference between two sample correlation
coefficients is the final example illustrated in Box 12.2. A standard error for the
difference 1s computed and tested against a table of areas of the normal curve.
In the example the correlation between body weight and wing length in two
Drosophila populations was tested. and the difference in correlation cocfficients
between the two populations was found not significant. The formula given is
an acceptable approximation when the smaliler of the two samples is greater
than 25. It is frequently used with even smaller sample sizes, as shown in our
example in Box 12.2.

12.4 Applications of correlation

The purpose of correlation analysis is to measure the intensity of association
observed between any pair of variables and to test whether it is greater than
could be cxpected by chance alone. Once established, such an association is
likely to lead to reasoning about causal relationships between the variables.
Students of statistics are told at an carly stage not to confuse significant cor-
relation with causation. We arc also warned about so-called nonscnsc correla-
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tions, a well-known case being the positive correlation between the number of
Baptist ministers and the per capita liquor consumption in cities with popula-
tions of over 10,000 in the United States. Individual cases of correlation must
be carefully analyzed before inferences are drawn from them. It is useful to
distinguish correlations in which one variable is the entire or, more likely, the
partial cause of another from others in which the two correlated variables have
a common cause and from more complicated situations involving both direct
influence and common causes. The establishment of a significant correlation
does not tell us which of many possible structural models is appropriate. Further
analysis is needed to discriminate between the various models.

The traditional distinction of real versus nonsense or illusory correlation
is of little use. In supposedly legitimate correlations, causal connections are
known or at least believed to be clearly understood. In so-called illusory cor-
relations, no reasonable connection between the variables can be found; or if
one is demonstrated, it is of no real interest or may be shown to be an arti-
fact of the sampling procedure. Thus, the correlation between Baptist ministers
and liquor consumption is simply a consequence of city size. The larger the city,
the more Baptist ministers it will contain on the average and the greater will be
the liquor consumption. The correlation is of little interest to anyone studying
either the distribution of Baptist ministers or the consumption of alcohol. Some
correlations have time as the common factor, and processes that change with
time are frequently likely to be correlated, not because of any functional bio-
logical reasons but simply because the change with time in the two variables
under consideration happens to be in the same direction. Thus, size of an insect
population building up through the summer may be correlated with the height
of some weeds, but this may simply be a function of the passage of time. There
may be no ecological relation between the plant and the insects. Another situa-
tion in which the correlation might be considered an artifact 1s when one of
the variables is in part a mathematical function of the other. Thus. for example,
if Y =2Z/X and we compute the correlation of X with Y, the cxisting rela-
tion will tend to produce a negative correlation.

Perhaps the only correlations properly called nonsense or illusory are those
assumed by popular belief or scientific intuition which, when tested by proper
statistical methodology using adequate sample sizes, are found to be not sig-
nificant. Thus, if we can show that there is no significant correlation between
amount of saturated [ats caten and the degrec ol atherosclerosis, we can consider
this to be an illusory correlation. Remember also that when testing significance
of correlations at conventional levels of significance, you must allow for type |
crror, which will lead to your judging a certain percentage of correlations sig-
nificant when in lact the parametric value of p = 0.

Correlation coctlicients have a history of extensive use and application
dating back to the Iinglish biometric school at the beginning of the twenticth
century. Recent years have seen somewhat less application of this technique as
increasing scgments ol biological research have become experimental. In experi-
ments in which one factor is varied and the response of another variable to the



286 CHAPTER 12 / CORRELATION

deliberate variation of the first is examined, the method of regression is more
appropriate, as has already been discussed. However, large areas of biology and
of other sciences remain where the experimental method is not suitable because
variables cannot be brought under control of the investigator. There are many
areas of medicine, ecology, systematics, evolution, and other fields in which
experimental methods are difficult to apply. As yet, the weather cannot be con-
trolled, nor can historical evolutionary factors be altered. Epidemiological vari-
ables are generally not subject to experimental manipulation. Nevertheless, we
necd an understanding of the scientific mechanisms underlying these phenom-
ena as much as of those in biochemistry or experimental embryology. In such
cases, correlation analysis serves as a first descriptive technique estimating the
degrees of association among the variables involved.

12.5 Kendall’s coefficient of rank correlation

Occasionally data are known not to follow the bivariate normal distribution,
yet we wish to test for the significance of association between the two variables.
One method of analyzing such data is by ranking the variates and calculating
a cocfhicient of rank correlation. This approach belongs to the general family of
nonparametric methods we encountered in Chapter 10. where we learned
methods for analyses of ranked variates paralleling anova. In other cases es-
pecially suited to ranking methods, we cannot measure the variable on an
absolutc scale, but only on an ordinal scale. This is typical of data in which
we estimate relative performance, as in assigning positions in a class. We can
say that A is the best student, B is the second-best student, C and D are equal
to each other and next-best, and so on. If two instructors independently rank
a group of students, we can then test whether the two sets of rankings are
independent (which we would not expect if the judgments of the instructors are
based on objective evidence). Of greater biological and medical interest are the
following examples. We might wish to correlate order of emergence in a sample
of insccts with a ranking in size, or order of germination in a sample of plants
with rank order of flowering. An ¢pidemiologist may wish to associate rank
order of occurrence (by time) of an infectious disease within a community, on
the one hand, with its severity as measured by an objective criterion, on the
other.

We present in Box 12.3 Kendall's coefficient of rank correlation, generally
symbolized by t (tau), although it is a sample statistic, not a paramcter. The
formula for Kendall's coeflicient of rank correlation i1s t = N/n(n — 1), where n
is the conventional sample size and N s a count of ranks, which can be ob-
tained in a varicty of ways. A sccond variable Y,, if it is perfectly correlated
with the first variable Y,. should be in the same order as the Y, vaniates. However,
il the correlation is less than perfect, the order of the variates Y, will not entirely
correspond to that of Y,. The quantity N measures how well the second variable
corresponds to the order of the first. It has a maximal value of n(n - 1) and
a minimal valuc of ——n(n - 1). The lollowing small example will make this clear.

12
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BOX 123

Kendall’s coefficient of rank correlation, t.

Computation of a rank correlation coefficient between the blood ncutroplul counte
(Y,; x 1072 per ul) and total marrow neutrophil mass (¥, x 107 per k) i 1o
patients with nonhematological tumors: n = 15 pairs of observations.

0] 2) (3) ) ) 6] 2 & @ &
Patient Y, R, Y, R, Patient Y, R, Y, R,
1 49 6 434 I 8 7.1 9 7.12 5

2 4.6 5 9.64 9 9 23 1 9.75 10

3 55 7 7.39 6 10 316 2 8.65 8

4 9.1 11 13.97 12 11 18.0 15 15.34 14

5 16.3 14 2012 15 12 37 3 12.33 8

6 127 13 1501 13 13 7.3 10 5.99 2

7 64 8 6.93 4 14 44 4 7.66 7

15 9.8 12 6.07 3

Source: Data extracted from Liu, Kesfeld. and Koo (1983).

Computational steps

1. Rank variables Y, and Y, separately and then replace the original variates with
the ranks (assign tied ranks if necessary so that for both variables you will
always have n ranks for n variates). These ranks are listed in columns (3) and
{5) above.

2. Write down the n ranks of one of the two variables in order, paired with the
rank values assigned for the other variable (as shown below). If only one vari-
able has ties, order the pairs by the variable without ties. If both variables have
ties, it does not matter which of the variables is ordered.

3. Obtain a sum of the counts C,, as follows. Examine the first value in the column
of ranks paired with the ordered column. 1n our case, this is rank 10. Count
all ranks subsequent to it which are higher than the rank being considered.
Thus, in this case, count all ranks greater than 10. There are fourteen ranks
following the 10 and five of them are greater than 10. Therefore, we count a
score of €, = 5. Now we look at the next rank (rank 8) and find that six of
the thirteen subsequent ranks are greater than it; therefore, C, is equal to 6.
The third rank is 11, and four following ranks are higher than it. Hence, C, = 4.
Continue in this manner, taking each rank of the variable in turn and counting
the number of higher ranks subsequent to it. This can usually be done in onc’s
head, but we show it explicitly below so that the method will be entirely clear.
Whenever a subsequent rank is tied in value with the pivotal rank R,, count
} instead of 1.
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Continued
Subsequent ranks greater
R, R, than pivotal rank R, Counts C;
1 10 11, 12,13, 15,14 5
2 8 11,9,12,13, 15, 14 6
3 1 12,13, 15, 14 4
4 7 9,12, 13,15, 14 5
5 9 12,13, 15, 14 4
6 1 6,4,5,2,12,3,13,15, 14 9
7 6 12, 13, 15, 14 4
8 4 5,12, 13,15, 14 5
9 5 12,13, 15, 14 4
10 2 12,3,13,15, 14 5
11 12 13,15, 14 3
12 3 13,15, 14 3
13 13 15, 14 2
14 15 0
15 14 0

We then need the following quantity:

N =4Y C,—nn—1) = 4(59) — 15(14) = 236 — 210 = 26
4, The Kendall coefficient of rank correlation, 1, can be found as follows:

N 26
TR T 0.124

When there are ties, the coefficient is computed as follows:
N

i \/l:n(n - 17— 5 T,][n(n -3 T2]

where ™ T, and X" T, are the sums of correction terms for ties in the ranks of
variable Y, and Y,, respectively, defined as follows. A T value equal to t(t — 1)
is computed for each group of t tied variates and summed over m such groups.
Thus if variable Y, had had two sets of ties, one involving ( = 2 variates
and a second involving ¢ = 3 variates, one would have computed Z” T, =
2(2 —~ 1) + 3(3 — 1) = 8. It has been suggested that if the ties are due to lack
of precision rather than being real, the coefficient should be computed by the
simpler formula.
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BOX 12.3
Continued
5. To test significance for sample sizes >40, we can make use of a normal ap-
proximation to test the null hypothesis that the true value of 1 = O:
T

V221 + 5)/9n(n — 1)
When n < 40, this approximation is not accurate, and Table XIV must be
consulted. The table gives various (two-tailed) critical values of ¢ for n =4 to
40, The minimal significant value of the coefficient at P = 0.05 is 0.390. Hence
the observed value of 1 is not significantly different from zero.

compared with  f,.,

s =

Suppose we have a sample of five individuals that have been arrayed by rank
of variable Y, and whose rankings for a second variable Y, are entered paired
with the ranks for Y;:

4 5
5 4

g W

Note that the ranking by variable Y, is not totally concordant with that by Y,.
The technique employed in Box 12.3 is to count the number of higher ranks
following any given rank, sum this quantity for all ranks, multiply the sum X" C;
by 4, and subtract from the result a correction factor n(n — 1) to obtain a statistic
N. If, for purposes of illustration, we undertake to calculate the correlation of
variable Y, with itself, we will find 2"C; =44+ 3+ 2+ 1 4+ 0= 10. Then we
compute N =4 X"C; — n(n — 1) = 40 — 5(4) = 20, to obtain the maximum
possible score N = n{(n — 1) = 20. Obviously, Y,. being ordered, 1s always per-
fectly concordant with itsclf. However, for Y, we obtain only £"C;, =4 + 2 +
24+0+0=28 and so N = 4(8) — 5(4) = 12. Since the maximum score of N for
Y, (the score we would have if the correlation were perfect) is n(n — 1) = 20 and
the observed score 12, an obvious coeflicient suggests itself as N/n(n - 1) =
[4Z°C; — n(n — )]/n(n — 1) = 12/20 = 0.6. Ties between individuals in the
ranking process present minor complications that are dealt with in Box 12.3.
The correlation in that box is between blood ncutrophil counts and total
marrow ncutrophil mass in 15 cancer patients. The authors note that there is
a product-moment correlation of 0.69 between these two variables, but when
the data arc analyzed by Kendall's rank correlation cocfficient, the association
between the two variables is low and nonsignificant. Examination of the data
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reveals that there is marked skewness in both variables. The data cannot, there-
fore, meet the assumptions of bivariate normality. Although there is little evi-
dence of correlation among most of the variates, the three largest variates for
each variable are correlated, and this induces the misleadingly high product-
moment correlation coefficient.

The significance of t for sample sizes greater than 40 can easily be tested
by a standard error shown in Box 12.3. For sample sizes up to 40, look up
critical values of 7 in Table XIV.

Exercises

12.1  Graph the following data in the form of a bivariate scatter diagram. Compute
the correlation coeflicient and set 95% confidence intervals to p. The data were
collected for a study of geographic variation in the aphid Pemphigus populi-
transversus. The values in the table represent locality means based on equal
sample sizes for 23 localities in eastern North America. The variables, extracted
from Sokal and Thomas (1965), are expressed in millimeters. Y, = tibia length,
Y, = tarsus length. The correlation coefficient will estimate correlation of these
two variables over localities. ANS. r = 0910, P < 0.01.

Locality code number Y, Y,
1 0.631 0.140
2 0.644 0.139
3 0.612 0.140
4 0.632 0.141
5 0.675 0.155
6 0.653 0.148
7 0.655 0.146
8 0.615 0.136
9 0.712 0.159
10 0.626 0.140
I1 0.597 0.133
12 0.625 0.144
13 0.657 0.147
14 0.586 0.134
15 0.574 0.134
16 0.551 0.127
17 0.556 0.130
18 0.665 0.147
19 0.585 0.138
20 0.629 0.150
21 0.671 0.148
22 0.703 0.151
23 0.662 0.142
12.2 The following data were extracted from a larger study by Brower (1959) on specia-

tion in a group of swallowtail butterflies. Morphological measurements are in
millimeters coded x 8.

EXERCISES

4 Y,
Specimen Length of Length of
Species number 8th tergile superuncus

Papilio 1 24.0 140
multicaudatus 2 21.0 15.0
3 20.0 17.5

4 21.5 16.5

5 215 16.0

6 25.5 16.0

7 25.5 17.5

8 28.5 16.5

9 235 15.0

10 22.0 15.5

11 22.5 17.5

12 20.5 19.0

13 21.0 13.5

14 19.5 19.0

15 26.0 18.0

16 230 17.0

17 21.0 18.0

18 21.0 17.0

19 20.5 16.0

20 22.5 15.5

Papilio 21 200 11.5
rutulus 22 21.5 11.0
23 18.5 10.0

24 20.0 11.0

25 19.0 11.0

26 20.5 11.0

27 19.5 11.0

28 19.0 10.5

29 215 11.0

30 20.0 115

R 215 10.0

32 20.5 12.0

33 20.0 10.5

34 21.5 12.5

35 17.5 12.0

36 21.0 12.5

37 210 1.5

38 21.0 2.0

39 19.5 10.5

40 19.0 1.0

41 18.0 1t.5

42 21.5 10.5

43 230 11.0

44 22.5 1.5

45 19.0 13.0

46 225 14.0

47 21.0 2.5
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Compute the correlation coefficient separately for each species and test signifi-
cance of each. Test whether the two correlation coefficients differ significantly.
A pathologist measured the concentration of a toxic substance in the liver and
in the peripheral blood (in pg/kg) in order to ascertain if the liver concentration
is related to the blood concentration. Calculate t and test its significance.

Liver Blood
0.296 0.283
0.315 0.323
0.022 0.159
0.361 0.381
0.202 0.208
0.444 0411
0.252 0.254
0.371 0.352
0.329 0.319
0.183 0.177
0.369 0.315
0.199 0.259
0.353 0.353
0.251 0.303
0.346 0.293

ANS. © =0.733.

The following table of data is from an unpublished morphometric study of the
cottonwood Populus deltoides by T. J. Crovello. Twenty-six leaves from one
tree were measured when fresh and again after drying. The variables shown are
fresh-leaf width (Y}) and dry-leaf width (Y,), both in millimeters. Calculate r
and test its significance.

Y, Y, Y, Y,
90 88 100 97
8K 87 110 105
55 52 95 90
100 95 99 98
86 83 92 92
90 88 80 82
82 77 Ho 106
78 75 105 97
15 109 101 98
100 95 95 91
110 105 80 76
84 78 103 97
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12.6

Brown and Comstock (1952) found the following correlations between the length
of the wing and the width of a band on the wing of females of two samples
of the butterfly Heliconius charitonius:

Sample n r
1 100 0.29
2 46 0.70

Test whether the samples were drawn from populations with the same value of
p. ANS. No, t, = —3.104, P < 0.01. o .
Test for the presence of association between tibia length and tarsus length in
the data of Exercise 12.1 using Kendall’s coefficient of rank correlation.



CHAPTER 1 3

Analysis of Frequencies

Almost all our work so far has dealt with estimation of parameters and tests
of hypotheses for continuous variables, The present chapter treats an importan;
c]ass. of.cascs, tests of hypotheses about frequencics. Biological variables may
be Q1strlbuled into two or more classes, depending on some criterion such as
arbitrary class limits in a continuous variable or a set of mutually exclusivé
alt_ributes. An example of the former would be a frequency distribution of birth
weights (a continuous variable arbitrarily divided into a number of contiguous
classes); one of the latter would be a qualitative frequency distribution such as
the frequency of individuals of ten different species obtained from a soil samplé
For any spch distribution we may hypothesize that it has been sampled frorr;
a populaFlon in which the frequencies of the various classes represent certain
parametric proportions of the total frequency. We need a test of goodness of fit
for our opserved [requency distribution to the expected frequcnéy distribution
rcpresentm.g our hypothesis. You may recall that we first realized the need for
such a test in Chapters 4 and S, where we calculated expected binomial. Poisson

and normal frequency distributions but were unable to decide whether an ob:
served sample distribution departed significantly from the theoretical one.
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In Section 13.1 we introduce the idea of goodness of fit, discuss the types
of significance tests that are appropriate, explain the basic rationale behind such
tests, and develop general computational formulas for these tests.

Section 13.2 illustrates the actual computations for goodness of fit when
the data are arranged by a single criterion of classification, as in a one-way
quantitative or qualitative frequency distribution. This design applies to cases
expected to follow one of the well-known frequency distributions such as the
binomial, Poisson, or normal distribution. It applies as well to expected distri-
butions following some other law suggested by the scientific subject matter
under investigation, such as, for example, tests of goodness of fit of observed
genetic ratios against expected Mendelian frequencies.

In Section 13.3 we proceed to significance tests of frequencies in two-way
classifications——called tests of independence. We shall discuss the common tests
of 2 x 2 tables in which each of two criteria of classification divides the fre-
quencies into two classes, yielding a four-cell table, as well as R x C tables with
more rows and columns.

Throughout this chapter we carry out goodness of fit tests by the G statistic.
We briefly mention chi-squarc tests, which are the traditional way of analyzing
such cases. But as is explained at various places throughout the text, G tests
have general theoretical advantages over chi-square tests, as well as being
computationally simpler, not only by computer, but also on most pocket or
tabletop calculators.

13.1 Tests for goodness of fit: Introduction

The basic idea of a goodness of fit test is easily understood, given the extensive
experience you now have with statistical hypothesis testing. Let us assume that
a gencticist has carried out a crossing experiment between two £, hybnids and
obtains an F, progeny of 90 offspring, 80 of which appear to be wild type and
10 of which are the mutant phenotype. The geneticist assumes dominance and
expects a 3:1 ratio of the phenotypes. When we calculate the actual ratios,
however, we observe that the data are in a ratio 80/10 = 8: 1. Expected values
for pand g are p = 0.75 and § = 0.25 for the wild typc and mutant, respectively.
Note that we use the caret (generally called “hat™ in statistics) to indicate hypo-
thetical or expected values of the binomial proportions. However, the observed
proportions of these two classes are p = 0.89 and ¢ = 0.11, respectively. Yet
another way of noting the contrast between observation and expectation is 1o
state it in frequencies: the observed frequencies are f; = 80 and f; = 10 for the
two phenotypes. Expected frequencies should be f; = pn = 0.7590) = 67.5 and
f: = gn = 0.25(90) = 22.5, respectively, where n refers to the sample size of
offspring from the cross. Note that when we sum the expected frequencies they
yield 67.5 + 22.5 = n = 90, as they should.

The obvious question that comes to mind is whether the deviation from the
3:1 hypothesis observed in our sample is of such a magnitude as to be im-
probable. In other words, do the observed data differ enough from the expected
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values to cause us to reject the null hypothesis? For the case just considered, you
already know two methods for coming to a decision about the null hypothesis.
Clearly, this is a binomial distribution in which p is the probability of being
a wild type and q is the probability of being a mutant. It is possible to work
out the probability of obtaining an outcome of 80 wild type and 10 mutants
as well as all “worse” cases for p = 0.75 and § = 0.25, and a sample of n = 90
offspring. We use the conventional binomial expression here (p + 4)” except that
p and g are hypothesized, and we replace the symbol k by n, which we adopted
in Chapter 4 as the appropriate symbol for the sum of all the frequencies in a
frequency distribution. In this example, we have only one sample, so what would
ordinarily be labeled k in the binomial is, at the same time, n. Such an example
was illustrated in Table 4.3 and Section 4.2, and we can compute the cumulative
probability of the tail of the binomial distribution. When this is done, we obtain
a probability of 0.000,849 for all outcomes as deviant or more deviant from the
hypothesis. Note that this is a one-tailed test, the alternative hypothesis being
that there are, in fact, more wild-type offspring than the Mendelian hypothesis
would postulate. Assuming p = 0.75 and § = 0.25, the observed sample is, con-
sequently, a very unusual outcome, and we conclude that there is a significant
deviation from expectation. -

A less time-consuming approach based on the same principle is to look up
confidence limits for the binomial proportions, as was done for the sign test in
Section 10.3. Interpolation in Table IX shows that for a sample of n = 90, an
observed percentage of 89% would yield approximate 99% confidence limits of
78 and 96 for the true percentage of wild-type individuals. Clearly, the hy-
pothesized value for p = 0.75 is beyond the 99% confidence bounds.

Now, let us develop a third approach by a goodness of fit test. Table 13.1
illustrates how we might proceed. The first column gives the observed frequen-
cies f representing the outcome of the experiment. Column (2) shows the ob-
served frequencies as (observed) proportions p and ¢ computed as f;/n and f,/n,
respectively. Column (3) lists the expected proportions for the particular null
hypothesis being tested. In this case, the hypothesis is a 3:1 ratio, corresponding
to expected proportions j = 0.75 and § = 0.25, as we have seen. In column (4)
we show the expected frequencies. which we have already calculated for these
proportions as f; = pn = 0.75(90) = 67.5 and f;, = gn = 0.25(%90) = 22.5.

The log likelihood ratio test for goodness of fit may be developed as follows.
Using Expression (4.1) for the expected relative frequencies in a binomial dis-
tribution, we compute two quantities of interest to us here:

C(90, 8OIENH (L)' = 0.132,683.8
C(90. BO)D*°E)10 = 0.000,551,754.9

The first quantity is the probability of observing the sampled results (80 wild
type and 10 mutants) on the hypothesis that p = p—that is, that the population
parameter equals the observed sample proportion. The second is the probability
of observing the sampled results assuming that p = 2. as per the Mendelian null

TABLE 13.1

Developing the G test (likelihood ratio test) and the chi-square test for goodness of fit, Observed and expected frequencies from the outcome of a genetic cross,

assuming a 3:1 ratio of phenotypes among the offspring.

U
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=
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hypothesis. Note that these expressions yield the probabilities for the observed
outcomes only, not for observed and all worse outcomes. Thus, P = 0.000,551,8
is less than the earlier computed P = 0.000,849, which is the probability of 10
and fewer mutants, assuming p =3, § = .

The first probability (0.132,683,8) is greater than the second (0.000,551,754,9),
since the hypothesis is based on the observed data. If the observed proportion
p is in fact equal to the proportion p postulated under the null hypothesis, then
the two computed probabilities will be equal and their ratio, L, will equal 1.0.
The greater the difference between p and p (the expected proportion under the
null hypothesis), the higher the ratio will be (the probability based on p is
divided by the probability based on p or defined by the null hypothesis). This
indicates that the ratio of these two probabilities or likelihoods can be used as
a statistic to measure the degree of agreement between sampled and expected
frequencies. A test based on such a ratio is called a likelihood ratio test. In our
case, L = 0.132,683.8/0.000,551,754,9 = 240.4761.

It has been shown that the distribution of

G=2InL (13.1)

can be approximated by the y? distribution when sample sizes are large (for a
definition of “large™ in this case, see Section 13.2). The appropriate number of
degrees of freedom in Table 13.1 is 1 because the frequencies in the two cells
for these data add to a constant sample size, 90. The outcome of the sampling
experiment could have been any number of mutants from 0 to 90. but the
number of wild type consequently would have to be constrained so that the
total would add up to 90. One of the cells in the table is free to vary, the other
is constrained. Hence, there is one degree of freedom.
In our casc,

G =2In L = 2(5482,62) = 10.9652

If we compare this observed value with a x? distribution with onc degree of
freedom, we find that the result is significant (P < 0.001). Clearly, we reject the
3:1 hypothests and conclude that the proportion of wild type is greater than
0.75. The gencticist must, conscquently, look for a mechanism explaining this
departure from expectation.

We shall now develop a simple computational formula for G. Referring
back to Expression (4.1), we can rewrite the two probabilities computed carlier
as

Cin, f)p g (13.2)
and

Con fp g’ (13.2a)

Con, fi)p" g’ (PY‘ ((1)“
L= = =
(Tt F RIS " P

But
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Since f, = np and f, = np and similarly f, = nq and f, = ng,

L=<é>f1<f}\_2)fz
f1 J2

InL=fIn (%) + f>In ({3) (13.3)

1 2

and

The computational steps implied by Expression (13.3) are shown in columns
(5) and (6) of Table 13.1. In column (5) are given the ratios of observed over
expected frequencies. These ratios would be 1 in the unlikely case of a perfect
fit of observations to the hypothesis. In such a case, the logarithms of these
ratios entered in column (6) would be 0, as would their sum. Consequently, G,
which is twice the natural logarithm of L, would be 0, indicating a perfect fit
of the observations to the expectations.

It has been shown that the distribution of G follows a ¥? distribution. In
the particular case we have been studying—the two phenotype classes—the
appropriate y? distribution would be the one for one degree of freedom. We
can appreciate the reason for the single degree of freedom when we consider
the frequencies in the two classes of Table 13.1 and their sum: 80 + 10 = 90.
In such an example, the total frequency is fixed. Therefore, if we were to vary
the frequency of any one class, the other class would have to compensate for
changes in the first class to retain a correct total. Here the meaning of one
degree of freedom becomes quite clear. One of the classes is free to vary; the
other is not.

The test for goodness of fit can be applied to a distribution with more than
two classes. If we designate the number of frequency classes in the Table as a,
the operation can be expressed by the following general computational formula,
whose derivation, based on the multinominal expectations (for more than two
classes), is shown in Appendix A1.9:

G=2%fIn (9 (13.4)

Thus the formula can be seen as the sum of the independent contributions
of departures from expectation (In (f;/f;)) weighted by the frequency of the
particular class (f;). If the expected values are given as a proportion, a conve-
nient computational formula for G, also derived in Appendix A1.9, is

Gzz[if; In (g)—nln n:| (13.5)

To evaluate the outcome of our test of goodness of fit, we need to know the
appropriate number of degrees of freedom to be applied to the x? distribution.
For a clascee the number of devrees of freedom i1c 7 — 1 Since the snm of



300 CHAPTER 13 / ANALYSIS OF FREQUENCIES

frequencies in any problem is fixed, this means that ¢ — 1 classes are free to
vary, whereas the ath class must constitute the difference between the total sum
and the sum of the previous a — 1 classes.

In some goodness of fit tests involving more than two classes, we subtract
more than one degree of freedom from the number of classes, a. These are
instances where the parameters for the null hypothesis have been extracted from
the sample data themselves, in contrast with the null hypotheses encountered
in Table 13.1. In the latter case, the hypothesis to be tested was generated on
the basis of the investigator’s general knowledge of the specific problem and of
Mendelian genetics. The values of p = 0.75 and 4 = 0.25 were dictated by the
3:1 hypothesis and were not estimated from the sampled data. For this reason,
the expected frequencies are said to have been based on an extrinsic hypothesis,
a hypothesis external to the data. By contrast, consider the expected Poisson
frequencies of yeast cells in a hemacytometer (Box 4.1). You will recall that to
compute these frequencies, you needed values for &, which you estimated from
the sample mean Y. Therefore, the parameter of the computed Poisson distri-
bution came from the sampled observations themselves. The expected Poisson
frequencies represent an intrinsic hypothesis. In such a case, to obtain the correct
number of degrees of freedom for the test of goodness of fit, we would subtract
from a, the number of classes into which the data had been grouped, not only
one degree of freedom for n, the sum of the frequencies, but also one further
degree of freedom for the estimate of the mean. Thus, in such a case, a sample
statistic G would be compared with chi-square for a — 2 degrees of freedom.

Now let us introduce you to an alternatjve technique. This is the traditional
approach with which we must acquaint you because you will see it applied in
the earlier literature and in a substantial proportion of current research publi-
cations. We turn once more to the genetic cross with 80 wild-type and 10
mutant individuals. The computations are laid out in columns (7), (8), and (9)
in Table 13.1.

We first measure f — f the deviation of observed from expected frequen-
cies. Note that the sum of these deviations cquals zero, for reasons very similar
to those causing the sum of deviations from a mean to add to zcro. Following
our previous approach of making all deviations positive by squaring them, we
square (f — f) in column (8) to yield a measure of the magnitude of the devia-
tion from cxpectation. This quantity must be expressed as a proportion of the
expected frequency. After all, if the expected frequency were 13.0, a deviation of
12.5 would be an extremely large one, comprising almost 100% of f, but such
a deviation would represent only 10% of an cxpected frequency of 125.0. Thus,
we obtain column (9) as the quotient of division of the quantity in column (8)
by that in column (4). Note that the magnitude of the quotient is greater for
the sccond line, in which the f is smaller. Our next step in developing our test
statistic is to sum the quotients, which is done at the foot of column (9), yielding
a value of 9.259,26.

This test is called the chi-square test because the resultant statistic, X2, is
distributed as chi-square with a - 1 degrees of freedom. Many persons map-
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propriately call the statistic obtained as the sum of column (9) a chi-square.
However, since the sample statistic is not a chi-square, we h?.ve 2followed the
increasingly prevalent convention of labeling the sample statistic X rather _tl_xan
x2. The value of X? = 9.259,26 from Table 13.1, when compared vynth the crmce.ll
value of y2 (Table IV), is highly significant (P < 0.005). The chl-sqga}re test. is
always one-tailed. Since the deviations are squared, negative and positive dev1§-
tions both result in positive values of X?2. Clearly, we reject the 3:1 hypothpgls
and conclude that the proportion of wild type is greater thgn 0.75. The geneticist
must, consequently, look for a mechanism explaining this departure fror;l ex-
pectation. Our conclusions are the same as with the G test. In general, X* will
be numerically similar to G. S .
We can apply the chi-square test for goodness of fit toa distribution with
more than two classes as well. The operation can be described by the formula

a (f — f)?
x2=y Ui i ﬁf‘) (13.6)

which is a generalization of the computations carried out in cglumns (?), (8),
and (9) of Table 13.1. The pertinent degrees of freedom are again a — tin tl}e
case of an extrinsic hypothesis and vary in the case of an intrinsic hypothesis.
The formula is straightforward and can be applied to any of the examples we
show in the next section, although we carry these out by means of the G test.

13.2 Single-classification goodness of fit tests

Before we discuss in detail the computational steps involved in tests of good-
ness of fit of single-classification frequency distributions, some remarks on the
choice of a test statistic are in order. We have already stated that the traditional
method for such a test is the chi-square test for goodness of fit. However, the
newer approach by the G test has been recommended on theoretl_cal grounds.
The major advantage of the G test i1s that it is compulatlonal}y 51131pler, espe-
cially in more complicated designs. Earlier reservations regarding G when Fiesk
calculators are used no longer apply. The common presence of natural loganthr;l
keys on pocket and tabletop calculators makes G as casy to comp.ute_ as .X .

The G tests of goodness of fit for single-classification frequency distributions
are given in Box 13.1. Expected frequencies in three or more‘classes can be
based on either extrinsic or intrinsic hypotheses, as discussed in the previous
section. Examples of goodness of fit tests with more than‘two classes might- be
as follows: A genetic cross with four phenotypic classes might be tested against
an expected ratio of 9:3:3:1 for these classes. A phenomenon that occurs over
various time periods could be tested for uniform frequency of occurrenceffor
example, number of births in a city over 12 months: Is the.frequency of births
equal in each month? In such a case the expected frequencies are computed as
being equally likely in each class. Thus, for a classes, the expected frequency
for any onc class would be n/a.
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ol BO
BOX 13.1 p ’fmﬁe;
G Test for Goodness of Fit. Single Classification. onting
1. Frequencies divided into a > 2 classes: Sex ratio in 6115 sibships of 12 in Saxony. problem. We obtain
The fourth column gives the expected frequencies, assuming a binomial distri- -1
bution. These were first computed in Table 4.4 but are here given to five- g=1+ z
decimal-place precision to give sufficient accuracy to the computation of G. 4
112 —~1
= 1 et e A * v4
+ &61150) 1.000,363
&) G
: 94.871,55
Deviation . s -
(1) (2) (3) ({) ﬁom Gad] q 1 -000,363,4 94'837709
a3 e f S expectation

Gadj = 94.837,09 > X%.()ol[g] = 27.877

ill) (1) 42}52 2233}%} 28.429,73 + ~ The null hypothesis“thqt' the sample data follow a binomial distribu-
082, tion—is therefore rejected decisively.

10 2 181 132.835,70 + Typically, the following degrees of freedom will pertain to G tests for
g g ggg géggiéygg + goodness of fit with expected frequencies based on a hypothesis intrinsic to the
. s 111 126563031 - sample data (a is the number of classes after lumping, if any):

6 6 1343 1367.279,36 -

5 7 1033 1085.210,70 - Parameters estimated

4 8 670 628.055,01 + Distribution Jrom sample af

3 9 286 258.475,13 +

210 104 71.803,17 + Ilzlimomilad p a-— §

1 11 24 12.088,84 orma "o a—

0 12 3 }27 0.932.84 | 1302168 + Poisson § a-2

6115 =n 6115.000,00
When the parameters for such distributions are estimated from hypotheses

Since expected frequencies f; < 3 for a = 13 classes should be avoided, we lum: exmpszc_to the sampled d ata, t.h ° de:grees of freedom are uniformly a — 1.
the class}:s at botl(n1 tails Witjl;l the adjacent classes to create classes of adcquatg 2. Special case of frequencies divided in a =2 classes: In an F, cross in dro-

sophila, the following 176 progeny were obtained, of which 130 were wild-type
flies and 46 ebony mutants. Assuming that the mutant is an autosomal recessive,
one would expect a ratio of 3 wild-type flies to each mutant fly. To test whether
the observed results are consistent with this 3:1 hypothesis, we set up the data

size. Corresponding classes of observed frequencies f; should be lumped to
match. The number of classes after lumping is a = 11.
Compute G by Expression (13.4):

a f; as follows.
G=2Y filn (7)
1 ~
Flies f Hypothesis f
z2<521n(~§3-—)+1811n(w—!§1-)+~~v+271n(~w21-)) . , R R
28.429,73 132.835,70 13.021,68 Wild type fy =130 p =075 pn = 132.0
= 94.871.55 Ebony mutant  f, = 46 4=025 gn = 440
’ n=176 176.0
Since there are a = 11 classes remaining, the degrees of freedom would be
a — | = 10, if this were an example tested against expected frequencies based Computing G from Expression (13.4), we obtain
onan extrinsic hypothesis. However, because the expected frequencies are based
on a binomial distribution with mean § estimated from the p, of the sample, G=2 i filn (_f_;: )
a further degree of freedom is removed, and the sample value of G is compared :

with a x* distribution with @ — 2 = 11 — 2 = 9 degrees of freedom. We applied . 130 46y ¢ LJNIE A AT Yy
Williams® correction to G, to obtain a better approximation to x2. In the for- = 2[1301n (133) + 46 In (23] [
mula computed below, v symbolizes the pertinent degrees of freedom of the = 0.120,02
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BOX 13.1
Continved

Williams® correction for the two-cell case is g = 1 + 1/2n, which is

14— = 1.002,84
+ 2176) 002,8
in this example.
G 012002
Gug; = E = 100284 = 0.1197

Since G,g; « Xo.osp; = 3.841, we clearly do not have sufficient evidence to
reject our null hypothesis.

The case presented in Box 13.1, however, is one in which the expected
frequencies are based on an intrinsic hypothesis. We use the sex ratio data in
sibships of 12, first introduced in Table 4.4, Section 4.2. As you will recall, the
expected frequencies in these data are based on the binomial distribution, with
the parametric proportion of males p. estimated from the observed frequencies
of the sample (p, = 0.519,215). The computation of this case is outlined fully
in Box 13.1.

The G test does not yield very accurate probabilities for small f: The cells
with f; < 3 (when a > 5) or f, < 5 (when a < 5) are generally lumped with
adjacent classes so that the new f, are large enough. The lumping of classes
results in a less powerful test with respect to alternative hypotheses. By these
criteria the classes of /A, at both tails of the distribution are too small. We lump
them by adding their frequencies to those in contiguous classes, as shown in
Box 13.1. Clearly, the observed frequencics must be lumped to match. The
number of classes a is the number after lumping has taken place. In our case,
a=11.

Because the actual type | error of G tests tends to be higher than the
intended level, a correction for G to obtain a better approximation to the chi-
square distribution has been suggested by Williams (1976). He divides G by a
correction factor ¢ (not to be confused with a proportion) to be computed as
g =1+ (a* — 1)/6nv. In this formula, v is the number of degrees of freedom
appropriate to the G test. The effect of this correction is to reduce the observed
value of G slightly.

Since this is an example with cxpected frequencies based on an intrinsic
hypothesis, we have to subtract more than one degree of freedom from « for
the significance test. In this case, we estimated p , from the sample, and therefore
a sccond degree of freedom is subtracted from a, making the final number of
degrees of freedom a — 2 = [l - 2 = 9. Comparing the corrected sample value
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of G,q4; = 94.837,09 with the critical value of x? at 9 degrees of freedom, we find
it highly significant (P « 0.001, assuming that the null hypothesis is correct).
We therefore reject this hypothesis and conclude that the sex ratios are not
binomially distributed. As is evident from the pattern of deviations, there is an
excess of sibships in which one sex or the other predominates. Had we applied
the chi-square test to these data, the critical value would have been the same
(X§[9])-

Next we consider the case for a = 2 cells. The computation is carried out
by means of Expression (13.4), as before. In tests of goodness of fit involving
only two classes, the value of G as computed from this expression will typically
result in type I errors at a level higher than the intended one. Williams’ correction
reduces the value of G and results in a more conservative test. An alternative
correction that has been widely applied is the correction for continuity, usually
applied in order to make the value of G or X? approximate the y? distribution
more closely. We have found the continuity correction too conservative and
therefore recommend that Williams’ correction be applied routinely, although
it will have little effect when sample sizes are large. For sample sizes of 25 or
less, work out the exact probabilities as shown in Table 4.3, Section 4.2.

The example of the two cell case in Box 13.1 is a genetic cross with an
expected 3:1 ratio. The G test is adjusted by Williams’ correction. The expected
frequencies differ very little from the observed frequencies, and it is no surprise,
therefore, that the resulting value of G,g; is far less than the critical value of y*
at one degree of freedom. Inspection of the chi-square table reveals that roughly
807 of all samples from a population with the expected ratio would show
greater deviations than the sample at hand.

13.3 Tests of independence: Two-way tables

The notion of statistical or probabilistic independence was first introduced in
Section 4.1, where it was shown that if two events were independent, the prob-
ability of their occurring together could be computed as the product of their
separate probabilities. Thus, if among the progeny of a certain genetic cross
the probability that a kernel of corn will be red is 4 and the probability that
the kernel will be dented is 4, the probability of obtaining a kernel both dented
and red will be § x § = £, if the joint occurrences of these two characteristics
are statistically independent.

The appropriate statistical test for this genetic problem would be to test
the frequencies for goodness of fit to the expected ratios of 2 (red, not dented): 2
(not red, not dented): 1 (red, dented): 1 (not red, dented). This would be a simul-
taneous test of two null hypotheses: that the expected proportions are § and 4
for red and dented, respectively, and that these two properties are independent.
The first null hypothesis tests the Mendelian model in general. The second tests
whether these characters assort independently—that is, whether they are deter-
mined by genes located in different linkage groups. If the second hypothesis
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must be rejected, this is taken as evidence that the characters are linked—that .

is, located on the same chromosome.

There are numerous instances in biology in which the second hypothesis,
concerning the independence of two properties, is of great interest and the first
hypothesis, regarding the true proportion of one or both properties, is of little
interest. In fact, often no hypothesis regarding the parametric values p; can be
formulated by the investigator. We shall cite several examples of such situations,
which lead to the test of independence to be learned in this section. We employ
this test whenever we wish to test whether two different properties, each occurring
in two states, are dependent on each other. For instance, specimens of a certain
moth may occur in two color phases—Ilight and dark. Fifty specimens of each
phase may be exposed in the open, subject to predation by birds. The number
of surviving moths is counted after a fixed interval of time. The proportion
predated may differ in the two color phases. The two properties in this example
are color and survival. We can divide our sample into four classes: light-colored
survivors, light-colored prey, dark survivors, and dark prey. If the probability
of being preyed upon is independent of the color of the moth, the expected
frequencies of these four classes can be simply computed as independent prod-
ucts of the proportion of each color (in our experiment, 4} and the overall
proportion preyed upon in the entire sample. Should the statistical test of inde-
pendence explained below show that the two propertics are not independent,
we are led to conclude that one of the color phases is more susceptible to
predation than the other. In this example, this is the issue of biological impor-
tance; the exact proportions of the two properties are of little interest here. The
proportion of the color phases is arbitrary, and the proportion of survivors is
of interest only insofar as it differs for the two phases.

A second example might relate to a sampling experiment carricd out by a
plant ecologist. A random sample is obtained of 100 individuals of a fairly rare
species of tree distributed over an arca of 400 square miles. For each tree the
ecologist notes whether 1t 1s rooted 1n a serpentine soil or not, and whether the
leaves arc pubescent or smooth. Thus the sample of n = 100 trees can be divided
into four groups: serpentine-pubescent, serpentine-smooth, nonserpentine-
pubescent, and nonserpentine-smooth. If the probability that a tree is or is not
pubescent is independent of its location, our null hypothesis of the independence
of these properties will be upheld. If, on the other hand, the proportion of
pubescence differs for the two types of soils, our statistical test will most prob-
ably result in rejection of the null hypothesis of independence. Again. the ex-
pected frequencies will simply be products of the independent proportions of
the two properties- serpentine versus nonserpentine, and pubescent versus
smooth. In this instance the proportions may themselves be of interest to the
investigator.

An analogous example may occur in medicine. Among 10,000 patients ad-
mitted to a hospital, a certain proportion may be diagnosed as exhibiting discase
X. At the same tme, all patients admitted are tested for several blood groups.
A certain proportion of these are members of blood group Y. Is there some
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association between membership in blood group Y and susceptibility to the
disease X?

The example we shall work out in detail is from immunology. A sample of
111 mice was divided into two groups: 57 that received a standard dose of
pathogenic bacteria foliowed by an antiserum, and a control group of 54 that
received the bacteria but no antiserum. After sufficient time had elapsed for
an incubation period and for the disease to run its course, 38 dead mice and
73 survivors were counted. Of those that died, 13 had received bacteria and
antiserum while 25 had received bacteria only. A question of interest is whether
the antiserum had in any way protected the mice so that there were propor-
tionally more survivors in that group. Here again the proportions of these
properties are of no more interest than in the first example (predation on moths).

Such data are conveniently displayed in the form of a two-way rable as
shown below. Two-way and multiway tables (more than two criteria) are often
known as contingency tables. This type of two-way table, in which each of the
two criteria is divided into two classes, is known as a 2 x 2 table.

Dead Alive S

Bacteria and antiserum 13 44 57
Bacteria only 25 29 54
Yy 38 73 111

Thus 13 mice received bacteria and antiserum but died, as seen in the table.
The marginal totals give the number of mice exhibiting any one property: 57
mice received bacteria and antiserum; 73 mice survived the experiment. Alto-
gether 111 mice were involved in the experiment and constitute the total sample.

In discussing such a table it is convenient to label the cells of the table and
the row and column sums as follows:

a b a+b
¢ d c+d
a+c¢ b+d n

From a two-way table one can systematically compute the expected fre-
quencies (based on the null hypothesis of independence) and compare them
with the observed frequencies. For example, the expected frequency for cell d
(bacteria, alive) would be

n n n

(’+d><b+d>:(('+d)(b+d)

o A A A
,/bac(,alv = npb.'xcl,alv = nphact X palv = n(

which in our case would be (54)(73)/111 = 35.514, a highcr valuc than the
observed frequency of 29. We can proceed similarly to compute the expected
frequencies for each cell in the table by multiplying a row total by a column total,
and dividing the product by the grand total. The expected frequencies can be
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conveniently displayed in the form of a two-way table:

Dead Alive Z
Bacteria and antiserum 19.514 37.486 57.000
Bacteria only 18.486 35514 54.000

Y 38.000 73.000 111.000

You will note that the row and column sums of this table are identical to those
in the table of observed frequencies, which should not surprise you, since the
expected frequencies were computed on the basis of these row and column
totals. It should therefore be clear that a test of independence will not test
whether any property occurs at a given proportion but can only test whether
or not the two properties are manifested independently.

The statistical test appropriate to a given 2 x 2 table depends on the under-
lying mode! that it represents. There has been considerable confusion on this
subject in the statistical literature. For our purposes here it is not necessary to
distinguish among the three models of contingency tables. The G test illustrated
in Box 13.2 will give at least approximately correct results with moderate- to
large-sized samples regardless of the underlying model. When the test is applied
to the above immunology example, using the formulas given in Box 13.2, one
obtains G,4; = 6.7732. One could also carry out a chi-square test on the devia-
tions of the observed from the expected frequencies using Expression (13.2).
This would yield y* = 6.7966, using the expected frequencies in the table above.
Let us state without explanation that the observed G or X2 should be compared
with x? for one degree of freedom. We shall examine the reasons for this at the
end of this section. The probability of finding a fit as bad, or worse, to these
data is 0.005 < P < 0.01. We conclude, therefore, that mortality in these mice
is not independent of the presence of antiserum. We note that the percentage
mortality among those animals given bacteria and antiserum is (13)(100)/57 =
22.8%, considerably lower than the mortality of (25)(100)/54 = 46.3% among
the mice to whom only bacteria had been administered. Clearly, the antiserum
has been effective in reducing mortality.

In Box 13.2 we illustrate the G test applied to the sampling experiment in
plant ecology, dealing with treces rooted in two different soils and possessing
two types of leaves. With small sample sizes (n < 200), it is desirable to apply
Williams® correction, the application of which is shown in the box. The result
of the analysis shows clearly that we cannot reject the null hypothesis of inde-
pendence between soil type and leaf type. The presence of pubescent leaves is
independent of whether the tree is rooted in serpentine soils or not.

Tests of independence need not be restricted to 2 x 2 tables. In the two-way
cases considered in this section, we are concerned with only two properties,
but each of these properties may be divided into any number of classes. Thus
organisms may occur in four color classes and be sampled at five different times
during the year, yielding a 4 x 5 test of independence. Such a test would ex-

amine whether the color proportions exhibited by the marginal totals are inde-
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BOX 13.2
2 x 2 test of independence.
A plant ecologist samples 100 trees of a rare species from a 400-square-mile area.

He records for each tree whether it is rooted in serpentine soils or not, and whether
its leaves are pubescent or smooth,

Soil Pubescent Smooth Totals
Serpentine 12 22 34
Not Serpentine 16 50 66
Totals 28 72 10 =n

The conventional algebraic representation of this table is as follows:
2
a b a+b
¢ d c+d
Y atc b+d a+b+c+d=n
Compute the following quantities.
L. Y fIn f for the cell frequencies =12In 12+ 221022 4 161n 16 + 50 In 50
= 337.784,38
2. Y, f for the row and column totals = 34 In 34 + 66 In 66 + 28 In 28 + 72 In 72
= 797.635,16
3. nlnn=100In 100 = 460.517,02
4. Compute G as follows:
G = 2(quantity 1 — quantity 2 + quantity 3)
= 2(337.784,38 — 797.635,16 + 460.517,02)
= 2(0.666,24) = 1,332,49
Williams® correction for a 2 x 2 table is

(n + n : n n 1
I CETANEY avc bvd

6n

For these data we obtain

g=14+EHE-DER+ Y- 1)

6(100)
= 102281
G 133249
Wi 7 = Tonper = 13028

Compare Gyq; with critical value of x? for one degree of freedom. Since our
observed G,y is n}ugh less than x3 os;,; = 3.841, we accept the null hypothesis
that the leaf type is independent of the type of soil in which the tree is rooted.
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BOX 133
R x C test of independence using the G test.

Frequencies for the M and N blood groups in six populations from Lebanon.

Genotypes {a = 3}
Populations
{b=6) MM MN NN Totals %MM %MN %NN
Druse 59 100 44 203 2906 49.26 21.67

Greek Catholic 64 98 41 203 31,53 4828 2020
Greek Orthodox 44 94 49 187 23.53 5027 2620
Maronites 342 435 165 942 3631 4618 1752
Shiites 140 259 104 503 2783 5149  20.68
Sunni Moslems 169 168 91 428 3949 3925 2103

Totals 818 1154 494 2466

Source: Ruffie and Taleb (1965).

Compute the following quantities.

1. Sum of transforms of the frequencies in the body of the contingency table

b a
=YY fi;In f;=591n 59 + 10010 100 + - - + 91 In 91
= 240,575 + 460.517 + - - - + 40.488 = 12,752.715

2. Sum of transforms of the row totals
& a a
-3 (84)m(S1)
=2031n203 + - - - + 428 In 428 = 1078.581 + -+ - + 2593.305
= 15,308.461
3. Sum of the transforms of the column totals
a b b
=3 (Z fu) In (Z fu)
= 818 1n 818 + - - - + 494 In 494 = 5486.213 4 - - - + 3064.053 =
4. Transform of the grand total = n In n = 2466 In 2466 = 19,260.330

5. G = 2(quantity 1 — quantity 2 — quantity 3 + quantity 4)
= 2(12,752.715 — 15,308.46 — 16,687.108 + 19,260.330) == 2(17.475) = 34.951

6. The lower bound estimate of q using Williams® correction for an a x b table
is
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BOX 133
Continued

{a+ )b+ 1)

Guutn = | + =

e+ 1

14 B+HE+ 1

6(2466)
= 1.001,892

Thus Gg; = G/gmi = 34.951/1.001,892 = 34.885.

This value is to be compared with a x* distribution with (a — 1)(b ~ 1)
degrees of freedom, where a is the number of columns and b the number of
rows in the table. In our case, df = (3 — 1)(6 — 1) = 10.

Since x4 g01110; = 29.588, our G value is significant at P < 0.001, and we
must reject our null hypothesis that genotype frequency is independent of the
population sampled.

are often called R x C tests of independence, R and C standing for the number
of rows and columns in the frequency table. Another case, examined in detail
in Box 13.3, concerns the MN blood groups which occur in human populations
in three genotypes—MM, MN, and NN. Frequencies of these blood groups
can be obtained in samples of human populations and the samples compared
for differences in these frequencies. In Box 13.3 we feature frequencies from six
Lebanese populations and test whether the proportions of the three groups arc
independent of the populations sampled, or in other words, whether the fre-
quencies of the three genotypes difler among these six populations.

As shown in Box 13.3, the following is a simple general rule for computation
of the G test of independence:

G = 2[(}] f In f for the cell frequencies)
—( f In f for the row and column totals) + n In n]

The transformations can be computed using the natural logarithm function
found on most calculators. In the formulas in Box 13.3 we employ a double
subscript to refer to entries in a two-way table, as in the structurally similar
case of two-way anova. The quantity f;; in Box 13.3 rcfers to the observed
frequency in row i and column j of the table. Williams™ correction is now more
complicated. We feature a lower bound estimate of its correct value. The adjust-
ment will be minor when sample size is large, as in this example, and nced be
carricd out only when the sample size i1s small and the observed G value is of
marginal significance.

The results in Box 13.3 show clearly that the frequency of the three genotypes
1s dependent upon the population sampled. We note the lower (requency of the
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MM genotypes in the third population (Greek Orthodox) and the much lower
frequency of the MN heterozygotes in the last population (Sunni Moslems).

The degrees of freedom for tests of independence are always the same and
can be computed using the rules given earlier (Section 13.2). There are k cells
in the table but we must subtract one degree of freedom for each independent
parameter we have estimated from the data. We must, of course, subtract one
degree of freedom for the observed total sample size, n. We have also estimated
a — 1 row probabilities and b — 1 column probabilities, where a and b are
the number of rows and columns in the table, respectively. Thus, there are
k—(a—1)—(b—-1)—1=k—a—b+1 degrees of freedom for the test.
But since k = a x b, this expression becomes (a x b)—a—b+1=(a—1) x
{b — 1), the conventional expression for the degrees of freedom in a two-way
test of independence. Thus, the degrees of freedom in the example of Box 13.3,
a6 x 3case, was (6 — 1) x (3 — 1) = 10. In all 2 x 2 cases there is clearly only
(2—1) x (2—1)=1 degree of freedom.

Another name for test of independence is test of association. If two prop-
erties are not independent of each other they are associated. Thus, in the ex-
ample testing relative frequency of two leaf types on two different soils, we
can speak of an association between leaf types and soils. In the immunology
experiment there is a negative association between presence of antiserum and
mortality. Association is thus similar to corrclation, but it is a more general
term, applying to attributes as well as continuous variables. In the 2 x 2 tests
of independence of this section, one way of looking for suspected lack of
independence was 1o examine the percentage occurrence of one of the prop-
erties in the two classes based on the other property. Thus we compared the
percentage of smooth leaves on the two types of soils, or we studied the per-
centage mortality with or without antiserum. This way of looking at a test of
independence suggests another interpretation of these tests as tests for the
significance of differences between two percentages.

Exercises

13.1  In an experiment to determine the mode of inheritance of a green mutant, 146
wild-type and 30 mutant offspring were obtained when F| generation houseflics
were crossed. Test whether the data agree with the hypothesis that the ratio of
wild type of mutants is 3:1. ANS. G = 6.4624, G4, = 6.441, L df, ¥ o5, = 3.841.

13.2  Locality A has been exhaustively collected for snakes of species S. An ex-
amination ol the 167 adult males that have been collected reveals that 35 of
these have pale-colored bands around their necks. From locality B, 90 miles
away, we obtain a sample of 27 adult males of the same species, 6 of which show
the bands. What is the chance that both samples are from the same statistical
population with respect to frequency of bands?

13.3  Of 445 specimens of the butterfly Erebia epipsodea from mountainous areas,
2.5% have light color patches on their wings. Of 65 specimens from the prairie,
70.8" have such patches (unpublished data by P. R. Ehrlich). Is this difference
significant? Iint: First work backwards to obtain original frequencies. ANS.
G = 1755163, L df, G,q; = 1714533
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Test whether the percentage of nymphs of the aphid Myzus persicae that de-
veloped into winged forms depends on the type of diet provided. Stem mothers
had been placed on the diets one day before the birth of the nymphs (data by
Mittler and Dadd, 1966).

Type of diet % winged forms n
Synthetic diet 100 216
Cotyledon “sandwich” 92 230
Free cotyledon 36 75

In a study of polymorphism of chromosomal inversions in the grasshopper
Moraba scurra, Lewontin and White (1960) gave the following results for the
composition of a population at Royalla “B™ in 1958.

Chromosome CD
St/St St/B1 B1/BI
Chromosome EF Td/Td 22 96 75
St/Td 8 56 64
St/St 0 6 6

Are the frequencies of the three different combinations of chromosome EF in-
dependent of those of the frequencies of the three combinations of chromosome
CD? ANS. G = 7.396.

Test agreement of observed frequencies with those expected on the basis of a
binomial distribution lor the data given in Tables 4.1 and 4.2.

Test agreement of observed frequencies with those expected on the basis of a
Poisson distribution for the data given in Table 4.5 and Table 4.6. ANS. IFor
Table 4.5: G = 49.9557, 3 df. G,q; = 49.8914. For Table 4.6: G = 20.6077, 2 df.
G4 = 20.4858.

In clinical tests of the drug Nimesulide, Pfindner (1984) reports the following
results. The drug was given, together with an antibiotic, to 20 persons. A control
group of 20 persons with urinary infections were given the antibiotic and a
placebo. The results, edited for purposcs of this exercise, are as follows:

Antibiotic Antibiotic
+ Nimesulide + placebo

Negative opinion | 16
Positive opinion 19 4

Analyze and interpret the results.

Reler to the distributions of melanoma over body regions shown in Table 2.1,
Is therc evidence for differential susceptibility to melanoma of differing body
regions in males and females? ANS. G = 160.2366, S df, Gy = 158.6083.



APPENDIX 1

Mathematical Appendix

Al.l Decmonstration that the sum of the deviations from the mean is equal
to zcro.

We have to learn two common rules of statistical algebra. We can open a
pair of parentheses with a X sign in front of them by treating the £ as though
it were a2 common factor. We have

(1=

(Ai+ B) =(A, + B)) +(A; + By) + - + (4, + B)

It

={A + A+ -+ A)+ (B, +B,+ -+ B,)
Therefore,

Z(,4,+B,-):ZAi+ZBi
1 P [

[ i=1

Also, when Z7_ | C is developed during an algebraic operation, where C is
a constant, this can be computed as follows:

2C=C+C+ - +C (nterms)
i1

= nC
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Since in a given problem a mean is a constant value, £"Y = nY. If you wish, you
may check these rules, using simple numbers. In the subsequent demonstration
and others to follow, whenever all summations are over » items, we have simpli-
fied the notation by dropping subscripts for variables and superscripts above
summation signs.

We wish to prove that £y = 0. By definition,

2y=2(Y-Y)

—TY-n¥
=zy_"zTY (since ?:Zny>
=ZY—ZY

Therefore, ) y = 0.
A12 Demonstration that Expression (3.8), the computational formula for the
sum of squares, equals Expression (3.7), the expression originally developed for
this statistic. -
We wish to prove that Z(Y — Y)? = ZY? — ((£Y)?*/n). We have
SY - F)P =Y (Y2 - 2YF 4 V7
=YY2-2YYY+nY?

2 2 o
:ZY2~m+n(zy] <sinceY:2‘ >
n

n? n

207)* Y)?
— ZYZ _ Lz:_l + @.),
n n
Hence,
_ Y)?
Z(y —-Y)y = Zyl — (Z\)
n
AL3 Simplfied formulas for standard crror of the difference between two

means.
The standard error squared from Expression (8.2) is

(ny = Vst +(ny = Ds3]/n, +n,
) ny+n, —2 nn,

When n, = n, = n, this simplifies to

= Dsi = Dz | (20 [n= Dist+s)@) 1,
2n ) 2n— W) Tah 52)

which is the standard error squared of Expression (8.3).

rol =
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When n; # n, but each is large, so that (n; — 1) = n, and (n, — 1) = n,, the
standard error squared of Expression (8.2) simplifies to

nyst +nys3|n +ny nys? N n,s3 st N s2
ny, +n, nin, nin, nyn, n, n,

which is the standard error squared of Expression (8.4).

Al4 Demonstration that t? obtained from a test of significance of the differ-
ence between two means (as in Box 8.2) is identical to the F value obtained in
a single-classification anova of two equal-sized groups (in the same box).

t, (from Box 8.2) = IYI —n = no b
1 n n
NSRS )
2 = ()71 - }72)2 — nin — 1)(}71 - ?2)2
s 1 n n n n
oo n(Eiesn)  Saeln
In the two-sample anova,
MS ! iw Y)’
means 2 _ l i
= (Y, - YV + (Y, — )
B v o+ 7\2 R AR A _ _
:{IA';M)+ n-i%ﬁ) (since 7 = (Fo + T)2)
_1 - _7 2 —2 - Al ?
(5
= %(Yl )72)2

since the squares of the numerators are identical. Then

MSgruups =nx MSmcuns = n[%(?l - )72)2]
n — _
= E(Yl - Yz)z
DIREIRDINE
MSimin = 5
2n — 1)
Fo— MSpoup
* MSwilhin
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v 7 \2
(Y, - ;)

(iy$+iyﬁ/pm—1ﬂ
_nfn = 1)(F, - Fy)?

Y+ Yy

[N A

F,=

&

Al1l.5 Demonstration that Expression (11.5), the computational formula for
the sum of products, equals (X — X)(Y — Y), the expression originally de-
veloped for this quantity.

All summations are over n items. We have

ny=Z(X—X)(Y— Y’)
=YXY-XYY-¥YX+nXY  (since) XY =nXY)
=Y XY— XnY — YnX + nXY (since Y Y/n =Y,
Y'Y = nY; similarly, } X = nX)

=Y XY-nXY
=Y XY—nX &
n
=Y XY- XYY
Similarly,

Yxy=YXY-Y)YX

and

- XY
ny-—ZXY .

(11.5)

AlL6 Derivation of computational formula  for Y dj y =Y y? —
(X x1?/Y ). ) L )
By definition, dy .y = Y — Y. Since Y = Y, we can subtract Y from both Y
and Y to obtain
dy y=y—9P=y—bx (since ¥ = bx)

Therefore,

DX D0 3 ) SR o &
- Zﬁ\jzm - (¥ x2)? Lxt=ri=2 ¥ 7
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or

Qo xy)?

di x=5y*— 11.6
Z Y- X Zy sz ( )
A1.7 Demonstration that the sum of squares of the dependent variable in
regression can be partitioned exactly into explained and unexplained sums of

squares, the cross products canceling out.
By definition (Section 11.5),

y=7+dy.yx
Y=Y +dy =Y P+ Y dh i +2Y fdyy

If we can show that X 9d, y =0, then we have demonstrated the required
identity. We have

Z}A’drx = be(}’ — bx)
=bhY xy—b*Y x?
Xy . Xy
:bey-—bZ Y x? (smceb:}éxz>
=bd xy— hz.\‘y

=0

[since ¥ = bx from Expression (11.3) and
dy x = y — bx from Appendix A1.6]

Therefore, Ty = £ 2 + T di . . or, written out in terms of variates,
(Y- Y2 =Y (V- VP +5(Y - 1)
AL.8 Proof that the variance of the sum of two variables is
Ty, evn = 01 + 03 4 2p,,0,0,

where o, and o, are standard deviations of Y, and Y;, respectively, and p,, is
the parametric correlation cocflicient between Y, and Y,.
If Z=Y,+Y,, then

1 - 1 1 2
"I'Z(Z — 7y = nZ[(Yn + Y;) - ”Z(Yx + Yz)—l

3N

I

1. L
:;;Z[(Y1+Y2) Y, - Y7

Lz[(yﬂwz Y- zyz]z

| . _ |
znz[m — ) (Y, - Yﬂ} = L+

| 5 3 I | 2
= SYot+yit2ra= Yi+ Y+ Yy,
nZ(yl ¥z AR p nZ)h nz}l},

2
=g} + 03+ 20,
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But, since p,, = 6,/0,0,, we have
012 = P120410;
Therctore
07 = 6l v yy = 01 + 03 +2p,,0,0,
Similarly,
op = G(Zyl—rz) =01 + 05 — 2p,,0,0,
The analogous expressions apply to sample statistics. Thus
Sty vvn = 51+ 83 4+ 2r85; (12.3)
Sy, -y = ST+ 53— 2r58;8, (12.9)
AL19 Proof that the general expression for the G test can be simplified to Ex-
pressions (13.4) and (13.5).
In general, G is twice the natural logarithm of the ratio of the probability
of the sample with all parameters estimated from the data and the probability

of the sample assuming the null hypothesis is true. Assuming a multinomial
distribution, this ratio is

TR PP Pl
i a
[ =
n!
Afvale . . pfa
/VET/:;Y? */u, PipPe Da

where f; is the observed frequency, p; is the observed proportion, and p; the
expected proportion of class i, while n 1s sample size, the sum of the observed
frequencies over the a classes.

Since f, = np; and [, = np,,

G=2%7 ln(L> (13.4)
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TABLE |
Twenty-five hundred random digits.

1 2 3 4 5 6 7 8 9 10
1| 48461 14952 72619 73689 52059 37086 60050 86192 67049 64739 | 1
2| 76534 38149 49692 31366 52093 15422 20498 33901 10319 43397 | 2
3| 70437 25861 38504 14752 23757 59660 67844 78815 23758 86814 | 3
4| 59584 03370 42806 11393 71722 93804 (09095 07856 55589 46020 | 4
S| 04285 58554 16085 51555 27501 73883 33427 33343 45507 S0063 | S
6| 77340 10412 69189 85171 29082 44785 83638 02583 96483 76553 | 6
7| 59183 62687 91778 80354 23512 97219 65921 02035 59847 91403 | 7
8| 91800 04281 39979 03927 82564 28777 59049 97532 54540 79472 | 8
9] 12066 24817 81099 48940 69554 55925 48379 12866 51232 21580 | 9
10| 69907 91751 53512 23748 65906 91385 84983 27915 48491 91068 |10
11| 80467 04873 54053 25955 48518 13815 37707 68687 15570 08890 [11
12| 78057 67835 28302 45048 56761 97725 58438 91528 24645 18544 |12
13| 05648 39387 78191 88415 60269 94880 58812 42931 71898 61534 [13
14 22304 39246 01350 99451 61862 78688 30339 60222 74052 25740 |14
15| 61346 50269 67005 40442 33100 16742 61640 21046 31909 72641 [15
16| 66793 37696 27965 30459 91011 51426 31006 77468 61029 57108 (16
17| 86411 48809 36698 42453 83061 43769 39948 87031 30767 13953 |17
18| 62098 12825 81744 28882 27369 88183 65846 92545 09065 22655 |18
19| 68775 06261 54265 16203 23340 84750 16317 88686 86842 00879 [19
20| 52679 19595 13687 74872 89181 01939 18447 10787 76246 80072 |20
21| 84096 87152 20719 25215 04349 54434 72344 93008 83282 31670 |21
22| 63964 55937 21417 49944 38356 98404 14850 17994 17161 98981 (22
23| 31191 75131 72386 11689 95727 05414 88727 45583 22568 77700 (23
24| 30545 68523 29850 67833 05622 89975 79042 27142 99257 32349 (24
251 52573 91001 52315 26430 54175 30122 31796 98842 37600 26025 (25
26 | 165806 81842 01076 99414 31574 94719 34656 80018 86988 79234 (26
27| 81841 88481 61191 25013 30272 23388 22463 65774 10029 58376 (27
28 43563 66829 72838 08074 57080 15446 11034 98143 74989 26885 (28
29| 19945 4193 ST7581 77252 85604 45412 43556 27518 90572 (X563 (29
30| 79374 23796 16919 99691 80276 32818 62953 78831 54395 30705 |30
31| 48503 26615 43980 09810 38289 66679 73799 48418 12647 40044 |31
32| 32049 65541 37937 41105 70106 89706 40829 40789 59547 (0783 |32
33| 18547 71562 95493 34112 76895 46766 96395 31718 48302 45893 |33
34| 03180 96742 61486 43305 34183 99605 67803 13491 (09243 29557 |34
35| 94822 24738 67749 83748 59799 25210 31093 62925 72061 69991 |35
36 [ 34330 60599 85828 19152 68499 27977 35611 96240 62747 89529 |36
37| 43770 81537 59527 95674 76692 86420 69930 10020 72881 12532 |37
38| 56908 77192 50623 41215 14311 42834 80651 93750 59957 31211 (38
39| 32787 7189 80539 75927 75475 73965 11796 72140 48944 74156 (39
40 [ 52441 78392 11733 57703 29133 71164 55355 31006 25526 55790 |40
41| 22377 54723 18227 28449 04570 18882 00023 67101 06895 08915 |41
42| 18376 73460 88841 39602 34049 20589 05701 08249 74213 25220 |42
43 ] 53201 28610 87957 21497 64729 64983 71551 99016 87903 63875 |43
44 | 34919 78901 59710 27396 02593 05665 11964 44134 (0273 76358 |44
45| 33617 92159 21971 16901 57383 34262 41744 60891 57624 06962 [45
46 | 70010 40964 98780 72418 52571 18415 64362 90636 38034 04909 [46
47| 19282 68447 35665 31530 59832 49181 21914 65742 89815 39231 (47
48| 91429 73328 13266 54898 68795 40948 80808 63887 89939 47938 (48
49 | 97637 78393 33021 05867 86520 45363 43066 00988 64040 09803 (49
50| 95150 07625 05255 83254 93943 52325 93230 62668 79529 65964 |50

321
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TABLE 11
Areas of the normal curve
y/¢| 000 001 002 003 004 005 006 007 008 0.9 |y/o
00| 0000 .0040 .0080 0120 .0160 .0199 0239 0279 0319 .0359 | 0.0
01| 0398 0438 0478 0517 0557 0596 0636 0675 0714 0753 | 0.1
0.2 0793 0832 0871 .0910 0948 0987 .1026 .1064 .1103 .1141 | 0.2
0.3 .1179 1217 1255 1293  .1331 .1368 .1406 .1443 .1480 .1517 | 0.3
04| .1554 1591 1628 .1664 1700 .1736 1772 1808 .1844 .1879 | 04
0.5 | 1915 1950 1985 2019 2054 2088 2123 2157 2190 2224 | 05
0.6 | 2257 2291 2324 2357 2380 2422 2454 2486 2517 2549 | 06
0.7 2580 2611 2642 2673 .2704 2734 2764 2794 2823 2852 | 07
0.8 | .2881 2910 .2939 2967 2995 .3023 .3051 3078 .3106 .3133| 0.8
0.9 | .3159 318 3212 3238 .3264 .3289 .3315 3340 .3365 .3389 | 0.9
1.0| 3413 3438 3461 .3485 .3508 .3531 3554 .3577 .3599 3621 | 10
1.1 | .3643 3665 .3686 .3708 3729 3749 .3770 .3790 .3810 .3830 | 1.1
12| .3849 .3869 3888 .3907 .3925 3944 3962 3980 .3997 4015 | 1.2
13| 4032 4049 4066 4082 4099 4115 4131 4147 4162 4177 | 1.3
14| 4192 4207 4222 4236 4251 4265 4279 4292 4306 4319 | 1.4
1.5 | 4332 4345 4357 4370 4382 4394 4406 4418 4429 4441 | 15
1.6 | 4452 3463 4474 4484 4495 4505 4515 4525 4535 4545 | 16
1.7| 4551 4564 4573 4582 4591 4599 4608 4616 4625 4633 | 1.7
1.8 1 4641 4649 4656 4664 4671 4678  46K6 4693 4699 4706 | 1.8
1.9 | 4713 4719 4726 4732 4738 4744 4750 4756 4761 4767 | 1.9
20| 4772 AT78 4783 4788 4793 4798 4803 4808 4812 4817 | 2.0
21| 4821 4826 4830 4834 4838 4842 4846 4850 4854 4857 | 2.1
22| 4861 4864 4868 4871 4875 4878 4881 4884 4887 4890 | 2.2
23| 4893 4896 4898 4901 4904 4906 4909 4911 4913 4916 | 2.3
24| 4918 4920 4922 4925 4927 4929 4931 4932 4934 4936 | 2.4
25| 4938 4940 4941 4943 4945 4946 4948 4949 4951 4952 | 2.5
26| 4953 4955 4956 4957 4959 4960 4961 4962 4963 4964 | 2.6
27| 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 | 27
28| 4974 4975 4976 4977 4977 4978 4979 4979 4980 4981 | 2.8
29| 4981 4982 4982 4983 4984 4984 4985 4985 4986 4986 | 29
30| 4987 4987 4987 4988 4988 4989 .4989 4989 4990 4990 | 3.0
31| 4990 4991 4991 4991 4992 4992 4992 4992 .4993 4993 [ 1.1
32| 4993 4993 4994 4994 4994 4994 4994 4995 4995 4995 [ 32
33| 4995 4995 4995 4996 4996 4996 4996 4996 4996 4997 | 3.3
34| 4997 4997 4997 4997 4997 4997 4997 4997 4997 4998 | 3.4
35| 499767
36| 499841 R
3.7 | 499892
38| 499928 A
39| 499952 3 Tabled area
40| 499968 )
41| 499979 2l
4.2 | 499987 ’
4.3 499991 L
44| 499995 '
45| 499997 0 ; ;
4.6 | .499998 -3 -2 -~ 0 ! 3
47| 499999 Y — 4y
1.8 1499999 Argument = ra,)
49 | 500000

Note: The quantity given is the area under the standard normal density function between the mean
and the critical point. The area is gencrally labeled | ~ x (as shown in the figure). By inverse inter-

polation one can find the number of standard deviations corresponding to a given arca.
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TABLE 111
Critical values of Student’s ¢ distribution
o
v 09 05 04 02 01 0.05 0.02 0.01 0.001 v
1 158 1000 1.376 3078 6.314 12706 31.821 63.657 636.619 1
2 142 816 1061 1.886 2920 4303 6965 9925 31598 2
3 137 765 978 1638 2353 3182 4541 5841 12924 3
4 134 741 941 1533 2132 2776 3747 4604 8610 4
5 132 727 920 1476 2015 2571 3.365 4.032 6.869 5
6 131 718 906 1.440 1943 2447 3143 3.707 5.959 6
7 130 711 896 1415 1.895 2365 2998 3499 5.408 7
8 130 7706 .889 1.397 1.860 L2_3_0_(J 2.896  3.355 5.041 8
9 129 703 .883 1.383 1.833 2262 2821 3250 4781 9
10 129 700 879 1372 1.812 2228 2764 3169 4587 10
11 129 697 876 1.363 1.796 2201 2718 3106  4.437 11
12 128 695 873 1.356 1.782 2179 2681 3055 4318 12
13 128 694 870 1350 1771 2160 2650 3012 4221 13
14 128 692 868 1345 1761 2145 2624 2977 4140 14
15 128 691 866 1341 1.753 2131 2602 2947 4073 15
16 128 690 865 1.337 1.746 2120 2583 2921 4.015 16
17 128 689  .863 1333 1.740 2110 2567  2.898 3.965 17
18 127 688 862 1330 1.734 2101 2552 2878 3922 18
19 127 688  .861 1328 1.729 2093 2.539 2.861 3.883 19
20 127 687 860 1325 1725 2086  2.528 284S 3.850 20
21 127 686 859 1.323 1.721 2080 2518 2831 3.819 21
22 127 686 858 1321 1717 2074 2508 2819 3.792 2
23 127 685 858 1319 1.714 2069 2500 2807 3.767 23
24 127 .85  .857 1.318 1.711 2064 2492 2797 3.745 24
25 127 684 856 1.316 1.708 2060 2485 2787 3.725 25
26 127 684 856 1315 1706 205 2479 2779 3.707 26
27 127 684 855 1314 1703 2052 2473 2N 3.690 27
28 127 683 855 1313 1701 2048 2467 2763 3674 28
29 127 683 854 1311 1699 2045 2462 2756 3659 29
30 127 683 854 1310 1697 2042 2457 2750 3646 10
40 126 681 851 1303 1684 2021 2423 2704 3.551 40
60 126 679 848 1296 1.671 2000 2390 2660 3.460 60
120 126 677 .845 1289 1658 1980 2358 2617 1373 120
® 126 674 842 1282 1645 1960 2326 2576 3.291 o

Area « corresponding to percentage
- | points comprises two tails of af2 cach

5 —4 —3 -2 -1 0 t 2 34 H

Note: If a one-tailed test is desired, the probabilities at the head of the table must be halved. For degrees of
freedom v > 30, interpolate between the values of the argument v. The table is designed for harmonic inter-
polation. Thus, to obtain t; o543, interpoliate between fo g0 = 2.021 and {4 g 50 — 2:000, which are furnished
in the table. Transform the arguments into 120/y = 120/43 - 2.791 and interpolate between 120/60 = 2.000 and
120/40 — 3.000 by ordinary linear iterpolation:

fo asgan — (0791 x 2021) + [(1 - 0.791) x 2000]
22017

When v > 120, interpolate between 120/x, 0 and 120/120 = 1. Values in this table have been taken from a
more extensive one (table 1I1) in R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and
Modicol Roconrch &th ad (Oliver & Rovd Fdinhiroh 10581 with nermicdian of the anthors and their nublishers
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TABLE IV TABLE 1V
Critical values of the chi-square distribution continued
a o
v 995 975 9 5 1 05 025 .01 005 001 v 995 975 9 5 1 05 025 01 005 001 v
1 0000 0000 0016 0455 2706 3841 5024 6635 7879 10828 | 1 S1 | 28735 33.162 38.560 50.335 64295 68.669 712616 77.386 80.747 8;.‘2?(7)2 g;
2 0010 0051 0211 1386 4605 5991 7378 9210 10597 13816 | 2 53 | 29481 33.968 39.433 51.335 65422 69.832 73.810 78616 82.001 go 2 %2
3 0072 0216 0584 2366 6251 7815 9348 11.345 12838 16266 | 3 s3 | 30230 34776 40308 52335 66548 70993 75002 79.843 83253 .577.2 3
4 0207 0484 1064 3357 7779 9488 11.143 13277 14860 18467 | 4 s4 | 30981 35586 41.183 53.335 67673 72153 76192 81069 84502 918 A
5 0412 0831 1610 4351 9236 11070 12832 15086 16750 20515 | 5 55 | 31735 136398 42000 54335 68796 73311 77.380 82292 85749 9316
6 | 0676 1237 2204 5345 10645 12592 14449 16812 18548 22458 | 6 56 | 32400 37212 42937 55335 69918 74468 78567 83513 K694 94";6(1) 2(7)
7 0989 1690 2833 6346 12017 14067 16013 18475 20278 24322 | 7 57 | 33248 38027 43.816 56335 71040 75624 79.752 84733 88237 95 50 7
8 1.344 2180 3490 7.344 13362 15507 17.535 20090 21955 26124 | § 58 | 34008 38.844 44.696 57.335 72160 76.778 80936 85950 89.477 9703 59
9 1735 2700 4168 8.343 14684 16919 19023 21666 23589 27877 | 9 59 | 34770 39.662 45577 58335 73279 77931 82117 87166 90715 92.32:; ¥
10 2156 3247 4865 9342 15987 18307 20483 23209 25188 29588 | 10 60 | 35534 40482 46.459 $9.335 74397 79.082 83298 88379 91.952 99607 | 60
11 2603 3816 5578 10341 17275 10675 21920 24725 26757 31.264 | 11 61 | 36300 41303 47342 60.335 75514 80232 84476 89591 93186 100888 | 61
12 3074 4404 6304 11340 18549 21026 23337 26217 28300 32910 | 12 62 | 37068 42126 48226 61.33%5 76630 B81.381 85654 90802 94419 1()2.16? 62
13 3.565 5009 7042 12340 19.812 22362 24736 27688 29819 34528 | 13 63 | 37.838 42950 49.111 62335 77745 82529 86830 92010 95649 103442 1 6]
14 4075 5629 7790 13339 21064 23685 Z6TTY 29341 31319 36123 | 14 64 | 38610 43776 49996 63.335 78860 83675 88004 93217 96.878 104716 24
15 4601 6262 8547 14339 22307 2499 27.488 30578 32801 37.697 | 15 65 | 39383 44.603 50.883 64335 79973 84621 §9.177 94422 98105 30599K | 65
16 5142 6908 9312 15338 23542 26296 28.845 32000 34267 39252 | 16 o6 | 40158 45431 51770 65335 81085 85965 90349 95626 99.331 107.2;5 2(77
17 5697 7564 10085 16.338 24769 27587 30.191 33409 35718 40790 | 17 67 | 40935 46261 52659 66.335 82197 87108 91519 96.828 100.55 103396 o
18 6.265 8231 10.865 17.338 25989 28869 31.526 34805 37156 42312 | 18 68 | 41713 47092 53548 67.334 §3.308 88250 92.689 98028 101.78 10f ; l 8
19 6.844 8907 11.651 18338 27204 30.144 32.852 36191 38.582 43.820 | 19 69 | 42.494 47924 54438 68.334 84418 89.391 93856 99.228 103.00 1117.)5.7 i
20 | 7434 9591 12443 19337 28412 31410 34170 37566 39997 45315 | 20 70 | 43275 48758 55329 69.334 85527 90531 9502310043 10421 11231 (
21 8034 10283 13240 20337 29615 32670 35479 38932 41401 46797 | 21 71 | 44058 49592 56221 70334 86635 91670 96.189 10162 10543 ”1571 ;]
22 6643 10982 14042 20337 30.813 33924 36781 40289 42796 48268 | 22 77 | 44843 50428 57113 71.334 87743 92808 97.353102.82 10665 114838 2
23 9360 11.658 14848 22337 32007 35172 38076 41638 44181 49728 | 23 73 | 45620 <1205 S006 72334 S8ESC 93945 95516 10401 10786 116092 ) 13
24 9886 12,401 35659 23337 33196 36415 30363 32980 I5558 51179 | 24 74 6417 52103 888500 73331 Y956 USOKD 99.678 10520 10907 117.346 74
25 | 10530 13420 16473 22337 w3ss 37682 d0nte 45314 16008 $2630 | o 75 | 47206 52942 U795 74334 91061 96217 1004 10639 11029 118599 | 7S
26 | 11060 13844 17292 25336 35505 36885 41923 45642 48290  S4.052 | 26 76 | 47997 53752 60690 75334 92166 97.351 10200 10758 11150 119850 | 76
27 | 11.808 14573 18114 26336 36741 40.113 43194 46963 19645 SS5470 | 27 77 | 45788 54623 61586 76334 93270 08453 10316 10877 11270 121000 | 77
28 | 12461 15308 18939 27.336 37.916 41.337 44461 48278 50993 56892 | 28 78 | 49582 $5.466 62483 77.334 94373 99617 10432 10996 11391 122348 | 78
29 | 13121 16047 19768 28.336 30088 42557 45722 49588 S2.336 58301 | 29 79 | 50376 56309 63380 78334 95476 10095 10547 11114 11512 123504 79
30 | 13787 16791 20599 29336 40256 43773 46479 S0.892 S3672 59703 | 30 g0 | 51172 57153 64.278 79.334 96578 10188 10663 11233 11632 124839 | 80
31 | 14458 17539 21434 30336 41422 44985 48232 52191 S5003 61098 | 31 81 | $1.969 57.998 65176 80334 97680 10301 10778 11351 11752 126082 | 81
32| 15134 18291 22271 31336 42585 46194 49450 S3486  56.329 62487 | 32 82 | 52767 $8.845 66076 &1.334 98780 10414 10894 11469 11873 127424 | 82
33 15815 19047 233100 32,336 43.745 47400 S0.725 54776 57649 63870 | 33 83 | 53567 59.092 66976 $2.334 99880 10527 11009 31588 131993 ““"7"5 84
2116501 19806 28952 33336 44903 45602 51966 56061 58964 65247 | 34 81| 54308 60540 67876 83334 10095 10640 11124 11706 12113 129801 | 84
3| 17192 20569 24797 34336 16059 49802 S3203 $7342 60275 66619 | 35 85 | $5.170 61389 68777 B4.334 10208 10752 11239 11824 12232 131041 | 85
36 | 17887 21336 25648 3336 47212 50998 54437 S8619 61582 67985 | 36 S6 | $5973 62239 69679 85334 10318 10865 11354 11941 12352 132277 4 86
17 18886 22106 26492 36335 45363 52192 S5668 59892 62884 6Y.346 | 37 K7 | 56777 63089 70581 §6.334 10428 10977 11469 12059 12472 133512 87
36 | 19269 22878 27343 37335 AUSIE 53384 S6.8Y6 61162 64182 70703 | 38 85 | S7552 61941 71481 B7.334 J0S47 11090 11884 12177 12597 134745 1 B8
19 19996 23651 25196 35335  SU66O  S1572  SEI20 62428 65476 72055 39 s} 58350 6.4.793 72387 88.334 10647 112.02 116599 12294 127.11 135.97% 89
40 | 20707 24433 29051 39335 51805 55758 S9.342 63691 66766 73402 | 40 90 | 49196 65647 73291 £9.334 10756 11315 11814 12412 12830 137208 | 90
41 | 21421 25215 29907 30435 52919 $6942  60.507 64950 68.053 74745 | 41 91 | 60008 66501 74196 9033 10866 11427 11928 12529 12949 138438 ?1
42 | 22138 25999 30765 41.335  S4.090  S$5124 61777 66206 69336 76084 | 42 92 | 60815 67.356 TSI01 91334 10976 11539 12043 12646 13068 1390666 | 92
43 | 22859 26785 31625 42335 45230 59304 62990 67459 70616 77419 | 43 91 | 61625 68211 Tone 91334 11085 11651 12157 12763 13187 140893 ) 93
44 23584 27575 32487 43335 56.369 60481 64202 68710 71.893 78750 | 44 9.4 62437 69068 TOH12 93334 11194 11763 12272 12680 13306 142119 | 94
45 | 24311 28366 33850 44335 87505 61656 65410 69957 73166 80077 | a5 95 | 63250 69925 TTEIA 91381 11304 1ISTS 1230 12007 13425 348344 | 95
d6 | 25042 29060 34215 45.335 58641 62.830 66617 71201 74437  $1.400 | 46 Yo | 64064 70783 TEI2S 95334 11413 11987 12500 13114 13543 144.5&(7 ?h
47 | 25775 29956 35081 16335 59774 64001 67.821 72443 7S04 82720 | 47 97 | 64878 70642 79633 90334 11522 12099 1201014 13231 13662 145789 ()7.
48 | 26511 30755 35949 47335 60907 65171 69023 73683 76969 84037 | 48 08 | 65694 72501 §0S41 97330 11632 12211 12728 13348 13780 147010 1 98
49 | 27249 31555 36815 45335 62038 66339 70222 74919 78231 85351 | 49 99 | 66510 73361 K1.449 98334 11741 12323 12842 13464 13899 148230 | 99
50| 27991 32357 37.689 49335 61167 07.505 71420 76.154  79.490 Rﬁ.ﬁhlj 50 10| 67428 74222 82358 99331 11850 12434 12956 13581 14017 HA9MY 1100
3t Arei corresponding to pereentage points
‘
2
Note For values of v > 100, compute approxmate critical values of 2 by formula as follows: A Mg 4 ! 1
V2r o 1¥ where 15,0, can be looked up in Tuble IIL Thus 1§ o520, 1 computed as 4r, o, 1 V240 1) - » | i 1 | A
13 b - . 1
L1645 1 239) = [(17.10462)7 = 146.284. For x - 0.5 employ ¢ 2] 1N the above formula. When « = 0.5, § 0 1 ) 3 4 b 6 7 b

-0 Values of chiceanare from 1oty U devreee of frecdom have heen talkern from o maoare oxtogcive 1ol R ¥
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TABLE V

Critical values of the F distribution
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v, (degrees of freedom of numerator mean squares)

x 1 2 4 5 6 7 8 9 10 11 12 |«
105 | 161 199 25 230 234 237 239 241 241 243 244 | 05
025|648 800 900 922 937 948 957 963 969 973 977 | .025
o1 | 4050 5000 5620 S760 S860 5930 5980 6020 6060 6080 6110 | 01
205 | 185 190 192 193 193 194 194 194 194 194 194 |05
025|385 390 392 393 393 394 394 394 394 394 394 | 025
01| 985 990 992 993 993 994 994 994 994 994 994 | .01
3.05 | 101 955 912 901 894 §89 585 881 879 876 874 |05
025 17.4 16.0 15.1 149 147 14.6 14.5 14.5 144 143 143 025
o1 | 341 308 287 282 279 277 275 273 212 271 271 |01
4 .05 7.71 6.94 639 626 616 609 604 600 596 593 591 05
025 122 106 960 936 920 907 898 890 884 879 875 | 025
or | 212 180 160 155 152 150 148 147 145 144 144 | 01
505 661 579 519 505 495 488 482 477 474 471 468 | .05
025|100 843 739 715 698 685 676 668 662 657 652 |.025
o1 | 163 133 114 110 107 105 103 102 100 999 989 | 01
6 .05 599 514 453 439 428 421 415 410 406 403 400 05
025|881 726 623 599 58 570 560 550 546 541 537 | .025
01 13.7 109 915 875 847 8.26 810 798 787 179 172 01
705 | 559 44 412 397 387 377 373 368 364 360 357 | .05
025 807 654 552 529 S12 499 489 482 476 4TI 467 |.025
o1 122 955 785 746 719 699 684 672 662 654 647 | 01
8 05 532 446 3.84 3.69 358 350 344 3.39 335 33 328 08
025 757 606 505 482 465 453 443 436 430 425 420 028
01| 113 865 701 663 637 618 603 S91 581 573 567 |01
9 .05 512 426 3.63  3.48 3.37 329 323 318 314 310 307 05
028 721 57 472 448 432 420 410 403 396 391 3.87 025
01 10,6 8.02 642 606 580 561 5.47 535 526 518 511 01
10 05 496 410 348 333 322 314 307 302 298 294 291 058
025 694 546 447 424 407 395 385 378 372 367 362 | 025
01 10.0 7.56 599 S64 539 520 506 494 485 477 4M 01
S

to

Area
corresponding to

pereentage points

Note: Interpolation for number of degrees of freedom not furnished in the arguments is by means of harmonic
interpolation (see footnote for Table HI). If both v, and v, require interpolation, onc needs to interpolate for
cach of these arguments in turn. Thus to obtain Fi, 555 k). One first interpolates between Fy 5150.00; and
Fy osi00.00 and between Fy 50,1200 40 F o (s00.120)- 10 estimate Fo osi55.60) a0d F g5i55.5 201, respectively. One
then Inferpolates between these two values to obtain the desired quantity. Entries for a ~ 0.05, 0.025, 0.01, and

0.005 and for v, and v, -

{10 10, 12,15, 20, 24, 30, 40, 60, 120, and « were copied from a table by M. Mernington

and C. M. Thompson (Biometrika 33:73 88, 1943) with permission of the publisher.
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TABLE V
continued
v, (degrees of freedom of numerator mean squares)
o 15 20 24 30 40 50 60 120 @ o
1.08 246 248 249 250 251 252 252 253 254 05
028 985 993 997 1000 1010 1010 1010 1010 1020 025
.01 6160 6210 6230 6260 6290 6300 6310 6340 6370 .01
2 .05 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5 05
025 394 394 395 395 395 395 395 395 395 028
—_ 01 994 994 995 995 995 995 995 995 995 n
7
E 3 .05 870 866 864 B62 859 BS58 857 855 853 05
E) 025 14.3 14.2 14.1 14.1 14.0 14.0 14.0 139 13.9 025
: .01 269 26.7 26.6 265 264 263 263 262 26.1 .01
g 4 .05 586 580 577 575 572 570 569 566 563 05
= 025 866 856 851 846 841 838 836 831 826 025
% 0 142 14.0 139 13.8 13.7 13.7 13.7 136 13.5 01
=]
E 505 4.62 456 453 450 446 444 443 440 436 05
= 025 643  6.33 628 623 618 6.14 612 607 6.02 025
s 01 9.72  9.55 9.47 938 929 924 920 911 9.02 01
s 6 .05 394 3.87 3.84 381 371 3.75 374 370 367 05
E .025 527 517 5.12 507 501 498 496 490 485 025
E .01 7.56 7.40 7.31 7.23 7.14 7.09 706 697 688 01
b ; 05
<= 7.05 3.51 3.44 341 338 334 3.32 3.30 327 323 E
2 025 4.57 447 442 436  4.31 427 425 420 414 025
§ 01 6.31 6.16 607 599 591 586 582 574 5.65 01
&l
S 8 .05 3.22 215 312 3.08 3.04 3.02 3.01 297 293 .08
o 025 4.10 400 3.95 3.89 3.84 3.80 378 373 3.67 025
.01 5.52 5.36 5.28 5.20 5.12 507 5.03 495 4.86 01
9 .05 3.0 2.94 290 286 283 281 279 275 27N .05
025 3717 3.67 3.6t 3.56 3.51 347 345 339 3.33 028
.01 4.96 4.81 4.73 4.65 4.57 4.52 4.48 4.40 4.31 M
10 .05 2.85 237 2.74 270 2.66 2.64 262 2.58 2.54 05
0258 352 342 3.37 3.31 326 322 3.20 3.14 3.08 025
0 4.56 4.41 4.33 4.25 4.17 4.12 4.08 4.00 391 0
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TABLE V TABLE V
continued continued
v, (degrees of freedom of numerator mean squares) v, (degrees of freedom of numerator mean squares)
x 1 2 3 4 5 6 7 8 9 10 11 12 o o 15 20 24 30 40 50 60 120 o o
11 .05 484 398 359 336 320 309 301 295 290 285 282 279 | .05 11 .08 272 265 261 257 253 251 249 245 240 05
025 672 526 463 428 404 388 376 366 359 353 348 343 | 025 025 333 323 317 312 306 302 300 294 288 025
m 965 721 622 567 532 507 489 474 463 454 446 440 | .01 01 425 410 402 394 38 381 378 369 360 01
12 05 475 389 349 326 311 300 291 285 280 275 272 269 |.05 12 .05 262 254 251 247 243 240 238 234 230 05
025 655 510 447 412 389 373 361 351 344 337 332 328 | 025 025 318 307 302 29 291 287 285 279 272 025
0 933 693 595 541 506 482 464 450 439 430 422 416 | 01 = 01 401 386 378 370 362 357 354 345 336 01
15 .05 454 368 329 306 290 279 271 264 259 254 251 248 | 05 £ 1505 240 233 239 225 220 218 216 211 207 05
025 620 477 415 380 358 341 329 320 312 306 301 296 | 025 ;- 025 286 276 270 264 259 255 252 246 240 028
01 868 636 542 489 456 432 414 400 389 380 373 367 | .01 pl 01 352 337 329 321 313 308 305 296 287 o1
<
20 .05 435 349 310 287 271 260 251 245 239 235 231 228 | 05 g 20.05 220 212 208 204 199 197 195 190 1.84 08
025 587 446 386 351 329 313 301 291 284 277 272 268 | .025 5 025 257 246 241 235 229 225 222 216 209 025
01 810 585 494 443 410 387 370 356 346 337 329 323 | .01 'g 01 309 294 286 278 269 264 261 252 242 0
24 05 426 340 301 278 262 251 242 236 230 225 222 218 | 05 ‘E 24 .08 211 203 198 194 189 18 1.8 179 173 05
025 572 432 372 338 315 299 287 278 270 264 259 254 | 025 2 025 244 233 227 221 215 211 208 201 194 025
01 782 Se6t 472 422 3390 367 350 336 326 317 309 303 | 01 5 01 289 274 266 258 249 244 240 231 221 01
<
30 .05 417 332 292 269 253 242 233 227 221 216 213 209 | .05 ; 30 .05 201 193 189 184 179 176 174 168 162 08
025 557 418 359 325 303 287 275 265 257 251 246 241 | .025 s 025 231 220 214 207 201 197 194 187 179 025
01 756 539 451 402 370 347 330 317 307 298 290 284 | 01 g 01 270255 247 239 2300 225 221 211 201 01
bt
40 .05 408 323 284 261 245 234 225 218 212 208 204 204 [ .05 :‘5 40 .05 192 184 179 174 169 166 164 158 1.51 05
025 542 405 346 313 290 274 262 253 245 239 233 229 | .025 2 025 218 207 201 194 188 183 180 172 164 025
01 731 518 431 383 351 329 312 299 289 280 273 266 | 01 g ol 252237 229 220 211 206 202 192 180 01
60 .05 400 315 276 253 237 225 217 210 204 199 195 192 | .05 B 60 .05 1.84 175 170 165 159 156 153 147 139 05
025 529 393 334 301 279 263 251 241 233 227 222 217 | 025 N 025 206 194 188 182 174 170 167 158 148 025
0 708 498 413 365 334 312 295 282 272 263 25 250 | .01 01 235 220 212 203 194 188 184 173 160 0
120 05 392 307 268 245 229 217 209 202 196 191 187 183 | 05 120 05 175 166 161 155 150 146 143 135 125 05
025 515 380 323 289 267 252 239 230 222 216 210 205 | 025 025 195 182 176 169 161 156 153 143 131 025
01 685 479 395 348 317 296 279 266 256 247 240 234 | 01 ot 219 203 195 18 176 170 166 153 1.38 01
™ 05 384 300 260 237 221 210 201 194 188 183 179 175 | 05 ® 05 167 157 152 146 139 135 132 122 100 05
025 502 369 311 279 257 241 229 219 211 205 199 194 | 025 025 183 171 164 157 148 143 139 127 100 025
01 663 461 378 332 302 280 264 251 241 232 225 218 | .01 01 204 188 179 170 159 152 147 132 1.00 01
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TABLE VI
Critical values of F
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@ (number of samples)

v 2 3 4 5

2 05| 390 875 142, 202
01199, 448 729. 1036.

3 .05| 154 278 392 S07
01| 475 85 120. 151,

4 05 960 155 206 252
01 232 37. 49. 59.

5 .05 715 108 137 163
01 149 22. 28. 33.

6 .05 582 838 104 121
O1) 111 1585 1901 22

7 05| 499 694 844 970
01 8.89 121 145 165

8 .05 443 600 7.8 812
.01 750 99 117 132

9 .05 403 534  6.31 7.1
01 654 85 99 111

10 .05 372 485 5.67 634
01 585 7.4 8.6 9.6

12 .05 328 416 479 530
01 491 6.1 6.9 7.6

15 .05 2.86 354 401 4.37
03 407 49 5.5 6.0

200 .08 246 295 329 354
K0! 3.32 3.8 4.3 4.6

30 .05 207 240 2.61 2.78
01 263 30 3.3 34

60 .08 1.67 1.85 1.96 204
01 196 2.2 2.3 2.4

= (5 1.00 1.00 1.00 1.00
01 1.00 1.00 1.00 1.00

6 7 8 9 10 11 12
266. 333. 403. 475. 550. 626. 704
1362. 1705. 2063. 2432. 2813. 3204. 3605.

620 729 835 939 104. 114, 124
184. 21(6) 24(9) 28(1) 31(0) 33(7) 36(1)
205 336 375 411 446 480 S14
69. 79. 89.  97. 106. 113 120.
187 208 229 247 265 282 299
38 42, 4. 50.  54. 57.  60.
137 150 163 175 186 19.7 207
25, 27, 30. 32, 34, 36. 37.
10.8  11.8 127 135 143 151 158
184 20. 22. 23 24 26. 27.
903 978 105 111 117 122 127
145 158 169 179 189 198  21.
780 841 895 945 991 103 107
121 131 139 147 153 160 166
692 742 787 828 866 901 9.34
10.4 111 11.8 124 129 134 13.9

5.72 6.09 6.42 6.72 7.00 7.25 7.48
8.2 8.7 9.1 95 99 102 106
468 495 519 540 559 577 593
6.4 6.7 7.1 7.3 7.5 7.8 8.0
376 3.94 4.10 4.24 4.37 4.49 4.59
49 5.1 5.3 55  S6 58 59
291 302 312 321 329 336 3.39
3.6 3.7 38 39 40 41 42
211 217 222 226 230 233 2.36
24 25 25 26 26 2.7 2.7
1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00
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TABLE VII
Shortest nnbiased confidence limits for the variance
Confidence Confidence Confidence
coefficients coefhicients coefficients
v 0.95 0.99 v 0.95 0.99 v 095 099
2 2099 15805 14 5135 4289 26 6057 5261
23.605 114.489 2.354 3.244 1.825 2.262
3 2681 .1983 15 5242 4399 27 6110 5319
10.127 29.689 2.276 3.091 1.802 2223
4 3125 2367 16 5341 4502 28 6160 5374
6.590 15.154 2.208 2961 1.782 2.187
S .3480 2685 17 5433 4598 29 6209 5427
5054 10.076 2.149 2.848 1.762 2.153
6 3774 2956 18 5520 4689 30 6255 .5478
4211 7.637 2.097 2.750 1.744 2122
7 4025 3192 19 5601 4774 40 6636 .5900
3.679 6.238 2.050 2.664 1.608 1.896
8 4242 .3400 20 5677 4855 50 6913 6213
3.314 5.341 2.008 2.588 1.523 1.760
9 4432 .3585 21 5749 4931 60 7128 6458
3.048 4.720 1971 2.519 1.464 1.668
10 4602 3752 22 5817 5004 70 7300 6657
2.844 4.265 1.936 2.458 1.421 1.607
11 4755 .3904 23 5882 5073 80 7443 6824
2683 3919 1.905 2.402 1.387 1.549
12 4893 4043 24 5943 5139 90 7564 6966
2.553 3.646 1.876 2.351 1.360 1.508
13 5019 4171 25 6001 5201 100 7669 7090
2.445 3.426 1.850 2.305 1.338 1.475

Note: Corresponding to each value of a (number of samples) and v (degrees of freedom) are 1wo critical values
of F,,, representing the upper 5% and 17 pereentage points. The corresponding probabilitics o
distribution. This table was copiced from H. A, David (Biometrika 39:422 424, 1952)

max
represent one tad of the F
with permission of the publisher and author

0.05 and 0.01

Note: The factors in this table have been obtained by dividing the quantity n -

prepared by D. V. Lindley, D. A. East, and P. A. Hamilton (Biometrika 47-433 437, 1960).

1 by the values found in a table



332 APPENDIX 2 / STATISTICAL TABLES

TABLE VIII
Critical values for correlation coefficients

14 o d r V r 14 o r
1 .05 | 997 16 05 | .468 35 .05 | .325
01 |1.000 01 | 59 01 | 418
2 05 | 950 17 05 | .456 40 .05 | .304
01 | 990 01 | 575 01 | .393
3 05 | .878 18 05 | 444 45 .05 | 288
01 | 959 01 | 561 01 | .372
4 05 | 811 19 05 | .433 50 '8? ggi
01 | 917 01 | .549 ’ )
60 .05 | .250
5 05 | .754 20 05 | 423 o1 | 325
01 | 874 01 | 537
70 .05 | 232
6 05 | .707 21 05 | 413 01 | 302
]
01 | 834 01 | 526 80 05 | 217
7 05 | 666 22 05 | .404 01 | 283
01 798 01 S15 90 05 205
8 .05 | 632 23 05 | .39 01 | 267
01 | 765 01 | 508 100 05 | .195
9 05 | 602 24 05 | .388 01 | 254
o1 | 735 01 | 496 120 05 | .174
10 05 | 576 25 .05 | .381 01| 228
01 | 708 01 | .487 150 .05 | 159
01 | 208
11 .05 | 553 26 05 | 374
01 | 684 01 | 478 200 .05 | 138
01 | 181
12 05 | 532 27 05 | 367
300 05 | 113
01 | 661 01 | 470 o1 | 148
13 05 | 514 28 .05 | .361 400 05 | 098
01 | 641 01 | .463 o1 | 128
14 05 497 29 05 355 500 .05 088
.01 623 M 456 01 115
15 05 | .482 30 .05 | .349 1,000 05 | 062
01 | 606 01 | .449 01 | 081

Note: Upper value 1s 5%, lower value is 175 critical value. This table is reproduced by permission (rom Statistical
Methods, Sth edition, by George W. Snedecor, (©) 1956 by The lowa State University Press.
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TABLE IX
Confidence limits for percentages

This table furnishes confidence limits for percentages based on the binomial
distribution.

The first part of the table furnishes limits for samples up to size n = 30.
The arguments are Y, number of items in the sample that exhibit a given prop-
erty, and n, sample size. Argument Y is tabled for integral values between 0 and
15, which yield percentages up to 50%. For each sample size n and number of
items Y with the given property, three lines of numerical values are shown. The
first line of values gives 95% confidence limits for the percentage, the second line
lists the observed percentage incidence of the property, and the third line of
values furnishes the 99% confidence limits for the percentage. For example, for
Y = 8 individuals showing the property out of a sample of n = 20, the second
line indicates that this represents an incidence of the property of 40.00%, the
first line yields the 95% confidence limits of this percentage as 19.107% to 63.95%,
and the third line gives the 99% limits as 14.60% to 70.10%.

Interpolate in this table (up to n = 49) by dividing L and L3, the lower
and upper confidence limits at the next lower tabled sample size n™, by desired
sample size n, and multiply them by the next lower tabled sample size n™. Thus,
for example, to obtain the confidence limits of the percentage corresponding to
8 individuals showing the given property in a sample of 22 individuals (which
corresponds to 36.36% of the individuals showing the property), compute the
lower confidence limit L, = Ly n" /n = (19.10)20/22 = 17.36% and the upper
confidence limit L, = Ly n" /n = (63.95)20/22 = 58.14%.

The second half of the table is for larger sample sizes (n = 50, 100, 200,
500, and 1000). The arguments along the left margin of the table are percentages
from 0 to 50% in increments of 1%, rather than counts. The 95% and 99%
confidence limits corresponding to a given percentage tncidence p and sample
size n are the functions given in two lines in the body of the table. For instance,
the 99% confidence limits of an observed incidence of 127 in a sample of
500 are found to be 8.56-16.19%, in the sccond of the two lines. Interpolation
in this table between the furnished sample sizes can be achicved by means of the
following formula for the lower limit:

L= "
! n(n*

—n")

In the above expression, n is the size of the observed sample, n~ and n* the
next lower and upper tabled sample sizes, respectively, L, and L; are corre-
sponding tabled confidence limits for these sample sizes, and L, is the lower
confidence limit to be found by interpolation. The upper confidence limit, L,,
can be obtained by a corresponding formula by substituting 2 for the subscript
1. By way of an example we shall illustrate setting 95% confidence limits to an
observed percentage of 257 in a sample size of 80. The tabled 95% limits for
n =350 are 13.84--39.27%. For n = 100, the corresponding tabled limits are
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16.88-34.66%. When we substitute the values for the lower limits in the above
formula we obtain
_ (13.84)(50)(100 — 80) + (16.88)(100)(80 — 50)
e 80(100 — 50)

for the lower confidence limit. Similarly, for the upper confidence limit we
compute

= 16.12%

_(39.27)(50)(100 — 80) + (34.66)(100)(80 — 50)
27 80(100 — 50)

= 35.81%

The tabled values in parentheses are limits for percentages that could not be
obtained in any real sampling problem (for example, 25% in 50 items) but are
necessary for purposes of interpolation. For percentages greater than 50% look
up the complementary percentage as the argument. The complements of the
tabled binomial confidence limits are the desired limits.

These tables have been extracted from more extensive ones in D. Mainland,
L. Herrera, and M. |. Sutcliffe, Tables for Use with Binomial Samples (Depart-
ment of Medical Statistics, New York University College of Medicine, 1956)
with permission of the publisher. The interpolation formulas cited are also due
to these authors. Confidence limits of odd percentages up to 13% for n = 50
were computed by interpolation. For Y = 0, one-sided (I — «)100% confidence
limits were computed as L, = | — ™ with L, = 0.
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n

Y 1—« S 10 15 20 25 30 l—a Y
95 0.00-45.07  0.00-25.89  0.00-18.10 0.00-13.91  000-11.29  0.00- 950 95

0 0.00 0.00 0.00 0.00 0.00 0.00 0
99 0.00-60.19  0.00-36.90 0.00-26.44 0.00-20.57 0.00-16.82  0.00-14.23 99
95 0.51-71.60  0.25-44.50  0.17-32.00 0.13-24.85  0.10-20.36  0.08-17.23 95

1 20.00 10.00 6.67 5.00 4.00 3.33 1
99 0.10-81.40 0.05-54.4  0.03-40.27 0.02-31.70  0.02-2624  002-22.33 99
95 528-85.34  2.52-55.60 1.66-40.49 1.24-31.70  098-2605  0.82-22.09 95

2 40.00 2000 13.33 10.00 8.00 6.67 2
99 2289172  1.08-64.80 0.71-48.71 0.53-38.70  0.42-32.08  0.35-27.35 99
95 6.67-652  4.33-48.07 321-37.93  2.55-31.24 2.11-26.53 95

3 30.00 20.00 15.00 12.00 10.00 3
99 3.70-73.50  2.39-56.07 1.77-4505  1.40-37.48  1.16-32.03 99
95 12.20-73.80 7.80-55.14 5.75-43.65  4.55-36.10  3.77-30.74 95

4 4000 2667 20.00 16.00 13.33 4
99 7.68-8091 4.88-62.78 3.58-50.65  2.83-42.41  2.34-36.39 99
95 18.70-81.30 11.85-61.62 8.68-49.13  6.84-40.72  564-34.74 95

5 50.00 33.33 25.00 20.00 16.67 S
99 12.80-87.20 8.03-68.89 5.85-56.05  4.60-47.00  3.79-40.44 99
95 16.33-67.74  11.90-54.30  9.35-45.14  7.70-38.56 95

6 40.00 30.00 24.00 20.00 6
99 11.67-74.40 8.45-60.95  6.62-51.38  5.43-44.26 99
95 21.29-73.38  15.38-59.20  1206-49.38  9.92-42.29 95

7 46.67 35.00 28.00 23.33 7
99 15.87-79.54  11.40-6570  8.90-55.56  7.29-48.01 99
95 19.10-63.95 14.96-53.50 12.29-45.89 | 95

8 40.00 32.00 26.67 8
99 14.60-70.10  11.36-59.54  9.30-51.58 99
95 23.05-68.48 1797 57.48 14.73-49.40 | 95

9 45.00 36.00 30.00 9
99 18.08-74.30  14.01-63.36  11.43-5500 99
95 27.20-72.80  21.12-61.32  17.29-52.80 | 95

10 50.00 40.00 33.33 10
99 21.75-78.25 16.8067.04 13.69-58.35 | 99
95 24.41-6506 19.93.56.13 | 95

11 44.00 36.67 11
99 19.75-70.55  16.06-61.57 99
9% 27.81-68.69  22.66:59.39 9s

12 48.00 400K 12
99 22.84-7393  18.50-64.69 | 99
95 25.46-62.56 98

13 43.33 13
99 21.07 67.72 99
95 28.35-65.66 95

14 46.67 14
99 23.73-7066 | Y9
98 3130 68.70 | YS

15 50.00 15
99 26.47-73.53 | 99
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TABLE IX
continued
n
% 1 —ua 50 100 200 500 1000
0 95 00- 7.11 00- 362 00- 1.83 O00- 0.74 00- 0.37
99 .00-10.05 00- 5.16 00- 2.62 .00- 1.05 .00- 0.53
1 95 (.02- 8.88) 02- 545 12- 3.57 32-2.32 .48- 1.83
99 (00-12.02) 00- 721 {05- 455 22- 2.80 37- 213
2 95 05-10.66 24- 704 55- 504 1.06- 356 1.29- 3.01
99 01-13.98  .10- 894 34- 6.17 87- 412 1.13- 3.36
3 95 (27-12.19)  .62- 853 1.11- 642 1.79- 481 2.11- 419
99 (16-15.60)  .34-10.57 18- 7.65 1.52- 544  1.88- 4.59
4 95 49-13.72  1.10- 993 1.74- 773 2.53- 6.05 2.92- 5.36
99 21-17.21 .68-12.08  1.31- 905  2.17- 675 2.64- 582
5 95 (.88-15.14) 1.64-11.29 2.43- 900 326- 729 3.73 6.54
99 (.45-18.76) 1.10-13.53  1.89-10.40 2.83- 807 3.39- 7.05
6 95 1.26-16.57  2.24-12.60  3.18-10.21  4.11- 843 4.63- 7.64
99 69-20.32  1.56-1493 2.57-11.66 3.63- 924 4.25- 8.18
7 95 (1.74-17.91) 2.86-13.90 3.88-11.47 4.96- 9.56 5.52- 8.73
99 (1.04-21.72) 2.08-16.28 3.17-12.99 4.43-1042 5.12- 9.31
8 95 2.23-19.25 351-1516  4.70-1261  581-10.70  6.42- 9.83
99 1.38-23.13  2.63-17.61 3931418 5231160 5.98-10.43
9 95 (2.78-20.54) 420-1640 546-13.82 6.66-11.83  7.32-1093
99 (1.80-24.46) 321 1892 461 1544 6041277 6.84-11.56
10 95 3.32-21.82  4.90-17.62  622-1502  7.51 1297  8.21-12.03
99 2.22-25.80  3.82-2020  5.29-16.70  6.84-1395  7.70-12.69
1 95 (3.93-23.06) 5651880 7051616 841 1406  9.14-13.10
99 (2.70-27.11) 4.48-21.42  6.06-17.87  7.70 1507  §.60-13.78
12 95 4.54-24.31  6.40-1998  7.87-17.30  9.30-15.16 10.06-14.16
99 3.18-28.42 5.15:22.65 6.83-19.05 856 16.19 9.51-14.86
13 95 (5.18-27.03) 7.11-21.20  8.70-18.44 10201625 10.99-1523
99 (3.72-29.67) 5.77-23.92  7.60-2023  9.42.17.31 10.41-1595
14 95 5.82-26.75 7.87-22.37 9531958 131.09-17.34 11.92-16.30
99 425-30.92 6462513  8.38-21.40 10.28-18.43 11.31-17.04
15 95 (6.50-27.94) 8.64 23.53 10.36-20.72 1198 18.44 12.84-17.37
99 (4.82-32.14)  7.15-20.33  9.15 22,58 11.14 1955 12.21-18.13
to 95 7172912 9452466 11.22-21.82 12.90-19.50 13.79-18.42
99 5.40-33.36 7.89 27.49 997 2371 12.03-2063 13.14-19.19
17 98 (7.88-30.28) 10.25 2579 1200 22.92 1382 2057 14.7319.47
9y (6,00 34.54) 8§63 2565 Y079 24.81 1292 21.72 14.07-20.25
15 95 8.58 31.44 11.06 2602 1296 214.02 14.79 21.61 15.67-20.52
99 6.60-35.73 9372980 11.61-2596 1381 2281 14.99-21.32
19 95 (9.31 32.58) 11.86 2806 13.82 2512 1566 22.71 16.62-21.57
99 (7.23 36.88) 10.10 3096 12.43-27.09 1471 2390 1592-22.38
20 95 10.04-33.72 12.66 29.19 1469 26.22 16.56 2378 17.56-22.62
99 7.86-38.04 10.84-32.12 13.26 28.22 1560-2499 16.84 23.45
21 95 | (10.79 34.84) 13.51 30.28 1558 27.30 17.52-24.83 18.52-23.65
99 (8.53 39.18) 11.63 3324 1..11-29.31 16.51-2605 17.78 24.50
22 95 11.54-35.95 14.45 31.37 16.48 28.37 18.45-25.85 19.47 24.69
99 9.20-40.32  12.41-34.35 14.97-30.40 17.43-27.12 18.72 25.55
23 95 | (12.30 37.06) 15.19 3247 17.37-29.45 19.39 2693 20.43 25.73
99 (9.88 41.44) 13.60 3482 1582 31.50 18.34-28.18 19.67-26.59
24 ER) 1307 38,17 1603 3356 1827-30.52 20.33-27.99 21.39 26.77
99 10.56-42.56  13.98 36.57 16.68 32.59 19.26-29.25 20.61 27.64
25 95 | (13.84 39.27) 1685 3466 19.16-31.60 21.26-29.04 22.31 27.81
99 | (11.25-43.65) 10.77 37.69 17.54-33.68 20.17-30.31

21.55 28.69
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TABLE IX
continued
n
% | —a 50 100 200 500 1000
26 95 14.63-40.34 17.75-35.72 20.08-32.65 22.21-30.08 23.31-28.83
99 11.98-44.73 15.59-38.76 18.43-34.75 21.10-31.36 22.50-29.73
27 95| (15.45-41.40) 18.62-36.79 20.99-3370 23.16-31.11 24.27-29.86
99 (12.71-45.79) 16.42-39.84 19.31-35.81 22.04-32.41 23.46-30.76
28 95 16.23-42.48 19.50-37.85 21.91-34.76 24.11-32.15 25.24-30.89
99 13.42-46.88 17.25-40.91 20.20-36.88 22.97-33.46 24.41-31.80
29 95 (17.06-43.54) 20.37-38.92 22.82-35.81 25.06-33.19 26.21-31.92
99 | (14.18-47.92) 1807-41.99 21.08-3794 23.90-34.5) 25.37-32.84
30 95 17.87-44.61 21.24-3998 23.74-36.87 26.01-3423 27.17-32.95
99 14.91-48.99 18.90-43.06 21.97-39.01 24.83-35.55 26.32-33.87
3 95 (18.71-45.65) 22.14-41.02 24.67-37.90 26.97-35.25 28.15-33.97
99 (15.68-50.02) 19.76-44.11 22.88-40.05 25.78-36.59 27.29-34.90
32 95 19.55-46.68 23.04-42.06 25.61-3894 27.93-36.28 29.12-34.99
99 16.46-51.05 20.61-45.15 23.79-41.09 26.73-37.62 28.25-35.92
33 95 (20.38-47.72) 23.93-43.10 26.54-39.97 28.90-37.31 30.09-36.01
99 (17.23-52.08) 21.47-46.19 24.69-42.13 27.68-38.65 29.22-36.95
34 95 21.22-48.76 24.83-44.15 27.47-41.01 29.86-38.33 31.07-37.03
99 18.01-53.11 22.33-47.24 25.60-43.18 28.62-39.69 30.18-37.97
35 95 (22.06-49.80) 25.73-45.19 28.41-42.04 30.82-39.36 32.04-38.05
99 (18.78-54.14) 23.19-48.28 26.51-44.22 29.57-40.72 31.14-39.00
36 95 22.93-50.80 26.65-46.20 29.36-43.06 31.79-40.38 33.02-39.06
99 19.60-55.13 24.08-49.30 27.44-45.24 30.53-41.74 32.12-40.02
37 95 (23.80-51.81) 27.57-47.22 30.31-44.08 32.76-41.39 34.4%-4007
99 (20.42-56.12) 24.96-50.31 28.37-46.26 31.49-42.76 33.09-41.03
38 95 24.67-52.81 28.49-48.24 31.25-45.10 33.73-42.41 34.98-41.09
94 21.23-57.10 25.85-51.32 29.30-47.29 32.45-43.78 34.07-42.05
39 95 (25.54-53.82) 29.41-49.26 32.20-46.12 34.70-43.43 35.97-42.10
99 (22.05-58.09) 26.74-52.34 30.23-48.31 33.42-44.80 35.04-43.06
40 95 26.41-54.82 30.33-50.28 33.15-47.14 35.68-44.44 36.95-43.11
99 22.87-59.08 27.63-53.35 31.16-49.33 34.38-45.82 36.02-44.08
41 95 (27.31-55.80) 31.27-51.28 34.12-48.15 36.66 45.45 37.93-44.12
99 (23.72-60.04) 28.54-54.34 32.11-50.33 35.35-46.83 37.00-45.09
42 95 28.21-56.78 32.21-52.28 35.08-49.16 37.64-46.46 3892-45.12
99 24.57-60.99 29.45-55.33 33.06-51.33 36.32-47.83 37.98-46.10
43 95 (29.10- 57.76) 33.15-5327 3605 50.16 38.62-47.46 39.91 46.13
99 (25.42-61.95) 30.37-56.32 34.01-52.34 37.29-48.84 38.96-47.10
44 95 30.00 §8.74  34.09-54.27 37.01-51.07 39.60-48.47 40.90-47.14
99 26.27-62.90 31.28-57.31 34.95-53.34 38.27-49.85 39.95-48.11
45 95 (30.90 59.71) 35.03-55.27 37.97 52.17 40.58-49.48 41.89-48.14
99 (27.12-63.86) 32.19-58.30 35.90-54.34 39.24-50.86 40.93-49.12
46 95 31.83-6(.67 3599-56.25 38.95-53.17 41.57-50.48 42.88-49.14
99 28.00-64.78 33.13-59.26 36.87-55.33 40.22-51.85 41.92-50.12
47 95 (32.75-61.62) 36.95-57.23 39.93-54.16 42.56-51.48 43.87-50.14
99 (28.89-65.69) 34.07-60.22 37.84-56.31 41.21 52.85 42.91-51.12
48 95 33.68 62.57 37.91-58.21 40.91-55.15 43.55-52.47 44.87-51.14
99 29.78-66.61 3501-61.19 38.80-57.30 42.19-53.85 43.9(-52.12
49 95 (34.61-63.52) 38.87-59.19 41.89-56.14 44.54 53.47 45.86 52.14
99 (30.67 67.53) 35.95-62.15 39.77-58.28 43.1%-54.84 44.89-53.12
50 95 35.53-64.47 39.83-6(0.17 42.86-57.14 45.53-54.47 46.85-53.15
99 31.55 68.45 36.89-63.11 40.74-59.26 44.16-55.84 45.89-54.1)

Ly
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TABLE X

The = transformatjon of correlation coefficient r

0.00
0.01
0.02
0.03
0.04

0.05
0.06
007
0.08
0.09

0.10
0.11
0.12
0.13
0.14

0.15
0.16
0.17
0.18
Q.19

0.20
0.21
0.22
0.23
0.24

0.25
0.26
0.27
0.28
0.29

0.30
0.31
0.32
0.33
0.34

0.35
0.36
0.37
0.38
0.39

0.40
0.41
0.42
0.43
0.44

(.45
0.46
0.47
0.48
049

2

0.0000

0.0100
0.0200
00300
0.0400

0.0500
0.0601
00701
0.0802
0.0902

0.1003
0.3104
0.1206
0.1307
0.1409

0.1511
0.1614
01717
0.1820
0.1923

0.2027
0.2132
0.2237
0.2342
0.2448

0.2554
0.2661
0.2769
0.28717
0.2986

0.3095
0.3205
0.3316
0.3428
0.3541

0.3654
0.3769
0.3884
0.4001
04118

0.4236
0.4356
0.4477
0.4599
04722

().4847
0.4973
0.5101
0.58230
0531
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r

0.50

0.51
0.52
0.53
0.54

0.55
0.56
0.57
0.58
0.59

0.60
0.61
0.62
0.63
0.64

0.65
0.66
0.67
0.68
.69

.70
0.71
0.72
0.73
0.74

0.75
0.76
0.77
0.78
0.79

0.80
0.81
0.82
0.83
(.84

0.85
0.86
(.87
(.88
0.89

0.90
0.91
0.92
0.93
0.94

0.95
0.96
0.97
0.98

L

(.99

z

0.5493

0.5627
0.5763
0.5901
0.6042

0.6184
0.6328
0.6475
0.6625
0.6777
0.6931
0.7089
0.7250
0.7414
0.7582

0.7783
0.7928
0.8107
0.8291
0.8480

0.8673
0.8872
0.9076
0.9287
0.9505

0.9730
0.9962
1.0203
1.0454
1.0714

1.0986
1.1270
1.1568
1.1881
1.2212
1.2562
1.2933
1.3331
1.3758
1.4219

1.4722
1.5275
1.5890
1.6584
1.7380

1.8318
1.9459
2.0923
22976
2.6467
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TABLE X1

Critical values of U, the Mann-Whitney statistic

jod
ny m| 010 005 0025 001 0005 0001
3 2 6
3 8 9
4 2 8
3 11 12
4 13 15 16
Y 2 9 10
3 13 14 15
4 16 18 19 20
5 20 21 23 24 25
6 2 11 12
3 15 16 17
4 19 21 22 23 24
5 23 25 27 28 29
6 27 29 31 33 34
7 2 13 14
3 17 19 20 21
4 22 24 25 27 28
5 27 29 30 32 34
6 31 34 36 38 39 42
7 36 38 41 43 45 48
8 2 14 15 16
3 19 21 22 24
4 25 27 28 30 31
5 30 32 34 36 38 40
6 35 38 40 42 44 47
7 40 43 46 49 50 54
8 45 49 51 55 57 60
9 1 9
2 16 17 18
3 22 23 25 26 27
4 27 30 32 33 35
S 33 36 38 40 42 44
6 39 42 44 47 49 52
7 45 48 51 54 56 60
8 50 54 57 61 63 67
9 56 60 64 67 70 74
10 1 10
2 17 19 20
3 24 26 27 29 30
4 30 33 35 37 38 40
5 37 39 42 44 46 49
6 43 46 49 52 54 57
7 49 53 56 59 61 65
8 56 60 63 67 69 74
9 62 66 70 74 177 82
10 68 73 77 81 84 90

Note: Critical values are tabulated for two samples of sizes n, and n,, where n > ny, up to n,

339

ny = 20. The

upper bounds of the critical values are furnished so that the sample statistic U, has to be greater than a given
critical value to be significant. The probabilities at the heads of the columns are based on a one-tailed test and
represent the proportion of the area of the distribution of U in one tail beyond the critical value. For a two-tailed
test use the same critical values but double the probability at the heads of the columns. This table was extracted
from a more extensive one (table 11.4) in D. B. Owen. Handbook of Statistical Tubles (Addison-Wesley Publishing
Co., Reading, Mass.. 1962): Courtesy of US. Atomic Energy Commission, with permission of the publishers.
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TABLE X1 TABLE XI
continued continued
® &
M mp| 010 005 0025 001 0005 0.001 n, ny| 010 005 0025 001 0005 0001
1 2| 19 m 2 151 15
2 25 27 29 30
3 26 28 30 32 33 3| 35 38 a0 a2 43
41 33 3% 3% 40 42 4 4| aa a8 50 53 55 59
5 40 43 46 48 50 53 p 53 57 po 4 ps b
6 47 50 53 57 59 62 p P P " 75 78 b
7 54 58 61 65 67 7 7 7 7 81 86 g0 95
B 61 65 69 7375 gg 8| 8 8 91 9% 100 106
9 68 72 76 81 83 9 90 9% 101 107 111 118
10 74 79 84 88 92 98 10 99 106 111 117 121 129
n 81 87 91 % 100 106 11| 108 115 121 128 132 141
121 12 12 | 117 125 131 138 143 152
2 20 22 23 13 127 134 141 148 153 163
3 28 31 32 34 35 14 | 136 144 151 159 164 174
4 36 39 a1 42 45 48 15 | 145 153 161 169 174 185
5 43 47 49 52 54 58 6 1 16
6 51 55 58 61 63 68 5 2 29 3 9
7] %% e 6670 2T 3| 31 a0 42 a5 46
8 66 70 74 79 81 87 1 s 0 5 pox 50 62
9 73 78 82 87 %0 % p 57 P 65 o8 e 75
10 81 86 91 9% 99 106 P et n 275 50 83 88
11 88 94 99 104 108 115 7 76 52 80 91 9 101
12 95 102 107 113 117 124 8 5 b 07 102 106 113
131 13 9 9 102 107 113 117 125
22 24 25 26 10| 106 112 118 124 129 137
3 30 33 35 37 38 11 115 122 129 135 140 149
4 39 42 4“4 47 49 51 12| 125 132 139 146 151 16l
5 47 50 53 56 58 62 13| 134 143 149 157 163 173
6 55 59 62 66 68 73 14 | 144 153 160 168 174 185
7 63 67 7 75 78 83 15 | 154 163 170 179 185 197
8 7 76 80 84 87 93 16 | 163 173 181 190 196 208
9 79 84 89 94 97 103 g -
10 87 93 97 103 106 113 5 28 . ” 24
11 95 101 106 112 116 123 2 29 e o o 49 51
12 | 103 109 115 121 125 133 ]} ¢ p pox 0 oo %6
13 | 1n 18 124 130 135 143 s o p s 7 e %0
14 i 14 6 71 76 80 84 87 93
2 24 25 27 28 7 81 86 91 96 100 106
3 32 35 37 40 41 8 91 97 102 108 112 119
4 4 45 47 50 52 55 9 101 108 114 120 124 132
5 50 54 57 60 63 67 10 112 119 125 132 136 145
6 59 63 67 71 73 78 11 122 130 136 143 148 158
Y 67 72 76 81 83 89 12 132 140 147 155 160 170
8 76 81 86 90 94 100 13 142 151 158 166 172 183
9 85 90 95 100 104 111 14 153 161 169 178 184 195
10 93 99 104 110 114 121 18 163 172 180 189 195 208
11 102 108 114 120 124 132 16 173 183 19 201 207 220
12 110 117 123 130 134 143 17 183 193 202 212 219 232
13 ] 119 126 132 139 144 153
141 127 135 141 149 154 164
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TABLE XI
continued
fx
ny n, 0.10 0.05 0.025 0.01 0.005 0.001
18 1 18
2 30 32 34 36
3 41 45 47 50 52 54
4 52 56 60 63 66 69
5 63 68 72 76 79 84
6 74 80 84 89 92 98
7 85 91 96 102 105 112
8 96 103 108 114 118 126
9 107 114 120 126 131 139
10 118 125 132 139 143 153
11 129 137 143 151 156 166
12 139 148 155 163 169 179
13 150 159 167 175 181 192
14 161 170 178 187 194 206
15 172 182 190 200 206 219
16 182 193 202 212 218 232
17 193 204 213 224 23 245
18 204 215 225 236 243 258
19 1 18 19
2 31 34 36 37 38
3 43 47 50 53 54 57
4 55 59 63 67 69 73
5 67 72 76 80 83 88
6 78 84 89 94 97 103
7 90 96 101 107 111 118
8 101 108 114 120 124 132
9 113 120 126 133 138 146
10 124 132 138 146 151 161
11 136 144 151 159 164 175
12 147 156 163 172 177 188
13 158 167 175 184 190 202
14 169 179 188 197 203 216
15 181 191 200 210 216 230
16 192 203 212 222 230 244
17 203 214 224 235 242 257
18 214 226 236 248 255 27
19 226 238 248 260 268 284
20 1 19 20
2 33 36 38 39 40
3 45 49 52 55 57 60
4 58 62 66 70 72 77
5 70 75 80 84 87 93
6 82 88 93 98 102 108
7 94 101 106 112 116 124
) 106 113 119 126 130 139
9 118 126 132 140 144 154
10 130 138 145 153 158 168
11 142 151 158 167 172 183
12 154 163 171 180 186 198
13 166 176 184 193 200 212
14 178 188 197 207 213 226
15 190 200 210 220 227 241
16 2M 213 222 233 241 255
17 213 228 235 247 254 270
1R PN 217 24% 260 268 284
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TABLE XII
Critical values of the Wilcoxon rank sum.

nominal «
0.05 0.025 0.01 0.005

n T o T o T « T a
5 0 0312

1 0625
6 2 0469 0 0156

3 0781 1 .0312
7 3 0391 2 0234 0 0078

4 0547 3 .0391 1 0156
8 5 0391 3 0195 1 0078 0O .0039

6 0547 4 0273 2 0117 1 0078
9 8 0488 5 0195 3 0098 1 .0039

9 0645 6 0273 4 0137 2 (059
10 10 0420 8 0244 5 0098 3 .0049

1 0527 9 0322 6 0137 4 0068
11 13 0415 10 0210 7 0093 5 .0049

14 0508 11 .0269 8 0122 6 0068
12 17 0461 13 0212 9 0081 7 0046

18 0549 14 0261 10 0105 8 0061
13 21 0471 17 0239 12 0085 9 0040

22 0549 18 0287 13 0107 10 0052
14 25 0453 21 0247 15 0083 12 .0043

26 0520 22 0290 16 0101 13 .0054
15 30 0473 25 0240 19 0090 15 .0042

k3| 0535 26 0277 20 0108 16 .0051
16 35 0467 29 0222 23 0091 19 0046

36 0523 30 0253 24 0107 20 0055
17 41 0492 34 0224 27 0087 23 .0047

12 0544 35 0253 28 0101 24 0055
18 47 0494 40 0241 32 0091 27 .0045

48 0542 41 0269 33 0104 2% 0052
19 53 0478 46 0247 37 0090 32 .0047

54 0521 47 0273 38 0102 33 .0054
20 60 0487 52 0292 43 009 37 0047

61 0527 53 0206 44 0107 38 0053

343

Note This table furmishes cniical values Tor the one-tailed test of significance of the rank sum 7, obtained n
Wilcoxon’s matched-pairs signed-ranks test Since the exact probability level desired cannot be obtained with
integeal critical values of T, two such values and their attendant probabilities bracketing the desired signficance
level are furnished. Thus, to find the sigruticant 17 values for n o= 19 we note the two eritical of 7. 37 and 38,
in the table. The probabilities corresponding to these two values of T are 0.0090 and 0.0102. Clearly a rank sum
of T 37 would have a probability of less than 0.01 and would be considered significant by the stated criterion.
For two-tailed tests in which the alternative hypaothesis is that the pairs could differ in cither direction, double
the probabilities stated at the hiead of the wble. For sample sizes n > 59 compute

Lo ‘ T,

nin + 1)
4

1)

n(n + 1

1)

4

(2n + 1)
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TABLE XII
continued
nominal o
0.05 0.025 0.01 0.005
n T o T «o T a T «
21 67 0479 58 0230 49 0097 42 .0045
68 0516 59 0251 50 0108 43 .0051
22 75 0492 65 .0231 55 0095 48 .0046
76 0527 66 0250 56 .0104 49 .0052
23 83 0490 73 .0242 62 .0098 54 .0046
84 0523 74 0261 63 .0107 55 0051
24 9N 0475 81 .0245 69 .0097 61 .0048
92 0505 82 .0263 70 0106 62 .0053
25 100 0479 89 .0241 76 0094 68 .0048
101 0507 90 .0258 77 0101 69 .0053
26 110 .0497 98 .0247 84 .0095 75 0047
111 0524 99 .0263 85 .0102 76 .0051
27 119 0477 107 0246 92 .0093 83 .0048
120 0502 108 .0260 93 0100 84 .0052
28 130 0496 116 .0239 101 .0096 91 0048
131 0521 117 0252 102 .0102 92 .0051
29 140 0482 126 .0240 110 .0095 100 .0049
141 0504 127 0253 111 .0101 101 .0053
30 151 0481 137 .0249 120 .0098 109 .0050
152 0502 138 0261 121 0104 110 .0053
31 | 163 0491 147 0239 130 0099 118 .0049
164 0512 148 0251 131 0105 119 .0052
32 | 175 0492 159 0249 140 .0097 128 .0050
176 0512 160 0260 141 0103 129 .0053
33 187 0485 170 .0242 151 .0099 138 .0049
188 0503 171 0253 152 0104 139 .0052
34 200 0488 182 .0242 162 .0098 148 .0048
201 0506 183 0252 163 0103 149 0051
35 213 0484 195 0247 173 0096 159 .0048
214 0501 196 0257 174 0100 160 .0051
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TABLE XII
continued
nominal o
0.05 0.025 0.01 0.005
n T o T « T a T «
36 227 0489 208 .0248 185 009 171 .0050
228 0505 209 .0258 186 .0100 172 .52
37 241 0487 221 0245 198 .0099 182 .0048
242 0503 222 0254 199 0103 183 .0050
38 256 0493 235 .0247 211 0099 194 .0048
257 0509 236 .0256 212 0104 195 .0050
39 271 0493 249 0246 224 .0099 207 .0049
272 0507 250 .0254 225 .0103 208 .00St
40 286 0486 264 .0249 238 0100 220 .0049
287 0500 265 .0257 239 0104 221 .0051
41 302 0488 279 .0248 252 0100 233 .0048
303 0501 280 .0256 253 .0103 234 .0050
42 319 0496 294 0245 266 .0098 247 .0049
320 0509 295 .0252 267 0102 248 .0051
43 336 0498 310 .0245 281 0098 261 .0048
337 0511 311 .0252 282 0102 262 .0050
44 353 0495 327 0250 296 .0097 276 .0049
354 0507 328 .0257 297 0101 277 .0051
45 371 0498 343 0244 312 .0098 291 .0049
372 0510 344 0251 313 0101 292 .0051
46 389 0497 361 0249 328 0098 307 .0050
390 0508 362 0256 329 0101 308 .0052
47 407 0490 378 .0245 345 0099 322 0048
408 0501 379 0251 346 0102 323 .0050
48 426 0490 396 .0244 362 0099 339 .0050
427 0500 397 0251 363 0102 340 .0051
49 446 0495 415 .0247 379 0098 355 .0049
447 0505 416 .0253 380 0100 356 .0050
50 466 0495 434 0247 397 0098 373 .0050
467 0506 435 0253 398 .0101 374 0051

345
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Critical values of the two-sample Kolmogorov-Smirnov statistic.
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n;

n, «o 2 3 45 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
2 05 16 18 20 22 24 26 26 28 30 32 34 36 38 38 40 42 44 46
025 - - - - - - 024 26 28 30 32 34 36 38 40 40 42 44 46 48

0 Se - - S . 38 40 42 44 46 48 50

3 05 - - 15 18 21 21 24 27 30 30 33 3 2 39 42 45 45 48 51 51 54 57 60
028 - - 18 21 24 27 30 30 33 36 39 39 42 45 48 51 51 54 57 60 60 63

01 - - - - 27 30 33 36 39 42 42 45 48 51 54 57 57 60 63 66 69

4 05 16 20 20 24 28 28 30 33 36 39 42 44 48 48 S0 53 60 59 62 64 68 68
025 - - 20 24 28 28 32 36 36 40 44 44 45 52 52 54 57 64 63 66 69 72 75

0 - - - - 24 28 32 36 36 40 44 48 48 52 S6 60 60 64 68 72 72 76 80 84

5 05 - 15 2025 24 28 30 35 40 39 43 45 46 55 54 55 60 61 65 69 70 72 76 80
028 - - 2025 30 30 32 36 40 44 45 47 51 55 S9 60 65 66 TS 74 T& 8O 81 90

01 - - 25 30 35 35 40 45 45 50 S2 56 60 64 68 70 71 8 80 83 87 90 95

& 0S5 18 20 24 30 30 34 39 40 43 48 52 54 57 60 62 72 70 72 75 18 80 9O 88
025 - 18 24 30 36 35 36 42 44 48 S4 54 58 63 64 67 78 76 T8 81 86 8 96 96

01 24 30 36 36 40 45 48 54 60 60 64 69 72 73 84 83 88 90 92 97 102 107

7 05 21 24 28 30 42 40 42 46 48 S3 56 63 62 64 68 72 76 79 91 84 89 93 97
025 21 28 30 35 42 41 45 49 S2 S6 58 70 68 73 77 80 84 86 98 96 98 102 105

M - 28 35 36 42 48 49 53 59 60 65 77 75 77 84 87 91 93 105 103 108 112 115

g8 05 16 21 28 30 34 40 48 46 48 53 60 62 64 67 80 77 8 82 88 89 94 9§ 104 104
025 24 28 32 36 41 48 48 5S4 S8 64 65 70 74 80 80 86 90 96 97 102 106 112 112

01 32 35 40 48 56 S5 60 64 68 72 76 81 88 88 94 98 104 107 112 115 128 125

9 05 18 24 28 35 39 42 46 54 53 59 63 65 70 75 78 82 90 89 93 99 101 106 111 (14
0258 27 32 36 42 45 48 63 60 63 69 T2 Te6 81 85 90 99 98 100 108 110 115 120 123

01 27 36 40 45 49 55 63 63 70 75 78 84 90 94 99 108 107 111 117 122 126 132 135

10 05 20 27 30 40 40 46 48 53 70 60 66 7 T4 80 84 89 92 94 110 105 108 114 118 125
025 30 36 40 44 49 54 60 70 68 72 77 82 90 90 96 100 103 120 116 118 124 128 135

01 30 36 45 48 53 60 63 80 77 80 84 90 100 100 106 108 113 130 126 130 137 140 150

Note: This table furnishes upper critical values of nn, D, the Kolmogorov-Smirnov test statistic ) multiplied
by the two sample sizes ny and n,. Sample sizes n, are given at the left margin of the table, while sample sizes
n, are given across its top at the heads of the cotutnns. The three values furnished at the intersection of two
samples sizes represent the following three two-tailed probabilities: .05, 0.025, and 0.01
16 and n,

For two samples with n,

will be significant at P < 0.05.

10, the 5% critical vatue of nyn, D is 84 Any value of nn,D =~ 84

When a onc-sided test is desired, approximate probabilities can be obtained from this table by doubling

the nominal x values. However, these are not exact, since the distribution of cumulative frequencies is discrete.

This table was copied from table 55 in F. S Pearson and H. O. Hartley, Biometrika Tables for Statisticians,
Vol II (Cambridge University Press, London 1972) with permission of the publishers.

TABLE XIIT
continued
”2 o
n, o 2 3 45 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
11 05| 22 30 3339 43 48 53 59 60 77 72 75 82 84 89 93 97 102 107 112 121 119 124 129
025 - 30 26 44 48 52 58 63 68 77 76 84 87 94 96 102 107 111 116 123 132 131 137 140
01 33 40 45 54 59 64 70 77 88 86 91 96 102 106 110 118 122 127 134 143 142 150 154
12 05 [ 24 30 36 43 48 53 60 63 66 72 84 81 8 93 96 100 108 108 116 120 124 125 144 138
025 24 33 40 45 54 56 64 69 72 76 96 84 94 99 104 108 120 120 124 129 134 137 156 150
0t - 36 44 50 60 60 68 75 80 86 96 95 104 108 116 119 126 130 140 141 148 149 168 165
13 05| 26 33 3945 52 56 62 65 70 75 81 91 89 96 101 105 110 114 120 126 130 135 140 145
025 26 36 44 47 54 58 65 72 77 84 84 104 100 104 111 114 120 126 130 137 141 146 151 158
01 - 39 48 52 60 65 72 78 84 91 95 {17 104 115 121 127 131 138 143 150 156 161 166 172
14 05| 26 36 42 46 54 63 64 70 74 82 86 89 112 98 106 111 116 121 126 140 138 142 146 150
025 28 39 44 51 S8 70 70 76 82 87 94 100 112 110 116 122 126 133 138 147 148 154 160 166
01 - 42 48 56 64 77 76 84 90 96 104 104 126 123 126 134 140 148 152 161 164 170 176 182
15 05| 28 36 44 55 57 62 67 75 80 84 93 96 98 120 114 116 123 127 135 138 144 149 156 160
025 30 39 4555 63 68 74 81 90 94 99 104 110 135 119 129 135 141 150 153 154 163 168 175
o - 42 52 60 69 75 81 90 100 102 108 115 123 135 133 142 147 152 160 168 173 179 186 195
16 05| 30 39 48 54 60 64 80 78 84 89 96 101 106 114 128 124 128 133 140 145 150 157 168 167
025 32 42 5259 64 73 80 85 90 96 104 111 116 119 144 136 140 145 156 157 164 169 184 181
ot 45 56 64 72 77 88 94 100 106 116 121 126 133 160 143 154 160 168 173 180 187 200 199
17 05| 32 42 48 55 62 68 77 82 89 93 100 105 111 116 124 136 133 141 146 151 157 163 168 173
025 34 45 52 60 67 77 80 90 96 102 108 114 122 129 136 153 148 151 160 166 170 179 183 190
01 48 60 68 73 84 88 99 106 110 119 127 134 142 143 170 164 166 175 180 187 196 203 207
18 05 | 34 45 S0 60 72 72 80 90 92 97 108 110 116 123 128 133 162 142 152 159 164 170 180 180
025 36 48 S4 65 T8 80 86 99 100 107 120 120 126 135 140 148 162 159 166 174 178 184 198 196
01 - St 60 70 84 87 94 108 108 118 126 131 140 147 154 164 180 176 182 189 196 204 216 216
19 05| 3 45 5361 70 76 82 89 94 102 108 114 121 127 133 141 142 171 160 163 169 177 183 187
025 38 51 57 66 76 84 90 98 103 111 120 126 133 141 145 151 159 190 169 180 185 190 199 205
01| 38 54 64 71 83 91 98 107 113 122 130 138 148 152 160 166 176 190 187 199 204 209 218 224
20 05 | 38 48 60 65 72 79 88 93 110 107 116 120 126 135 140 146 152 160 180 173 176 184 192 200
025| 40 51 64 75 78 86 96 100 120 116 124 130 138 150 156 160 166 169 200 180 192 199 208 215
01 | 40 57 68 80 88 93 104 111 130 127 140 143 152 160 168 175 182 187 220 199 212 219 228 235
21 05 [ 38 51 59 69 7S 91 89 99 105 112 120 126 140 138 145 151 159 163 173 189 183 189 198 202
025] 40 54 63 74 81 98 97 108 116 123 129 137 147 153 157 166 174 180 180 210 203 206 213 220
01 | 42 ST 72 80 90 105 107 117 126 134 141 150 161 168 173 180 189 199 199 231 223 227 237 244
2205 | 40 5162 70 78 84 94 101 108 121 124 130 138 144 150 157 164 169 176 183 198 194 204 209
025] 42 57 66 T8 86 96 102 110 118 132 134 141 148 154 164 170 178 185 192 203 220 214 222 228
01 | 44 60 72 83 92 103 112 122 130 143 148 156 164 173 180 187 196 204 212 223 242 237 242 250
2305 | 42 54 64 72 80 89 98 106 114 119 125 135 142 149 157 163 170 177 184 189 194 230 205 216
025 44 60 69 80 86 98 106 115 124 131 137 146 154 163 169 179 184 190 199 206 214 230 226 237
01 | 46 63 76 87 97 108 115 126 137 142 149 161 170 179 187 196 204 209 219 227 237 253 249 262
2405 | 44 5T 68 76 90 92 104 111 118 124 144 140 146 156 168 168 180 183 192 198 204 205 240 225
025 46 60 72 BT 96 102 112 120 128 137 156 151 160 168 184 183 198 199 208 213 222 226 264 238
01 | 48 66 80 90 102 112 128 132 140 150 168 166 176 186 200 203 216 218 228 237 242 249 288 262
25 05 | 46 60 68 B0 88 97 104 114 125 129 138 145 150 160 167 173 180 187 200 202 209 216 225 250
025 48 63 75 90 96 105 112 123 135 140 150 158 166 175 181 190 196 205 215 220 228 237 238 275
01 | S0 69 84 95 107 115 125 135 150 154 165 172 182 195 199 207 216 224 235 244 250 262 262 xmj
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TABLE XIV
Critical values for Kendall’s rank correlation coefficient t

jod
n| 010 005 001
4 1000 - -
S 0.800  1.000 -
6 0733 0867  1.000
7 0619  0.714 0905
8 0571 0643 0.786
9 0500 0556 0722
10 0467 0511 0.644

11 0.418 0.491 0.600
12 0.394 0.455 0.576
13 0.359 0.436 0.564
14 0.363 0.407 0.516
15 0.333 0.390  0.505

16 0.317 0.383  0.483
17 0.309  0.368 0471
18 0294 0346 0451
19 0.287 0.333 0.439
20 0.274 0.326 0.421

21 0.267 0.314 0.410
22 0.264 0.307 0.394
23 0.257 0.296 0.391
24 0.246 0.290 0.377
25 0.240 0.287 0.367

26 0.237 0.280 0.360
27 0.231 0.27 0.356
28 0.228 0.265 0.344
29 0.222 0.261 0.340
30 0.218 0.255 0.333

31 0.213 0.252 0.325
32 0.210 0.246 0.323
33 0.205 0.242 0.314
34 0.201 0.237 0.312
35 0.197 0.234 0.304

36 0.194 0.232 0.302
37 0.192 0.228 0.297
38 0.189 0.223 0.292
39 0.188 0.220 0.287
40 0.185 0.218 0.285

Note: This table furnishes 0.10, 0.05, and 0.01 critical values for Kendall's rank correlation coeflicient ©. The
probabilities are for a two-tailed test. When o one-tailed test is desired, halve the probabilitics at the heads of
the columns.

To test the significance of a correlation coeflicient, enter the table with the appropriate sample size and
find the appropriate critical value. For example, for a sample size of 15, the 5% and 1% critical values of © are
0.390 and 0.505, respectively. Thus, an observed value of 0.498 would be considered significant at the 5% but
not at the 1% level. Negative correlations are considered as positive for purposes of this test. For sample sizes
n > 40 use the asymptotic approximation given in Box 123, step S.

The values in this table have been derived from those furnished in table X1 of J. V. Bradley, Distribution-Free
Statistical Tests (Prentice-Hall, Englewood Chffs, NI, 1968) with permission of the author and publisher.
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